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ABSTRACT 
In the last few years, genome-scale protein networks of an 
increasing number of organisms have been available across 
databases. Many techniques have been developed to analyze 
these large-scale networks for inferring biological 
knowledge. In this paper, we propose a graph theoretic 
measure ProtRank, inspired from Pagerank originally 
introduced for web page ranking, for ranking proteins in a 
protein-protein interaction network. We analyze the 
correlation between ProtRank and protein essentiality. Our 
results show that ProtRank, which is a global topological 
measure, is a better indicator of protein essentiality 
compared to both the local measure of degree and another 
global topological measure of betweenness centrality. 

1. INTRODUCTION 

 With the advances in high-throughput technologies in recent 
years, biological data is accumulating in databases at an ever 
increasing rate. Sequence, gene expression, functional 
annotation, subcellular localization, and molecular 
interaction data is available for almost all of the proteomes 
for many model organisms such as Saccharomyces 
cerevisiae, Caenorhabditis elegans, Drosophila 
melanogaster, and Arabidopsis thaliana. High-throughput 
protein interaction assays such as yeast two-hybrid and co-
immunoprecipitation provides very valuable information 
about the underlying molecular machinery that governs the 
cell. Furthermore, statistical learning techniques enable 
prediction of interactions using other types of genomic data. 
These predicted interactions provide confidence weighted 
and higher coverage interaction data. Experimental and 
predicted interactions for many organisms are available 
publicly across databases such as DIP [11], BioGRID [13], 
BIND [1], MIPS [9], and STRING [14]. 

Information about protein interactions for an organism is 
usually represented as a graph in which the nodes of the 
graph represent individual proteins and the edges represent 
physical interactions. Graph theoretic approaches are 
therefore applicable to analyze these networks. In the past 
years, many techniques have been proposed to mine protein 
interaction networks for molecular complex and pathway 
discovery [2,12], function prediction [7], and annotation [6]. 
Also, there have been many studies that topologically 
analyze these networks for understanding their degree 
distribution and connectivity [3], and for finding recurring 
network motifs [10]. Degree distribution analyses show that 
all of these networks are scale-free networks with power-law 
degree distributions [3]. Studies that analyze individual nodes 
of protein interaction networks for their topological 
properties, such as number of neighbors (i.e., degree), 
clustering coefficient, and betweenness centrality, found 
correlation between these graph theoretic measures and 
biological properties such as protein essentiality [4,15].  
These studies signify the use of these networks as a data 
source to predict biological properties of novel proteins.  

A gene or protein of an organism is essential if it is crucial 
for the organism’s viability. Prediction of essential genes and 
proteins of an organism is biologically a very appealing task, 
because such genes and proteins are potential drug targets. If 
the essential genes or the associated gene products of a 
pathogen or a diseased cell are known, the drug design 
process will be considerably more efficient, since the need to 
screen the complete genome will be eliminated. Previous 
studies have shown that proteins with higher degree and 
higher betweenness centrality in the protein interaction 
network tend to be essential proteins.  

In this paper, we propose another graph theoretic measure, 
ProtRank, to rank the proteins of an organism for a given 



protein-protein interaction network. ProtRank, is a global 
topological measure which indicates the visiting likelihood of 
a protein. ProtRank is essentially the same measure as the 
Google’s PageRank measure which is used to identify the 
importance (or popularity) of web pages. ProtRank of a 
protein is computed by simulating a random walker on the 
protein-protein interaction network and measuring the 
amount of time the random walker spends on the 
corresponding node. We computed ProtRank for all the 
proteins of the S. cerevisiae protein interaction network and 
analyzed the correlation of ProtRank with protein 
essentiality. Comparison to degree and betweenness 
centrality measures shows that ProtRank is a better indicator 
of protein essentiality. 

The rest of the paper is organized as follows. In Section 2, we 
describe the datasets and the computation details of the 
ProtRank measure. In Section 3, we present our experimental 
results and we conclude in Section 4. 

2. MATERIALS AND METHODS 

In this section, we first describe the datasets used in our 
experiments, and then give the details of the random walk 
method for computing ProtRank.  

 
2.1 Materials 
 
The S. cerevisiae interaction network is gathered from Yu et 
al. [15] Yu et al. assembled the interaction data from a 
number of different published high-throughput datasets and 
published databases. They also eliminated noise from the 
dataset by utilizing independent genomic features and using 
Bayesian integration. There are 23295 interactions for 4683 
S. cerevisae proteins in the gathered network. 
 
The essential genes of the S. cerevisiae is obtained from 
Winzeler et al.’s work [17], which is a result of the 
Saccharomyces Genome Deletion Project. Winzeler et al. 
identify 356 S. cerevisiae genes as essential. 
 
The betweenness centrality values for the S. cerevisiae 
interaction network used in this study is downloaded as 
precomputed values from the supplementary material 
available as part of Yu et al.’s work[15]1. 

