
PERSONALIZED ANNOTATION AND INFORMATION SHARING
IN PROTEIN SCIENCE WITH INFORMATION-SLIPS

Abstract: In this paper, we describe a software tool
called Information-slips (i-slips) that provides a
convenient and customizable mechanism for remote
collaboration and data sharing in protein science. I-slips
are small 3D objects that coexist with and augment the
host 3D objects (in our application, protein models). Our
i-slip design makes two main contributions. Firstly, i-slip
goes beyond simple passive annotation to also provide
active interactivity. It can embed an action to perform a
user-defined operation on-demand. The condition to
perform the action is event-driven. So i-slips can monitor
the environment and automatically handle some
predefined events without the user intervention. Secondly,
i-slip is a highly versatile and adaptable information
container. The user can tailor i-slip templates for new
domain-specific objects, and develop new actions to
embed domain-dependent algorithms. Furthermore, the
storage and transportation of i-slips use XML for the sake
of interoperability. Two key implementation techniques
about visualization and customization are discussed here.
To the best of our knowledge, this is the first protein
visualization tool that supports user-contributed
information and embeddable actions/activities.
Keywords: Information-slips, protein visualization,
collaborative system

1. Introduction
Molecular biology research has attracted a tremendous
amount of interests. A large number of protein related
databases exist, such as the Protein Data Bank (PDB) [1]
that provides more than 22,000 macromolecular structures
accessible on the Internet. They enable the user to retrieve
protein data and information with ease. In return, users
produce new results, experiences, and insights. Some of
these are undoubtedly very valuable, thoughtful, and
perhaps even profound.
While technologies in data archival and visualization in
protein science have demonstrated their utility and have
achieved great success, the important problems of
personalized annotation and information sharing are still
largely unsolved. Currently, visualizing 3D protein
structure is done using a 3D visualization tool, and is
separated from visualizing other information about the
protein, which may exist in a multimedia format in web
pages, research papers, emails, or other documents. It is
arguably more elucidative to browse and display such

auxiliary, or augmentative, information with a close
association to the underlying 3D structure – instead of
having the user to consult multiple sources. Furthermore,
the user should be able to annotate protein structures with
personal, putative information (e.g., research or class
notes), and again, have the information displayed in close
proximity to the underlying 3D structure. We consider
below two specific examples that illustrate why a unified
visualization paradigm is useful.
(1) The first example illustrates the need to associate
auxiliary, augmentative information with the underlying
3D structure when visualizing protein data. Due to the
limitation of instrumentation and experimental/recording
errors, existing protein data files may contain erroneous
or missing information. For example, experiments might
not reveal the location of all the residues in a protein, and
might report unexpected covalent bond angles. The PDB
repository categorizes such augmentative information on
protein structures as remarks, and assigns numbers and
topics to those frequently occurring ones. For example,
missing residues can be found in “REMARK 465,” while
erroneous bond angles can be found in “REMARK 500.”
Existing 3D visualization tools do not display such
information. One technical issue is that missing residues
do not have coordinates, making visualization difficult.
There are additional difficulties in displaying bond angle
errors. First, atoms that make an erroneous bond may be
hidden in some visualization models. This is because a
bond angle is defined by three atoms (N, CA and C) in a
residue, and some visualization models, such as the
ribbon model, do not show any atoms. Second, even when
all atoms are displayed, it does not reveal the angular
deviation (the detailed information) in a convenient,
easily accessible way. The user is forced to consult
elsewhere for such information. Clearly, the general
methodologies for displaying derived and augmentative
protein structural information in close association with the
underlying structure are generally lacking.
(2) The second example illustrates the need to share user
contributed or putative information on a protein. This is
exemplified in a real-world case in the PDB Open
Discussion Forum (http://www.rcsb.org/pdb/lists/pdb-l/).
A group of geographically distributed users had a
common interest in disulphide linkage in protein
structures. User A noticed that a toxin protein (PDB ID:
1DL0) had two adjacent cysteines involved in a

