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ABSTRACT
Genome wide protein networks have become reality in recent
years due to high throughput methods for detecting protein
interactions. Recent studies show that a networked repre-
sentation of proteins provides a more accurate model of bio-
logical systems and processes compared to conventional pair-
wise analyses. Complementary to the availability of protein
networks, various graph analysis techniques have been pro-
posed to mine these networks for pathway discovery, func-
tion assignment, and prediction of complex membership. In
this paper, we propose using random walks on graphs for
the complex/pathway membership problem. We evaluate
the proposed technique on three different probabilistic yeast
networks using a benchmark dataset of 27 complexes from
the MIPS complex catalog database and 10 pathways from
the KEGG pathway database. Furthermore, we compare the
proposed technique to two other existing techniques both in
terms of accuracy and running time performance, thus ad-
dressing the scalability issue of such analysis techniques for
the first time. Our experiments show that the random walk
technique achieves similar or better accuracy with more than
1,000 times speed-up compared to the best competing tech-
nique.

Categories and Subject Descriptors
G.2.2 [Discrete Mathematics]: Graph Theory—graph al-
gorithms, network problems ; J.3 [Life and Medical Sci-
ences]: Biology and Genetics

Keywords
protein networks; random walks on graphs; complex mem-
bership; pathway membership

1. INTRODUCTION
Recent developments in genome projects have shown that

the complex biological functions of higher organisms are
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due to combinatorial interactions between their proteins.
Therefore, in recent years much effort has gone into find-
ing the complete set of interacting proteins in an organ-
ism [22]. Genome-scale protein networks have been realized
with the help of high throughput methods, like yeast-two-
hybrid (Y2H) [8, 19] and affinity purification with mass spec-
trometry (APMS) [6, 7]. However, as later studies show, the
results from high throughput screens may contain significant
number of false positive interactions [22]. Asthana et al. [1]
assign probabilistic confidence values to experimentally de-
rived interactions using the manually curated catalogs of
known complexes in MIPS (Munich Information Center for
Protein Sequences) [15] as a trusted reference set. In ad-
dition, information integration techniques that utilize indi-
rect genomic evidence have provided both increased genome
coverage by predicting new interactions and more accurate
associations with multiple supporting evidence [4, 9, 12, 21].

Complementary to the availability of genome-scale protein
networks, various graph analysis techniques have been pro-
posed to mine these networks for pathway discovery [3, 17,
24], function assignment [11, 13, 18], and prediction of com-
plex membership [1]. The intrinsic cluster structure of a pro-
tein network provides more accurate biological insights com-
pared to local pairwise comparisons. Bader and Hogue [2]
propose a clustering algorithm to detect densely connected
regions in a protein interaction network for discovering new
molecular complexes.

A biologically motivated problem is to predict new mem-
bers of a partially known protein complex or pathway. In
this problem, a particular core set of proteins is known, but
the biologists are not confident that this core set is com-
plete. The goal is to find a list of candidate proteins, prefer-
ably ranked by probability of membership in the partially
known complex. As a solution to this problem, Asthana
et al. [1] proposed a network reliability based technique to
find close proximity proteins. They approximate the reliabil-
ity between two nodes using Monte Carlo simulation, since
the exact solution to the network reliability problem is NP-
hard [20]. However, the proposed approximation technique
is still computationally expensive as the number of samples
for accurate reliability estimation of distant nodes can be
very high. Therefore, this technique does not scale well for
large protein-protein interaction networks. In this paper,
as a computationally more efficient alternative, we propose
using random walks on graphs for the complex membership
problem.

The random walk technique exploits the global structure



of a network by simulating the behavior of a random
walker [14]. The random walker starts on an initial node,
i.e., the query node, and moves to a neighboring node based
on the probabilities of the connecting edges. The random
walker may also choose to teleport to the start node with
a certain probability, called the restart probability. The
walking process is repeated at every time tick for a certain
amount of time. At the end, the percentage of time spent
on a node gives a notion of its proximity to the query node.
Google search engine uses a similar technique to exploit the
global hyperlink structure of the Web and produce better
rankings of search results [5]. Weston et al. [23] use the ran-
dom walk technique on a protein sequence similarity graph
created using PSI-BLAST scores to provide better rankings
for a given query protein sequence.