 
2.2 Methods 
 
In this section, we describe the algorithm to compute 
ProtRank measure for every protein of a protein-protein 
interaction network. The computation is based on random 
walks on graphs.  

 
Let G = (V, E) be the graph representing a protein-protein 
interaction network, where V is the set of nodes (proteins), 
and E is the set of unweighted undirected edges. We define 
the ProtRank of a node v, P(v), as follows: 

                                                           
1 http://www.gersteinlab.org/proj/bottleneck/ 

Definition: P(v) is the steady state probability that a random 
walk will end at node v. 

 
Random walk method simulates a random walker that starts 
on a random node. At every time tick, the walker chooses 
randomly among the available edges (i.e., the neighbors of 
the current node), or goes to another random node with 
probability c. The restart probability c prevents the random 
walker to get stuck in an isolated island of the graph. In our 
experiments, we have set c to 0.1. We experimented with 
other values of c; however, we found out that the ProtRank of 
a protein is not very sensitive to the choice of c. Therefore, in 
this paper, we do not report our results for different values of 
c. 
 

The probability P(v)t describes the probability of finding 
the random walker at node v at time t. The steady state 
probability P(v) gives a measure of how frequent node v is 
visited and hence its relative popularity among the other 
nodes. The steady state probability P(v) can be computed 
efficiently using iterative matrix operations. Below, we give 
the iterative algorithm to compute ProtRank.  

 
 

Algorithm: ProtRank 
Input: The protein-protein interaction network, G=(V,E) 
          Restart probability, c 

Output: The ProtRank vector P(V) for all the proteins 
 

(1) Let r(V) be the restart vector with 1/|V| for all its 
entries 

(2) Let A be the column normalized transpose of the 
adjacency matrix defined by G 

(3) Initialize P(V) := r(V) 
(4) while P(V) has not converged 
(5)        P(V) :=  (1-c) A P(V) + c  r(V) 
 
 

In the algorithm given above, r(V) and P(V) are one 
dimensional column vectors and A is a square matrix, which 
is the adjacency matrix representation of graph G. The 
dimensions of A are |V|×|V|. In the adjacency matrix 
representation, each row and column of the adjacency matrix 
corresponds to a node of the graph. For a row that represents 
a node, the edges (i.e. interactions) of that node are 
represented by entries of 1s at the corresponding columns.  
 
The ProtRank algorithm given above provably converges 
[16]. The number of iterations to converge is closely related 
to the restart probability c. The convergence check requires 
the L1-norm between consecutive P(V)s to be less than a 
small threshold, e.g.,10-10. In our experiments, for c=0.1 the 
average number of iterations to converge is around 160. The 
details of the random walk method can be found in [8]. The 
main advantage of the random walk method is that it is very 
fast and therefore applicable to large protein networks.  

 



3. RESULTS 

We computed the ProtRank measure for the 4683 proteins of 
the S. cerevisiae network. The network does not contain all 
the proteins of the S. cerevisiae proteome. As a result, 306 of 
the 356 essential proteins are present in the network. In 
order to measure the correlation of ProtRank, degree, and 
betweenness centrality measures with protein essentiality we 
use the following approach.  
 
For each measure we have a ranked list of proteins. We 
analyze the top 400 proteins in the ranked lists and compare 
these top-400 proteins to the essential proteins one by one 
from top to bottom.  We chose 400, because it is a number 
close to the number of existing essential proteins in S. 
cerevisiae and it includes about 10% of all proteins in the 
protein-protein interaction network which is a reasonable 
percentage to screen as drug targets. At each step we 
compute the percentage of essential proteins among the top-
k proteins in the ranked list. A measure which correlates 
perfectly with essentiality should detect all the essential 
proteins among the top-400 proteins. Unfortunately, the 
inherent noise in protein-protein interaction networks, and 
other factors which effect protein essentiality, we can 
identify only a small percentage of essential proteins in top-
400. Figure 1 shows the result of this analysis. The best 
identification percentage at top-400 is attained by the 
ProtRank measure with 19% of the essential proteins 
identified. Betweenness measure [15] can identify about 
12% of the essential proteins and the degree measure [4] can 
identify about 17% of the essential proteins. It can also be 
seen from this figure that there is a correlation between the 
degree measure and the ProtRank measure. However, 
overall, ProtRank is a better indicator of protein essentiality. 

 

 
Figure 1. The ratio of essential proteins identified among 

the top-k proteins 

 

4. CONCLUSIONS 

In this paper, we proposed a graph theoretic measure, 
ProtRank, to rank the proteins of an organism using a 
protein-protein interaction network. ProtRank, which is 
inspired from Google’s PageRank, is a global topological 

measure, which indicates the relative visiting frequency of a 
protein. We computed ProtRank for all the proteins of the S. 
cerevisiae protein interaction network and analyzed the 
correlation of ProtRank with protein essentiality. Our results 
showed that ProtRank is a better measure of protein 
essentiality compared to the previously studied measures of 
degree and betweenness centrality. 
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