Yujun Wang Tolga Can Yuan-Fang Wang Jianwen Su
Department of Computer Science

University of California
Santa Barbara, CA 93106-5110

{yjwang, tcan, yfwang, su}@cs.ucsb.edu

disulphide linkage. She would like to share this discovery
with other users. Following the report of user A’s finding,
there were several more contributions from other users in
the group on this topic. User B realized that user A’s
discovery was related to the PDB keyword SSBOND.
User C added that the protein with a PDB ID “4AAH”
also had a vicinal S-S bond. User D pointed out a related
paper in Nature Structural Biology in 2000. User E
explained how to use the Sequence Retrieval System
(http://srs.wehi.edu.au) to find all vicinal disulphide
bonds as follows: First search the SwissProt for all
instances of the feature “disulfide” yielding 69 entries.
Then by linking the output to the PDB site one could find
all the 16 related PDB entries. Further inspection of the
headers indicated the following desired PDB files: 1DL0,
1EH5, 1EI9, 1FLG, 1OBR, and 4AAH.
This example shows that the users in the PDB community
can help one another with valuable advices, timely
discussions, and insightful contributions. At present,
visualization of protein structures and organization of
user-contributed information are separated. No protein
visualization systems allow the users to contribute
information and annotate it with the underlying structure
for quick reference and browsing. Resorting to text
comments on a monolithic bulletin board, where the user
has to monitor and filter postings manually for relevant
information, is hardly an adequate solution.
Our i-slip technology tries to fill in these gaps. It follows
the time-honored tradition of the yellow sticky note in
that it can be a parasitic object, whose existence is
strongly tied to the host object in a model. The host
objects can be any combination of chains, residues, and
atoms. Each i-slip has a content object to carry additional
information, and can choose among various visual forms
according to its functions. Each i-slip also maintains an
anchor point relative to the host object, and adapts its
orientation to the camera’s pose. So an i-slip moves along
with the host object to identify the association
relationship, and it can be viewed from multiple distances
and vantage points.
Our i-slips do not blindly duplicate the traditional sticky
notes. In particular, we move beyond a passive reminder
service model and incorporate into i-slips actions and an
automated activation mechanism. The action could be
predefined by the system or user-defined. Actions can be
performed on-demand, or be invoked when specific
events happen. Such i-slips can support automated user
intervention and function customization. These added
features greatly enhance the usability of i-slips.
To illustrate the effectiveness of the concept, we have
built a tool I-SLIPS, which represents a radical advance
beyond the traditional 2D graphics and text annotation.
Our system attaches i-slips directly to the 3D protein
models. The users can interactively explore protein
structures while calling up and reviewing additional
information of the protein. To the best of our knowledge,
it is the first tool to support user-contributed annotations
and dynamic function invocation for 3D protein models.
Our I-SLIPS system provides a 3D viewer for visualizing

protein structures with i-slips, a 2D viewer for selecting
host objects or submitting queries, a text i-slip editor for
adding textual annotations and attaching actions.
Together, these modules comprise a user-friendly
environment for collecting user-contributed information
and present such information in close association with the
underlying structure for easy browsing.
Furthermore, we generalize our previous fast protein
visualization techniques [3] in Java 3D to I-SLIPS. The
new technique supports efficient construction of Java3D
scene graphs, while allowing the users to highlight host
objects and manipulate i-slips. We also present a simple
Java programming interface to plug in new i-slip
templates and user-defined actions.
The remainder of this paper is organized as follows: We
introduce the concept of i-slips in Section 2. Details about
the system I-SLIPS will be discussed Section 3. Two key
implementation techniques are presented in Section 4.
Finally we summarize our work and discuss future
research direction in the conclusion section.
Related work
Our i-slips with text contents are similar to Post-it Notes
[9] and TeleNotes [12]. A notable distinction is that they
are only for 2D models. IRIS Annotator [7] does annotate
3D models; however, its annotations for 3D objects can
only be accessed within the 3D models. It supports simple
actions to execute external programs. It does not support
automated monitoring services and situation-aware
behaviors. Besides, our system can plug in new
annotation data and actions.
Existing protein visualization tools such as Swiss-
PdbViewer [5], Protein Explorer [8], RasMol [10] etc.,
and collaboration systems for protein structures such as
BioCoRE [2], Chimera [6], MICE [11] etc., do not
support user annotations. Cn3D [4] provides label and
style annotation to 3D protein structures. Their
annotations are mainly used for visualization purpose, that
is, to distinguish the selected residues against the rest of
the protein. Besides, the labels only show residue names
that are authoritative information. We go beyond the
above systems by providing i-slips for sharing additional
user-contributed protein structure information. Their
functionality and user interface will be greatly enhanced
with the support of i-slips.

