
Department of Computer Science, University of California, Santa Barbara

SAC 2003, March 9-12, 2003

FPV: fast protein visualization
using Java 3DTM

Tolga Can, Yujun Wang, Yuan-Fang Wang and Jianwen Su

2SAC 2003, March 9-12, 2003

Introduction

Visualization of proteins is crucial in
understanding their functions and structural
relationships to other proteins
Our goal is to build a user community
without boundaries Java provides
portability
Java 3D is a scene-graph based graphics
library built upon OpenGL/Direct3D
We tackle some problems related to
visualizing complex molecular scenes using
Java 3D

3SAC 2003, March 9-12, 2003

Java3D API

Scene-Graph based graphics rendering

animation camera & view port

3D Objects

4SAC 2003, March 9-12, 2003

Problems with Java 3D

Interaction is slower compared to other
systems built using C/C++ and OpenGL

Lower frame rates
Out of memory errors for complex scenes

Possible reason: scene-graph based graphics
API Complex scenes may need more memory
for the additional scene-graph constructs, e.g.

Shape3D objects
Container for geometry and appearance

TransformGroup objects
For specifying location, orientation in the virtual world

5SAC 2003, March 9-12, 2003

An Example: memory problem
From java3d-interest mailing list (Feb 26 2003):

Trying to create n Shape3Ds with the individual TGs. This
is for a molecular viewer where the geometry(would be
shared) will be spheres or cylinders. The scene graph
looks like this:

BG->TG(n of them)->Shape3D(n of them)(No Geometry or
Appearance added)

Here is the memory needed for such a scene:

The above memory requirement is only for the empty
shape3D objects and the geometry hasn't been attached
yet. A TG, Shape3D tuple requires ~4K memory

11528000
12.53000
8.12000
3.71000

Memory Used (MB)n

6SAC 2003, March 9-12, 2003

Does Java3D provide a solution?

Java 3D provides BranchGroup.compile() method to
make optimizations on the scene graph:

Scene-graph flattening (combining TransformGroup
nodes)
Combining Shape3D nodes

But Java3D’s compile method does not solve
memory overflow problem because they are called
“after” creating the scene graph (i.e. root branch
group)
We need a solution that works on the fly during the
creation of the scene!!

7SAC 2003, March 9-12, 2003

Observations
Molecular scenes are usually static if you are not
doing molecular dynamics we can reduce
TransformGroup objects
Organic molecules contain limited number of
different atoms we can reduce Shape3D objects
Different models types have different memory
consumption

Space-fill model may have tens of thousands atoms,
hence we need to be careful in constructing the scene
graph
Ribbon model is already less memory consuming
because the number of SSEs (secondary structure
elements) is far less than the number of atoms in a
protein molecule
Bonds model may contain lines (i.e. bonds) in the order of
atoms in the molecule so we need to be careful here, too.

8SAC 2003, March 9-12, 2003

Proposed Solution: first step

Converting TransformGroup nodes to Group Nodes

Intuitive Way of creating
a molecular scene

Scene-graph after applying
first step

9SAC 2003, March 9-12, 2003

Proposed Solution: second step

Getting rid of Group & Shape3D objects

Scene-graph after applying
first step

Flattened scene-graph

10SAC 2003, March 9-12, 2003

Viewing Large Molecules

GroEL-GroES complex of
the bacterium E. coli

PDB ID: 1aon
58688 atoms (8337 residues)

@3.7 fps

Nitrogenase Molybdenum-
Iron Protein

PDB ID: 1n2c
24190 atoms (3182 residues)

@14 fps

11SAC 2003, March 9-12, 2003

Performance Evaluation: RT Interaction

Comparison to 2 existing tools based on Java 3D

Bonds Model Rendering Performance

Space-fill model Rendering Performance

12SAC 2003, March 9-12, 2003

Performance Evaluation: Scene Building

Applying the techniques does not introduce an
overhead.

Bonds Model scene-building
times

Space-fill model scene-building
times

13SAC 2003, March 9-12, 2003

Another Solution?

What about sharing geometry?

Virtual UniverseVirtual Universe

BranchGroupBranchGroup

TransformGroupTransformGroup

Shape3DShape3D

TransformGroupTransformGroup

Shape3DShape3D

TransformGroupTransformGroup

Shape3DShape3D

TransformGroupTransformGroup

Shape3DShape3D

geometry

But even if the geometry is shared, just
. Shape3Ds and TransformGroups may require
. huge amount of memory.

14SAC 2003, March 9-12, 2003

Combining Geometries vs. Sharing Geometries

Consider the following scene:
Shared geometry:

BranchGroupBranchGroup

TGTG

Shape3DShape3D

TGTG

Shape3DShape3D

TGTG

Shape3DShape3D

TGTG

Shape3DShape3D

36

1
Shared geometry:

BranchGroupBranchGroup

TGTG

Shape3DShape3D

TGTG

Shape3DShape3D

6

6

15SAC 2003, March 9-12, 2003

Optimal Solution (I)
Example problem:

Rendering a cube consisting of 27000 spheres
Size of a single sphere geometry = ~8K
Size of TG & Shape3D tuple = ~4K
What is the optimum number of spheres to combine as a
geometry primitive for sharing? (Nsp = ?)

= ?

Nsp

X

Ntg

= a cube of 27000 spheres

TG+Shape3D

TG+Shape3D

To transform each
primitive to its
correct position

16SAC 2003, March 9-12, 2003

Optimal Solution (II)

Nsp x Ntg = 27000
Minimize total memory: 8K•Nsp + 4K•Ntg

Ntg = ≈ 232
Memory used ≈ 2MB
In general: Ntg =

ASSUMPTION: you have to be able to share
the combined geometries to construct the
whole scene, i.e. construct the cube by
using 232 sphere pieces

27000*)4/8(

esizeofScenDsizeTGSsizeGeom *)3/(

17SAC 2003, March 9-12, 2003

Applicable to Molecular Scenes?
We cannot apply that solution to a
molecular scene.

We need to be able to represent the whole
molecule by large combined geometric
primitives of spheres. Not Quite Possible
Only reusable primitives we can have are amino

. acids. Beyond that it’s not easy to find repeating

. bigger primitives.

N x
?
=

18SAC 2003, March 9-12, 2003

Conclusions

Proposed solution for molecular scenes:
Reduce number of TG & Shape3D objects
Since geometry cannot be shared, reduce
resolution of geometry instead

The proposed technique helps load and
view complex molecular scenes containing
thousands of atoms
It doesn’t introduce any overhead in scene-
graph building
Can be incorporated into existing tools
easily

19SAC 2003, March 9-12, 2003

Current and Future Work

Building a collaborative environment for
users (potentially on different platforms)

Distributed Visualization
Distant Learning
Annotation of protein structures to facilitate
collaboration

Attaching textual, multimedia, hyperlinks to structures

20SAC 2003, March 9-12, 2003

Thank you for your attention!

Tolga Can
Department of Computer Science
University of California at Santa Barbara
Santa Barbara, CA 93106, U.S.

Email: tcan@cs.ucsb.edu
URL: http://www.cs.ucsb.edu/~tcan/fpv/

For More Information:

