Edge-Aware Segmentation in Satellite Imagery: A Case Study of Shoreline
Detection

Umit Rusen Aktas, Giilcan Can, Fatos T. Yarman Vural
Department of Computer Engineering
Middle East Technical University
06800, Ankara, Turkey

{rusen,gulcan,vural} @ ceng.metu.edu.tr

Abstract

Shoreline extraction algorithms from multispectral
imagery depend on threshold selection over spectral
values and segmentation in general. Although this
method gives high performance values for water
delineation, error is accumulated on pixels near
shoreline and complicates detection of nearby ships,
docks etc. Water-shadow spectral mixing and spectral
difference in water regions are two of the reasons for
such untrustworthy shoreline results. With only four
bands available, improvement in water detection
depending only on pixel values is not very promising.
Therefore, segmentation gains importance. By an
edge-aware segmentation method, we aim to improve
overall water and shoreline detection performances.

In this study, a robust three-stage shoreline
extraction algorithm is proposed. In the first stage,
segmentation is applied over spectral values and then,
some segments are combined according to edge
information. In the second stage of the algorithm,
pixel-based water information is combined with
segmentation. The last step consists of enhancement of
water regions based on local optimization by merging
regions near shore boundary. Additionally, two new
boundary-sensitive  performance metrics ~ are
introduced for measuring the accuracy of the detected
boundaries.

1. Introduction

Accurate shoreline detection has great importance
as a prior step of land use/land cover (LULC)
monitoring and planning. In order to extract shoreline
accurately, a robust water detection algorithm is

crucial. In multispectral images, water areas give
reflectance near to zero in near-infrared (NIR) band
and by taking difference of NIR value and green band
value, they can be differentiated from green land or
soil areas [2]. Nowadays, normalized difference water
index (NDWI) analysis or NIR band analysis are used
for this task [1, 2]. In this study, dynamic threshold
selection is applied on NIR values for IKONOS
images, and on NDWI values for GEOEYE images for
detecting water.

Recently, region-based approaches have taken
place of pixel-based ones in literature [3]. However,
unlike Di et al. in [3], we do not need human
interaction to extract shoreline correctly. Another
comprehensive study that uses segmentation for
coastline extraction is presented in [4]. We embrace
and use the idea of local boundary optimization rather
than global thresholds, yet in a much simpler concept.

In this paper, we propose an edge-aware
segmentation method based on popular mean shift
algorithm and steerable filter responses [5, 6]. First,
images are segmented by mean shift algorithm
according to their spectral values. Then, segments are
merged if there is no strong steerable filter response
separating them and their spectral characters are
similar. Steerable filter response, which is obtained
from water index, gives maximum response at borders
of light to dark area transitions. Thus, it gives a
continuous high response over shoreline. Information
about dataset used in this study can be found in next
section. The shoreline detection algorithm is explained
in detail in third part, while proposed performance
metrics can be found in fourth section. Then, results
are presented, and paper is concluded with an
evaluation of the suggested method.



2. Dataset

Dataset contains three IKONOS and seven
GEOEYE images, most of which have ships along
shoreline, making the process more challenging. All
images in the dataset have a 2-meter resolution. The
total length of shoreline tested is approximately 160
km. Figure 1 shows a sample GEOEYE image.
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Figure 1. GEOEYE sample (RGB)

Ground truth data for all images have also been
prepared to be used during performance evaluation.

3. Proposed Algorithm

3.1 Pixel-based Water Detection

In the literature, a constant threshold value which is
tuned according to dataset is used in many studies.
However, to adapt to image-specific reflectance
characteristics, dynamic threshold selection is
preferred in this study. Two different strategies are
applied while determining dynamic thresholds. NIR
histogram is analyzed as described in a previous study
for IKONOS images [7], while Otsu’s method is
applied on NDWTI histogram for GEOEYE images [8]
computed from the following equation:

Green — NIR (1)

NDWI = Green + NIR

The result of applying Otsu’s threshold over NDWI
output of sample image can be seen in Figure 2.
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Figure 2. Water mask of sample after applying
dynamic threshold

3.2 Edge-aware Segmentation

First, an over-segmented map is obtained by mean
shift algorithm on red-green-blue (RGB) spectral
values. Mean shift segmentation parameters are
selected as range = 3, spatial = 3, min. size = 50. Edge
information is integrated in the following manner:

1) NDWI output is processed using steerable filters,
giving high responses especially over the shores.
The response image of the sample can be seen in
Figure 3. This image holds information about the
boundaries which should be preserved.

2) Each segment pair is given a score based on their
color information, average steerable filter
response value inside them and on their common
boundary, as follows:

Scyy = Wy |l = Iy| + wy|Sy = Sy| + w3 Sy,
Xy €S @

Notation of the formula (2) is:

Scyy = Score of segment pair x and y,

S = Set containing all segments,

I, = Average intensity for segment x,
S, = Average steerable filter response
for segment x,

Sxy = Average steerable filter response
of the common boundary between
segment x and segment y,

wy, wy and w; are given equal weights.

3) A 100-bin histogram of the given scores is
calculated, and their distribution is examined. A
score threshold T is learned from the dataset.

4) All segment pairs having a score below T are
merged to obtain larger, homogenous regions.

Segments obtained after this process are
homogenous in terms of spectral values and do not
contain high steerable filter edges inside them. Raw
and processed segmentation maps of sample image
can be found in Figure 4.

The reader should be aware that not all water
regions can be merged together. The fact is that
finding an optimal threshold 7' that works for all
images is impossible, and we choose to set it a low
value (9/100) to stay on the safe side. The optimality
of the result is obtained using a second region merging
method that works completely locally in Step 3.4.