2. I-SLIP — A Customizable Portable
Information Container

In this section we introduce the concept of an
“information-slip (i-slip)” and its new features.
2.1 Concept of an i-slip
I-slips are small 3D objects that coexist with and augment
the host 3D objects. An i-slip keeps information about the
host object, maintains a suitable visual configuration for
display, and records a content object. The host object is
part of a 3D model. The visual configuration defines the
way to visualize the i-slip in a 3D environment, and its
position relative to the underlying 3D model. The content
object stores additional information about the host object.
In our application scenario, the host objects can be any

combination of chains, residues and atoms in a protein
structure, e.g., all the residues in a beta sheet, or the CA
atom of a particular residue, etc. An example of an i-slip
is shown in Figure 1, where the i-slip is shown as a hand
icon and the host object is the residues in the first alpha
helix in chain A of PDB ID: 1JPN.

Figure 1: An i-Slip on the first alpha helix in 1JPN

An interesting visualization issue in a 3D world is that
objects (and hence the attached i-slips) can be viewed
from many different perspectives. While 3D geometry can
be viewed as such, the same is not true for i-slips with 2D
icons and text description. Hence, to be legible, texts and
icons for i-slips should be displayed with some
appropriate size and oriented toward the viewer. This
turns out to be an interesting issue in visualizing. In our
system, we design the visual form with a display behavior
that automatically compensates for the rotation that skews
the i-slip and brings the i-slip back to an orientation to
face the viewer (camera).
The anchor point is the position for an i-slip in a 3D
model. It is initially computed as a random position inside
the bounding box of the underlying host object. The initial
camera position is to make the center of the bounding box
the center of the screen, and the viewing distance is twice
of the longest side of the box. This viewing configuration
allows the user to focus the view on the i-slip.
The content object may contain augmentative information
from authoritative systems such as the PDB, or user-
contributed information. For example, a text i-slip in our
implementation stores free text annotation. Each text i-
slip contains the following fields: author, time of last
update, and body. The body contains free text. The time
of the last update is automatically updated by the system.
For the i-slip in Figure 1, it records a text description
about the first alpha helix.
2.2 Domain specific I-slips
The content object of an i-slip can carry a variety of
domain-specific information through customization. In
our current design, we implemented a missing-residue i-
slip and a bond-angle i-slip for visualizing predefined
remarks in PDB data files together with the underlying
protein model. I-slips for missing residues are extracted
from REMARK 465 in a PDB data file. It contains the
following fields: molecule name, chain number, residue
name, and sequence number. I-slips for erroneous bond
angles are extracted from REMARK 500. It contains the
following fields: molecule name, chain number, residue

name, sequence number, and deviation angle.
An i-slip is an open, customizable information container.
New i-slip templates can be easily plugged in to
accommodate domain specific information. The ability to
adapt to new user data formats greatly increases the
functionality, usability, and flexibility of our system.
2.3 I-slips with Actions
I-slips contain not only static data. A novel feature of our
i-slips is that they can also store actions (or programs to
be executed). The actions can be easily activated on-
demand at some later time. This is convenient especially
for executing certain repetitive tasks.
In the current design, we provide several predefined
actions. One is to pop up a window and display a text
message. The action is usually used for displaying
warning messages, or instructions. Another predefined
action is to open a related URL. The action can be used to
go to other websites, and display web pages related to the
current protein structure, e.g., to display the summary
information from the PDB file, or to query a certain
Internet archive for relevant information and models.
Our action mechanism also allows the users to easily plug
in new actions. Such plug-ins allow the user to run their
algorithms or programs on the selected host object. An
abstract action, which is named ActionRoot in our
implementation, defines an action name and an abstract
method. The action name is used to identify an action.
The abstract method, which we call actionPerformed,
defines an interface for the program implementation when
an action is performed. A user-defined action is required
to be declared as a subclass of ActionRoot and
implements the actionPerformed method. The arguments
of actionPerformed allow user codes to access the
molecule structure, protein viewer and the host object,
and provide an input parameter. An example to add an
action for protein structure comparison will be introduced
in Section 4. We note here that the user-defined action
behavior in our system was not extensively studied and
implemented in the previous systems for annotations.
2.4 Event-driven activation mechanism
Actions are usually executed manually on-demand. In
many cases, the user may register the action to be invoked
automatically later when a specified event happens. For
example, when a user first loads a protein structure, it will
be helpful if a protein-structure-checking web service can
be performed automatically. In the current
implementation, we define events to reflect changes of the
display environment. Each action can define an event,
which is the condition to trigger the action. With the
event-driven mechanism, an alert i-slip can monitor the
environment for the specified condition, and then
performs the actions if its condition becomes true.
Events supported in our current implementation are listed
below: “Protein viewer is first shown”; “Protein view is
changed”; “I-Slips are shown in protein viewer”; “I-Slips
are hidden in protein viewer”; “New I-Slip is added”;
“Existing I-Slip is modified” and “Existing I-Slip is
deleted”. Many possible actions might be performed for