The solution to the problem of finding final rankings of a
random walk process can be formulated as an iterative ma-
trix multiplication that provably converges [23]. In addition
to providing a computationally much efficient alternative,
the matrix formulation also allows for the random walker to
start from a set of nodes instead of a single node. Therefore,
by using the proteins of a partially known complex as the
start set, the random walk technique ranks the remaining
proteins in the network with respect to their proximity to
the query complex. This makes the random walk technique
a suitable solution for complex membership problem.

We evaluate the random walk technique on three prob-
abilistic yeast networks using a benchmark dataset of 27
complexes from the MIPS complex catalog database [15]
and 10 pathways from the KEGG [10] pathway database.
Our experiments show that the ranking results provided by
the random walk technique is as accurate as the network re-
liability technique [1] with more than 1,000 times speed-up.

The rest of the paper is organized as follows. In Section
2, we give technical details of the random walk method for
the complex membership problem. In Section 3, we evaluate
the proposed technique on three probabilistic yeast networks
and present comparative analysis results. We conclude in
Section 4.

2. METHODS
In this section, we describe the complex membership prob-

lem and present the random walk algorithm as a solution to
this problem. We also discuss the competing techniques that
are used in the comparative analysis.
Complex membership problem: Given a set of core pro-
teins in a protein complex, the complex membership prob-
lem is defined as the problem of finding a set of candidate
proteins, ranked according to the probability that each con-
nects to the core complex. A good solution to this problem
provides better targets for in vivo screening of candidate
members of a protein complex. The same solution can be
used for predicting candidate members of a partially known
pathway if the underlying network captures functional asso-
ciations as well as protein-protein interactions.

2.1 Random walks on graphs
Let G = (V, E) be the graph representing a protein-protein

interaction network, where V is the set of nodes (proteins),
and E is the set of weighted undirected edges, where the
weight shows the probability of interaction (or functional
association) between protein pairs. We define the proximity
of a node v to a start node s, ps(v), as follows:

Input: the similarity network G = (V, E);
a start node s;
restart probability c;

Output: the proximity vector ~ps(V );

Let ~rs(V ) be the restart vector with 0 for all its entries
except a 1 for the entry denoted by node s;

Let A be the column normalized adjacency matrix
defined by E;

Initialize ~ps(V ) := ~rs(V );
while (~ps(V ) has not converged)

~ps(V ) := (1− c)A~ps(V ) + c~rs(V );

Figure 1: The iterative algorithm to compute the
proximity of all the nodes in the graph to a given
start node s.

Definition 2.1. ps(v) is the steady state probability that
a random walk starting at node s will end at node v.

Random walk method simulates a random walker that
starts on a source node, s (or a set of source nodes simulta-
neously). At every time tick, the walker chooses randomly
among the available edges (based on edge weights), or goes
back to node s with probability c. The restart probabil-
ity c enforces a restriction on how far we want the random
walker to get away from the start node s. In other words, if
c is close to 1, the affinity vector reflects the local structure
around s, and as c gets close to 0, a more global view is
observed.

The probability ps(v)(t), describes the probability of find-
ing the random walker at node v at time t. The steady state
probability ps(v) gives a measure of proximity to node s,
and can be computed efficiently using iterative matrix oper-
ations. Figure 1 shows the iterative algorithm, which prov-
ably converges [23]. The number of iterations to converge is
closely related to the restart probability c. As c gets smaller
the diameter of the observed neighborhood increases, thus
the number of iterations to converge gets larger. The con-
vergence check requires the L1-norm between consecutive
~ps(V )s to be less than a small threshold, e.g., 10−12. In our
experiments, for c = 0.30 the average number of iterations
to converge is around 55. We give the running time perfor-
mance of the random walk method for different c values in
Section 3.

The details of the random walk method can be found
in [14]. The main advantage of the random walk method
is that it is very fast and therefore applicable to large pro-
tein networks. Another advantage is that, the method can
be used to compute the proximity of a node to a set of source
nodes (not just a single source node). This property is espe-
cially beneficial when a core set of members of a pathway or
complex is known and the network is queried for candidate
members.