Figure 3. Steerable filter response

3.3 Combining Pixel-based Water Output and
Segmentation

After obtaining edge-aware segmentation, water
percentage in each segment is analyzed. If the
percentage of water pixels among all the pixels in a
segment is greater than Ty, 4., then the segment is
marked as water region. The threshold Ty 44, 1s learnt
from dataset by cross-validation, and assigned as 0.9.

3.4 Region Merging through Boundaries

While the mask obtained previously contains the
main water bodies, it still fails to manage segments on
the shore correctly. Due to the differences between
deep and shallow water areas, these segments may not
be merged with others. A second round of region
merging that works over the boundary obtained from
Step 3.3 optimizes the output. This optimization is
accomplished as follows:

1) Coarse water regions coming from Step 3.3 form
the basis water mask. Their neighboring land
segments are extracted using the initial mean-
shifi segmentation, forming our search space.

2) Each land segment from step 1 is labeled as
water, if it passes a test. A sample is added to its
accompanying water region if and only if it
improves the region’s shoreline quality. The
decision formula for “improvement” is given in

formula (3).

Ly = Water, iff
Scores, with sy > SCOTe€sy without 5) » Where  (3)
Scoreg;, = SFg;, + 1Dg;,

L¢ is the label of the segment S, SFs; is the
average steerable filter response under the boundary,
and IDg; is the average intensity difference of the two
sides of shoreline, calculated within a 5-pixel band.

If Scoreg;, increases after the addition of the
sample to the water area, it is labeled as water.

3) If the shoreline has not changed in the last run,
terminate. If it did, form the basis water mask
including changes in step 2 and go back to step 1.

The purpose of this procedure is to remove the
need to find an optimal score threshold 7" in Step 3.2.
The previously applied region merging procedure
gives a global point of view to the algorithm. The local
application performed in this step further refines the
result. In effect, the boundary is grown into land until
it is met with a high resistance. Output of this local
procedure is close to the global optimum, since main
body of the water region was already detected.

Figure 4. Raw mean shlft segmentatlon (left),
edge-aware segmentation (right)

4. Performance Metrics

To estimate the system’s performance, a 200 meter-
wide band near the actual shoreline is selected for
application of precision, recall and accuracy methods.
In addition to these, two new performance metrics are
proposed. These complementary metrics focus on how
well the shore boundary is extracted, rather than the
overall performance of the water detection algorithm.

The proposed metrics, Shore Line Precision (SLP)
and Shore Line Recall (SLR) only work on boundaries
rather than pixel-wise water assignments. Their
mathematical representations are given below:

SLp = Zierf® SLR = Ziecf® @)
Nt Ng
f(i) function above is defined as:
f@ = llx@ — x|
While j is the nearest pixel to pixel i in G for SLP,
and in T for SLR,
x (1) is pixel position in 2D space,
G is the set of shoreline pixels in ground truth data,
Ngis the number of pixels in G.
T is the set of shoreline pixels in test data,
Nr is the number of pixels in T.

SLP and SLR are designed to see the amount of
deviation between detected shoreline and actual
boundaries. The analogy with precision and recall
metrics is straightforward. SLP estimates the
“correctness” of a detected pixel by searching for
nearest actual boundary pixel in ground truth, and SLR
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Figure 5. Algorithm Results for Sample Image

similarly detects how far a ground truth pixel is
detected in test mask. Both of these metrics are helpful
in the assessment of the shoreline algorithm’s quality.

The proposed metrics prevent the water region’s
size from creating a bias on the overall performance.
Smaller values indicate better performance.

5. Conclusion

In addition to the classical performance measures
of accuracy, recall, precision, we define and employ
the proposed SLP and SLR metrics in this study. First
three measures are computed in a pixel-wise manner
according to matching of water mask with ground
truth. Performance values per unit length of shoreline
throughout the dataset can be seen in Table 1.
Performance values are computed for algorithms using
raw segmentation (SL-1), edge-aware segmentation
(SL-2) and proposed two-stage segmentation (SL-3).

Proposed algorithm gives improved results for most
of the images according to all metrics but precision.
This is due to small segments near shoreline which
have fewer detected water pixels. These segments do
not contain enough water evidence and are labeled as
land in SL-1, thus increasing precision. However, as
observed in Figure 5.b, SL-1 misses many water
segments. Figure 5 presents the results of proposed
algorithms, which are much more accurate than SL-1.

Table 1: Performance Values

Precision | Recall | Accuracy | SLP SLR

SL-1 | 98.34 89.18 | 97.76 19.07 | 6.31

SL-2 | 9841 89.09 |97.76 17.11 | 6.28

SL-3 | 96.53 95.17 | 98.50 14.26 | 4.05

Water regions near shoreline or with wavy surfaces
have different spectral values than deeper water areas.
These regions make water mask quite noisy and are
found as separate segments by raw mean-shift
segmentation. Thus, it becomes hard to label them as
water due to missing evidence. They are combined
with nearby water segments in the proposed algorithm,
and effects of noisy water results can be eliminated.

Proposed SLP and SLR metrics are closer to human
visual perception as well. When compared to other
metrics, they capture the deviations near the shoreline
better. Algorithms tend to give very similar results in
precision, recall and accuracy metrics, as they only
change by 1-5 percent. SLP and SLR, on the other
hand, differ by as much as 30-35 percent. Their power
of discrimination is much more than usual methods.

As future work, errors related to shadows of ships
or objects near shore are planned to be eliminated by
the help of polygon fitting to the detected shoreline.
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