an event. For example, summary of best views, structure
features, related protein structures, possible display
options will be useful when a user first loads a protein
data file for visualization. Detection of specific structure
features to current camera’s position will be very useful
when the protein view is changed. In a distributed
environment where multiple users participate in a
collaborative session, notifications will be useful.
Specifically, notifications of the events happened in the
instructor’s machine alert the students to pay attention to
a certain protein feature or perform a certain action.
For example, we can use “Action for related URL” to go
to What-IF (http://www.cmbi.kun.nl/gv/whatcheck/) and
get a check report for the current protein structure. If the
event is properly set, the window in
Figure 2 will be shown when user first opens the 3D
structure viewer.

Figure 2: Get What-If check report

2.5 Storage and transportation of i-slips
In our system, i-slips are internally represented as
serializable Java objects. They can be sent and received
over a network. At the secondary storage level, i-slips are
stored as XML files. This facilitates the sharing and
transportation of i-slips for different discussion groups. It
also provides an open interface for other systems to
“read” i-slips.

3. Tools to Support I-Slips
We have developed a tool named I-SLIPS to demonstrate
the concept of i-slips. I-SLIPS is a Java application
running in a network environment. As shown in Figure 3,
it needs to access external data source PDB.

Figure 3: The System Configuration

In I-SLIPS, the 3D structure viewer is used to visualize
3D protein models with i-slips. The 2D sequence viewer
provides a tree view for the protein sequence. In the 2D
sequence viewer, the users can select objects to add i-
slips, and query related i-slips. The query results are
displayed in an i-slip query tree. Currently, our tool
provides three i-slip templates: a text i-slip editor, a
missing-residue template, and a bond-angle template. The
I-Slip API is used to add, delete, modify, and query the
repository for host objects and i-slips. The Molecule API
is used to parse and build scene graphs, and get sequences

or coordinates for the underlying protein model. Other
utility tools, such as an FTP tool to automatically
download protein data files and corresponding secondary
structure information from the PDB, are also available but
not shown in Figure 3.
Figure 3 also shows the architecture of the current version
of I-SLIPS. The data for i-slips and protein structures are
stored in a single machine. The advantage is that the users
can work locally and annotate protein structures with i-
slips. After it is done, the corresponding XML files can be
electronically mailed to others for review. The
client/server version to support synchronous distributed
collaboration is currently under development.
More details about the components in I-SLIPS, including
screen dumps, are presented below. Figure 1 shows the
3D structure viewer. It is based on the work on fast
protein visualization [3]. The users can surf inside the 3D
structure using mouse buttons to zoom in/out, rotate, and
pan. The novel feature is the incorporation of the i-slips.
Figure 4 shows the 2D sequence viewer. It allows easy
correlation of residues in the sequence with atoms in the
3D structure. This is accomplished by highlighting - just
as with a text editor. Click-dragging the mouse across a
region in the sequence window will cause the letters to
become red (selected), and double clicking on a residue
will select all the neighboring residues which are in the
same secondary structure. To select a chain or an atom,
simply double click it in the corresponding list. Once
chains, residues or atoms are selected, they will be
highlighted in red color in the 3D structure window. And
the converse is true as well: double-clicking an atom in
the structure window will cause it and the corresponding
letter in the sequence window to light up. Furthermore,
the users can switch between the sequence and secondary
structure for a selection. This can be done by clicking on
the button above the sequence of residues. The secondary
structure helps the users to select relating residues.