2.2 Other techniques for the complex mem-
bership problem

Network reliability using Monte Carlo simulation:
The solution to the two-terminal network reliability problem
can be used to predict functional associations between pro-
teins. In the reliability problem, we have a graph of connec-
tions between nodes in which each connection is weighted by
the probability that the corresponding wire (edge) is func-
tioning at a given time. The probability that some path of



Figure 2: Associations between four members of the Ribonucleoside-diphosphate reductase complex in (a)
ProNet, (b) ConfidentNet, and (c) PIT-Network. The edge weights for ProNet are probabilities with prior
probability of interaction 0.007. The edge weights for ConfidentNet and PIT-Network are products of like-
lihoods of individual data sources. The likelihoods of these networks are not directly comparable since they
are built using different number of data sources. For the network reliability technique, these likelihoods are
normalized to range [0,1].

functioning wires connects the two terminals at a given time
gives a measure of proximity between these terminals. The
same idea can be extended to discover neighboring proteins
in a protein network. The exact solution to the network reli-
ability problem is NP-hard [20]. Monte Carlo simulation [1]
is one of the approximation methods proposed for this prob-
lem. In this method, a sample of N binary networks from
the probabilistic network is created according to a Bernoulli
trial on each edge based on its probability. Then, breadth-
first search is used to determine the existence of a path be-
tween a node in the network and the core complex/pathway.
For each protein p in the network, the fraction Fi of sampled
networks in which there exists a path between i and the core
complex/pathway is counted. This process provides a rank-
ing of all the proteins in the network. Unlike the random
walk technique, this method does not normalize the incom-
ing edges of a node when computing the connectivity of a
protein to the core complex/pathway. The two parameters
that affect the accuracy of the results and the computa-
tional efficiency of the technique are the choice of N (the
number of samples) and the maximum depth for breadth-
first search. In Section 3, we give accuracy and running time
performance results for different values of N .

Markov random field: Markov random field method is
based on belief propagation and is used to analyze pro-
tein networks by Letovsky and Kasif [13]. The method is
originally proposed for function prediction but can be used
to predict new members of a partially known complex or
pathway. At every iteration, each node receives information
about its neighbors’ labels and their beliefs on the label.
Each node then updates its own belief based on the distri-
bution of its neighbors’ beliefs. The updated belief is the
probability of having k of M neighbors having the label.
Since the belief propagation is an iterative process, nodes
may mutually enhance their beliefs in the case of cycles in
the network. To avoid such traps, Letovsky and Kasif pro-
pose resetting the beliefs every two iterations. The resetting
is accomplished by labeling only the nodes with probability
higher than some threshold (e.g., 0.8). The Markov random
field method is very fast, and the underlying idea of belief
propagation is very intuitive. However, there are a num-
ber of disadvantages for practical use of this method for the
complex membership problem: 1) there are too many para-

meters to adjust, 2) no formal proof of belief bounds exist,
3) the method needs a large negative label set to suppress
propagation of belief to all of the network, and 4) the result
provided by the Markov random field is not a ranking but a
set of nodes that are predicted to be candidate members of
the core complex.

Diffusion kernels: Diffusion kernels provide a global sim-
ilarity metric for the nodes of a graph. The computation of
a diffusion kernel is based on the Gaussian radial basis func-
tion kernel [16, 18]. The advantages of the diffusion kernels
are: 1) they are suitable for integration of multiple data
sources and 2) existing kernel methods, e.g., support-vector
machines, can be used for classification. The main disadvan-
tage is that it is a measure between two nodes; therefore, a
decision as to which metric should be used to compute sim-
ilarity of a set of nodes to a single node (e.g., max, average,
sum, etc.) is needed. The other disadvantages are: 1) com-
putation of the diffusion kernel is expensive, 2) the only
parameter β is not as intuitive as the restart probability in
random walks, and 3) the effect of the edge weights on the re-
sulting kernel is unclear. Our efforts to use diffusion kernels
for the complex membership problem with default parame-
ters were not successful as the accuracy of the results were
very low compared to those of random walk, network relia-
bility, and Markov random field techniques. Kernel methods
work best with the optimum parameters whose discovery
can be tedious. Therefore, we do not compare the proposed
random walk method to the diffusion kernel technique.

In the next section, we evaluate the random walk tech-
nique on three probabilistic yeast networks and provide com-
parative results for the complex membership problem.

