

FPV: fast protein visualization using Java 3D™

Tolga Can, Yujun Wang, Yuan-Fang Wang and Jianwen Su

Introduction

- Visualization of proteins is crucial in understanding their functions and structural relationships to other proteins
- Our goal is to build a user community without boundaries → Java provides portability
- Java 3D is a scene-graph based graphics library built upon OpenGL/Direct3D
- We tackle some problems related to visualizing complex molecular scenes using Java 3D

Java3D API

Scene-Graph based graphics rendering

Department of

Computer

Problems with Java 3D

- Interaction is slower compared to other systems built using C/C++ and OpenGL
 - **⇒** Lower frame rates
- Out of memory errors for complex scenes
 - ⇒ Possible reason: scene-graph based graphics
 API → Complex scenes may need more memory for the additional scene-graph constructs, e.g.
 - Shape3D objects
 - Container for geometry and appearance
 - □ TransformGroup objects
 - For specifying location, orientation in the virtual world

Department

Computer

An Example: memory problem

- From java3d-interest mailing list (Feb 26 2003):
 - ⇒ Trying to create *n* Shape3Ds with the individual TGs. This is for a molecular viewer where the geometry(would be shared) will be spheres or cylinders. The scene graph looks like this:
 - □ BG->TG(*n* of them)->Shape3D(*n* of them)(No Geometry or Appearance added)
 - ⇒ Here is the memory needed for such a scene:

n	Memory Used (MB)
1000	3.7
2000	8.1
3000	12.5
28000	115

Department

Computer Science

> ⇒ The above memory requirement is only for the empty shape3D objects and the geometry hasn't been attached yet. A TG, Shape3D tuple requires ~4K memory

Does Java3D provide a solution?

- Java 3D provides BranchGroup.compile() method to make optimizations on the scene graph:
 - ⇒ Scene-graph flattening (combining TransformGroup nodes)
 - ⇒ Combining Shape3D nodes
- But Java3D's compile method does not solve memory overflow problem because they are called "after" creating the scene graph (i.e. root branch group)
- We need a solution that works on the fly during the creation of the scene!!

Observations

- Molecular scenes are usually static if you are not doing molecular dynamics → we can reduce TransformGroup objects
- Organic molecules contain limited number of different atoms → we can reduce Shape3D objects
- Different models types have different memory consumption
 - Space-fill model may have tens of thousands atoms, hence we need to be careful in constructing the scene graph
 - ⇒ Ribbon model is already less memory consuming because the number of SSEs (secondary structure elements) is far less than the number of atoms in a protein molecule
 - ⇒ Bonds model may contain lines (i.e. bonds) in the order of atoms in the molecule so we need to be careful here, too.

Proposed Solution: first step

Converting TransformGroup nodes to Group Nodes

Virtual Universe

Intuitive Way of creating a molecular scene

Scene-graph after applying first step

Department

of Computer

Proposed Solution: second step

Getting rid of Group & Shape3D objects

Scene-graph after applying first step

Department

of Computer

Viewing Large Molecules

Nitrogenase Molybdenum-Iron Protein PDB ID: 1n2c 24190 atoms (3182 residues) @14 fps

GroEL-GroES complex of the bacterium E. coli PDB ID: 1aon 58688 atoms (8337 residues) @3.7 fps

Performance Evaluation: RT Interaction

Comparison to 2 existing tools based on Java 3D

Space-fill model Rendering Performance

Bonds Model Rendering Performance

Department of

Computer Science

Performance Evaluation: Scene Building

Applying the techniques does not introduce an overhead.

times

Bonds Model scene-building times

Department of

Computer

Another Solution?

What about sharing geometry?

of Computer

Science

But even if the geometry is shared, just Shape3Ds and TransformGroups may require huge amount of memory.

Combining Geometries vs. Sharing Geometries

Department

of Computer Science

Optimal Solution (I)

Example problem:

- ⇒ Rendering a cube consisting of 27000 spheres
- ⇒ Size of a single sphere geometry = ~8K
- ⇒ Size of TG & Shape3D tuple = ~4K
- ⇒ What is the optimum number of spheres to combine as a geometry primitive for sharing? (N_{sp} = ?)

Department

of Computer Science

Optimal Solution (II)

- $N_{sp} \times N_{tg} = 27000$
- Minimize total memory: 8K•N_{sp} + 4K•N_{tg}

$$\Rightarrow$$
 N_{tg} = $\sqrt{(8/4)*27000} \approx 232$

- ⇒ Memory used ≈ 2MB
- \Rightarrow In general: $N_{tq} = \sqrt{(sizeGeom/sizeTGS3D)*sizeofScene}$

3

 ASSUMPTION: you have to be able to share the combined geometries to construct the whole scene, i.e. construct the cube by using 232 sphere pieces

Applicable to Molecular Scenes?

- We cannot apply that solution to a molecular scene.
 - ⇒ We need to be able to represent the whole molecule by large combined geometric primitives of spheres. Not Quite Possible
 - ⇒ Only reusable primitives we can have are amino acids. Beyond that it's not easy to find repeating bigger primitives.

Department of Computer Science

Conclusions

- Proposed solution for molecular scenes:
 - ⇒ Reduce number of TG & Shape3D objects
 - ⇒ Since geometry cannot be shared, reduce resolution of geometry instead
- The proposed technique helps load and view complex molecular scenes containing thousands of atoms
- It doesn't introduce any overhead in scenegraph building
- Can be incorporated into existing tools easily

Department

Computer

Current and Future Work

- Building a collaborative environment for users (potentially on different platforms)
 - ⇒ Distributed Visualization

 - Annotation of protein structures to facilitate collaboration
 - □ Attaching textual, multimedia, hyperlinks to structures

Department

Computer Science

Thank you for your attention!

For More Information:

Tolga Can Department of Computer Science University of California at Santa Barbara Santa Barbara, CA 93106, U.S.

Email: tcan@cs.ucsb.edu

URL: http://www.cs.ucsb.edu/~tcan/fpv/

Department

Computer Science