Figure 4: 2D sequence viewer

For example, let’s walk through the procedure of
selecting the first alpha-helix in chain B. A drop list for
PDB ID allows the users to choose a protein structure that
is locally available. A chain is selected in the chain list
box. The sequence of protein is shown in the middle
display panel. The user first clicks on the button above the

sequence to show the secondary structure in the sequence
panel, and then drags the mouse over the first continuous
H at chain B. Then a line will be added automatically to
the host-object list box. To deselect the host object, select
a line and double click it in host-object list box.
Once the host object is selected, a query request is sent to
the i-slip repository for related i-slips. Those i-slips whose
host objects overlap with the selected host object will be
returned. If no host object is selected, all the stored i-slips
will be returned. Returned i-slips are categorized and
displayed in a tree as shown in the Figure 4.
A new i-slip can be added by clicking the button “New I-
Slip.” Figure 5 shows the editor window for a text i-slip.
It has five panels. A host object information panel on the
top left shows information about the host object of this i-
slip. A text input panel on the upper left is for entering
information on the subject, author, and message fields,
and for selecting an icon to be used for visualization. On
the lower left, an action panel lets the users select a
predefined action, add a parameter, and set the event to
trigger the action. On the bottom left, the command panel
houses the control buttons (save, delete, and cancel). A
preview panel on the right includes a graphical
representation of the i-slip and the 3D hosts object it
attached to. For the atoms not selected, only the bonds are
displayed, so as to highlight the i-slip and its host objects.

Figure 5: The Text i-slip Editor

Figure 6 shows two templates for domain-specific
information, where the left one is for bond angles and the
right one is for missing residues.
We now explain how the examples in Section 1 are
supported in I-SLIPS. Information about missing residues
and bond angles in protein structures can be extracted
automatically from remarks in the PDB data files. The
corresponding i-slips are organized in the query tree in
Figure 4. The users can double click on the i-slips in the
query tree or in the 3D viewer for detailed information.
The templates are shown in Figure 6. For user-contributed
information in the second example, they can be stored in a
text i-slip. Augmentative information can be stored in the
body field. Related URL link can be described as
“Related URL Action.”

Figure 6: Domain-specific templates

4. Key Implementation Issues
In this section, we discuss two key techniques in the
implementation: fast protein visualization technique with
i-slips, and Java programming technique to support user-
defined i-slip templates and actions. These techniques
make our system flexible, adaptable, and efficient.
The visualization component of the I-SLIPS is
implemented in Java 3D. Java 3D is a cross-platform API
for developing 3D graphics applications in Java. Java 3D
describes a 3D scene in a scene graph (basically, a tree
structure). The interior nodes in the graph correspond to
various grouping operations to collect simpler objects into
larger, more complicated constructs (e.g., grouping atoms
into a residue, and residues into a molecule). The exterior
nodes are 3D objects and components to describe the
shape, appearance, and behavior of these objects, and
other entities such as lights, background, etc.
We previously have developed techniques to achieve fast
protein visualization [3]. Unfortunately these techniques
cannot be used with the introduction of i-slips. For
example, if we combine shapes of the same appearance,
the user cannot highlight the part of them as host objects.

Figure 7: The scene graph of a visualization model with i-slips

In I-SLIPS, we represent each atom by a shape3D object.
Each shape3D object is directly attached to the
BranchGroup node for the whole molecule. That means
that we reduce the number of Group nodes to zero. So the
scene graph of a protein with i-slips has two parts as
shown in Figure 7. The part for i-slips is shown in the left
dotted rectangle, while the part for the molecule is shown
in the right dotted one. Each part has a Java 3D
BranchGroup object. So we can change the visualization
models for molecules, and show or hide i-slips. As shown

in Figure 7, a shape3D is created at its coordinates for
each atom. All the shape3D objects are added to BG2
directly, as well as the LineArray for bonds. Similarly,
Shape3D objects for i-slips with a visual form of 3D
objects are added to BG2 directly. For i-slips with 2D
icons or text, we add a TransformGroup node TG and
attach a billboard behavior to TG. Thus makes i-slip
discernable from the underlying object rotation.
The flat structure of scene graph uses the least number of
group nodes to reduce memory and calculation. It makes
the visualization of protein structures with i-slips fast and
efficient.
Now we discuss how user-defined templates and actions
are implemented in I-SLIPS. The procedure to add a new
i-slip template and action is similar, we only illustrate
how to add an action. An abstract class called ActionRoot
defines the Java programming interface for actions. As
shown in Figure 8, each action has an actionName, and
method named “actionPerformed”. Method
actionPerformed needs either no arguments, two
arguments (the host object and an input string), or four
arguments that include additional access to the molecule
and viewer.