3. RESULTS
Many biological studies for identification of functional in-

teractions between proteins have targeted the model organ-
ism yeast due to its small genome, extensive genetic in-
formation, and well-known biochemistry. Therefore, due
to the availability of extensive experimental data, most of
the computational studies on construction of protein net-
works have been on the yeast genome. Below, we describe
the probabilistic yeast networks used in our experiments.
The first network, ProNet (Asthana et al. [1]), is a proba-



Table 1: KEGG pathways used in the experiments.
KEGG pathway id: Number of pathway members: Pathway description:

sce00030 27 Pentose phosphate pathway
sce00193 30 ATP synthesis
sce00510 30 N-Glycan biosynthesis
sce00513 15 High-mannose type N-glycan biosynthesis
sce00600 18 Glycosphingolipid metabolism
sce03020 29 RNA polymerase
sce03022 23 Basal transcription factors
sce03030 21 DNA polymerase
sce03050 32 Proteasome
sce03060 10 Protein export

bilistic network derived from the results of four large scale
experimental interaction detection techniques [6, 7, 8, 19].
ProNet contains 3,112 yeast proteins and 12,594 undirected
probabilistic interactions, i.e., edges. The second network,
ConfidentNet (Lee et al. [12]), is a probabilistic functional
network of yeast genes. The associations between proteins
are predicted using a Bayesian approach by combining five
different information sources: mRNA coexpression, gene-
fusions, phylogenetic profiles, co-citation, and protein in-
teraction experiments. ConfidentNet contains 4,681 yeast
proteins and 34,000 undirected probabilistic associations.
The third network, PIT-Network (probabilistic interactome-
total) (Jansen et al. [9]), is a combination of predicted and
experimental interaction networks using a naive Bayesian
approach. The predicted network is constructed using
mRNA expression, GO processes, MIPS function, and essen-
tiality data. The experimental network is constructed with
the same data sources used in ProNet, but by using a fully
connected Bayesian network. PIT-Network contains 2,879
yeast proteins and 24,820 interactions. To illustrate the dif-
ferences between the three networks, Figure 2 shows associa-
tions between the members of a Ribonucleoside-diphosphate
reductase complex in ProNet, ConfidentNet, and PIT-
Network respectively.

In order to evaluate the performance of the random walk
technique for the complex membership problem, we used
the 27 MIPS [15] complexes examined by Asthana et al. [1]
and 10 selected pathways from the KEGG pathway data-
base [10]. Table 1 shows the KEGG pathways used in our
experiments. We used the leave-one-out benchmark to as-
sess the accuracy of the analysis techniques. In this bench-
mark, for each of the complexes and pathways examined,
one member protein is left out in turn and the remaining
set of member proteins is used as the core complex or the
partially known pathway in a membership query. The rank
of the left out protein as given by the query results provides
a measure of accuracy. A successful analysis method should
report the left out protein in top ranks. Therefore, in the
accuracy result graphs given below, the fraction of leave-one-
out queries in which the left-out protein was found above a
threshold rank k is assessed.

Figure 3 and Figure 4 show the comparison results for
MIPS complex queries and KEGG pathway queries
on ProNet respectively. The result of the Markov random
field (MRF) method is depicted as a constant height bar,
because MRF method does not return a ranked list, but a
set of genes predicted to be members of the complex or the
pathway. The size of the set returned by the MRF method

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 25 50 100 200

Threshold rank (k)

P
e
rc

e
n

ta
g

e
 o

f 
q

u
e
ri

e
s
 t

h
a
t 

re
tu

rn
 t

h
e
 l
e
ft

 o
u

t 
p

ro
te

in
 

in
 t

o
p

-k

Random Walk

Network Reliability

MRF

Figure 3: Comparison of analysis methods for pro-
tein complex queries on ProNet. The x-axis shows
the rank threshold for the left out protein and the
y-axis shows the percentage of complex queries (for
a total of 121 left-out complex proteins) that the left
out protein is found at (or below) the specified rank
threshold.
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Figure 4: Comparison of analysis methods for
KEGG pathway queries on ProNet.
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Figure 5: Comparison of random walk and network
reliability techniques for MIPS complex queries on
ConfidentNet.
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Figure 6: Comparison of random walk and network
reliability techniques for KEGG pathway queries on
ConfidentNet.
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Figure 7: Comparison of random walk and network
reliability techniques for MIPS complex queries on
PIT-Network.
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reliability techniques for KEGG pathway queries on
PIT-Network.
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Figure 9: Running time performance of the random
walk technique for varying restart probability. The
queries are performed on ProNet and the time on y-
axis shows the total time to complete all 121 MIPS
complex leave-one out queries.