Figure 8: Abstract class for all user-defined actions

To add a new action, a new Java class is to inherit
ActionRoot. For example, to add the action for “Structure
comparison”, a class ActionStruCmp is defined as shown
in the top of Figure 9. In the constructor, an action name
is given. Through the arguments in actionPerformed,
ActionStruCmp is applicable to chain objects. It compares
the selected chain in the current molecule with a specified
chain in another protein structure. Then the user can
further code to display the comparison result.

Figure 9: A user-defined action and its registration

After the class for a new action is developed, it needs to
be registered. In I-SLIPS, it can be simply done via a Java
class UserActionRegister. The source code for
UserActionRegister is shown in the bottom of Figure 9.

5. Conclusions
We have demonstrated the application of our i-slips
system for visualization and collaboration in protein
science. Our contribution lies in representing authoritative
information and user-contributed information uniformly
as i-slips and allow augmentative information to be
associated with the underlying model. Our i-slips move
beyond the passive reminder service model in traditional
notes to provide action and interactivity. Our i-slips also
support user-defined i-slips templates and actions, which
simplify the task of adapting our i-slip tools to other
application domains. Many application systems can
benefit from the i-slip technology to enhance
collaboration and user interface. The source code of the I-
SLIPS tool and full version of this paper are available at:
http://www.cs.ucsb.edu/~yjwang/i-slips/index.html.
Many useful features can be added to our system to
further enhance its functionality, such as synchronous
collaboration, advanced visualization techniques to
visualize host objects, and query and search mechanism
based on XML. I-slips can be further improved by adding
these and other new functionality.

Acknowledgements
The work is supported in part by NSF grants IIS-9817432,
IIS-9908441, and IIS-0101134.

References
1. H.M. Berman, J.Westbrook, Z.Feng, G.Gilliland, T.N. Bhat,

H.Weissig, I.N. Shindyalov, P.E. Bourne. The Protein Data
Bank. Nucleic Acids Research, 28, 2000, 235-242.

2. M. Bhandarkar, G. Budescu, W. F. Humphrey et al.
BioCoRE: A collaboratory for structural biology. Proc. of the
SCS International Conference on Web-Based Modeling and
Simulation, San Francisco, 1999, 242-251.

3. T. Can, Y. Wang, Y. F. Wang, and J. Su. FPV: Fast Protein
Visualization Using Java 3DTM. Bioinformatics 2003 vol.19,
913-922.

4. Cn3D. http://www.ncbi.nlm.nih.gov/Structure/CN3D/cn3d.
shtml.

5. N. Guex and M.C. Peitsh. SWISS-MODEL and Swiss-
PdbViewer: an environment for comparative modeling.
Electrophoresis, 18, 1997, 2714–2723.

6. C.C. Huang, G.S. Couch, E.F. Pettersen, and T.E. Ferrin.
Chimera: An Extensible Molecular Modeling Application
Constructed Using Standard Components. Pacific Symposium
on Biocomputing, 1996, p.724.

7. IRIS Annotator. http://www.sgi.com/software/annotator/.
8. E. Martz. Protein Explorer: Easy Yet Powerful Macro-

molecular Visualization. Trends in Biochemical Sciences, 27
(2002.02). 107-109. (http://proteinexplorer.org)

9. Post-it Software Notes 2.0. 3M.
http://www.3m.com/us/office/postit/.

10. R. A. Sayle and E. J. Milner-White. RASMOL:
Biomolecular Graphics For All. Trends in Biochemical
Sciences, 20, Sep. 1995, 374–376.

11. J. G. Tate, J. L. Moreland, and P. E. Bourne. Design and
Implementation of a Collaborative Molecular Graphics
Environment, Journal of Molecular Graphics and Modelling,
2001, 280-287.

12. S.Whittaker, J.Swanson, J. Kucan, and J. Sidner. TeleNotes
managing lightweight interactions in the desktop. ACM Trans.
on Computer-Human Interaction, 4(2), 1997, 137-168.