is approximately 300 for the protein networks we consider in
this paper. The accuracy ratio indicates the percentage of
left out proteins that are correctly predicted to be a mem-
ber of the core complex/pathway. The results show that the
random walk technique has similar or better accuracy com-
pared to the network reliability technique for both complex
and pathway queries. In these tests, restart probability of
0.50 was used for the random walk method and sampling
size of 10,000 was used for the network reliability by Monte
Carlo sampling technique. The slight decrease in the accu-
racy values for pathway queries is because ProNet captures
only direct interactions but not functional associations.

It is clear that the accuracy of any analysis method de-
pends also on the quality of the probabilistic network. There-
fore, we performed the same benchmark tests for random
walk and network reliability on ConfidentNet and PIT-
Network (Figures 5 to 8). These results indicate that, re-
gardless of the network used, random walk technique
achieves similar results similar to those of the network relia-
bility technique for the complex/pathway membership prob-
lem. One interesting observation is that the network reliabil-
ity technique performs significantly worse than the random
walk technique on the PIT-Network. A possible reason for
this finding may be the breadth-first search threshold of 4
that is specially tuned for ProNet. The network reliabil-
ity technique will perform poorly for graphs on which
complex/members are placed farther apart.

Next, we analyze the effect of the restart probability for
the random walk method and sample size for the Monte
Carlo sampling technique (network reliability) on ProNet
for MIPS complex queries. Running time behaviors of these
methods on other networks are similar. Also, the running
time of Markov random field method is close to that of the
random walk method.

Figure 9 and Figure 10 show the running time perfor-
mances of the random walk method and network reliability
by Monte Carlo sampling method respectively. In order to
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Figure 10: Running time performance of the Monte
Carlo sampling approximation to the network re-
liability problem for varying sample size. Both
axes are shown in log scale for better illustration
of wide range of values. The queries are performed
on ProNet and the time on y-axis shows the total
time to complete all 121 MIPS complex leave-one
out queries.

compare the timing results effectively, one needs to find the
optimum parameters that gives best accuracy results. Fig-
ure 11 and Figure 12 present accuracy results with respect
to varying restart probability and sample size (Figure 12 is
depicted as a bar graph in order show variable scale values
of sample sizes more clearly). Figure 11 shows that the ac-
curacy of the random walk technique is not sensitive to the
value of restart probability. The random walk method at-
tains the best accuracy of 54% for restart probability 0.5.
On the other hand, the Monte Carlo sampling technique has
the best accuracy of 51% for sample sizes 5,000 and 10,000.
The running time at sample size of 5,000 is approximately
6 hours for the Monte Carlo sampling technique, whereas
random walk technique achieves a better accuracy in only
9.4 seconds. This gives a speed-up of more than 2,000. Even
with small sampling sizes, such as 100, where network relia-
bility has acceptable accuracy, random walk is much faster
than the Monte Carlo sampling technique, i.e. 9.4 seconds
versus 437.81 seconds.

4. CONCLUSIONS
In this paper, we proposed using random walks on protein-

protein interaction networks for the complex membership
problem. We assessed the accuracy of the random walk tech-
nique on three different probabilistic yeast networks using a
benchmark dataset of 27 complexes from the MIPS complex
catalog database and 10 pathways from the KEGG pathway
database. We showed that the random walk method is suit-
able for predicting candidate members of a core complex or
partially known pathway. The most prominent property of
the random walk technique is its computational efficiency.
Our experiments showed that the random walk technique
achieves similar or better accuracy with more than 1,000
times speed-up compared to the best competing technique.
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Figure 11: Accuracy of the random walk technique
for varying restart probability for top-5 queries. The
queries are performed on ProNet and using MIPS
complexes.

Therefore, it is a promising method that can scale well for
large, genome-scale protein networks.
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MIPS complexes.
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