
PERSONALIZED ANNOTATION AND INFORMATION SHARING  
IN PROTEIN SCIENCE WITH INFORMATION-SLIPS 

Abstract: In this paper, we describe a software tool 
called Information-slips (i-slips) that provides a 
convenient and customizable mechanism for remote 
collaboration and data sharing in protein science. I-slips 
are small 3D objects that coexist with and augment the 
host 3D objects (in our application, protein models). Our 
i-slip design makes two main contributions. Firstly, i-slip 
goes beyond simple passive annotation to also provide 
active interactivity. It can embed an action to perform a 
user-defined operation on-demand. The condition to 
perform the action is event-driven. So i-slips can monitor 
the environment and automatically handle some 
predefined events without the user intervention. Secondly, 
i-slip is a highly versatile and adaptable information 
container. The user can tailor i-slip templates for new 
domain-specific objects, and develop new actions to 
embed domain-dependent algorithms. Furthermore, the 
storage and transportation of i-slips use XML for the sake 
of interoperability. Two key implementation techniques 
about visualization and customization are discussed here. 
To the best of our knowledge, this is the first protein 
visualization tool that supports user-contributed 
information and embeddable actions/activities.  
Keywords: Information-slips, protein visualization, 
collaborative system 

1. Introduction 
Molecular biology research has attracted a tremendous 
amount of interests. A large number of protein related 
databases exist, such as the Protein Data Bank (PDB) [1] 
that provides more than 22,000 macromolecular structures 
accessible on the Internet. They enable the user to retrieve 
protein data and information with ease. In return, users 
produce new results, experiences, and insights. Some of 
these are undoubtedly very valuable, thoughtful, and 
perhaps even profound.  
While technologies in data archival and visualization in 
protein science have demonstrated their utility and have 
achieved great success, the important problems of 
personalized annotation and information sharing are still 
largely unsolved. Currently, visualizing 3D protein 
structure is done using a 3D visualization tool, and is 
separated from visualizing other information about the 
protein, which may exist in a multimedia format in web 
pages, research papers, emails, or other documents. It is 
arguably more elucidative to browse and display such 

auxiliary, or augmentative, information with a close 
association to the underlying 3D structure – instead of 
having the user to consult multiple sources. Furthermore, 
the user should be able to annotate protein structures with 
personal, putative information (e.g., research or class 
notes), and again, have the information displayed in close 
proximity to the underlying 3D structure. We consider 
below two specific examples that illustrate why a unified 
visualization paradigm is useful. 
(1) The first example illustrates the need to associate 
auxiliary, augmentative information with the underlying 
3D structure when visualizing protein data. Due to the 
limitation of instrumentation and experimental/recording 
errors, existing protein data files may contain erroneous 
or missing information. For example, experiments might 
not reveal the location of all the residues in a protein, and 
might report unexpected covalent bond angles. The PDB 
repository categorizes such augmentative information on 
protein structures as remarks, and assigns numbers and 
topics to those frequently occurring ones. For example, 
missing residues can be found in “REMARK 465,” while 
erroneous bond angles can be found in “REMARK 500.” 
Existing 3D visualization tools do not display such 
information. One technical issue is that missing residues 
do not have coordinates, making visualization difficult. 
There are additional difficulties in displaying bond angle 
errors. First, atoms that make an erroneous bond may be 
hidden in some visualization models. This is because a 
bond angle is defined by three atoms (N, CA and C) in a 
residue, and some visualization models, such as the 
ribbon model, do not show any atoms. Second, even when 
all atoms are displayed, it does not reveal the angular 
deviation (the detailed information) in a convenient, 
easily accessible way. The user is forced to consult 
elsewhere for such information. Clearly, the general 
methodologies for displaying derived and augmentative 
protein structural information in close association with the 
underlying structure are generally lacking.  
(2) The second example illustrates the need to share user 
contributed or putative information on a protein. This is 
exemplified in a real-world case in the PDB Open 
Discussion Forum (http://www.rcsb.org/pdb/lists/pdb-l/). 
A group of geographically distributed users had a 
common interest in disulphide linkage in protein 
structures. User A noticed that a toxin protein (PDB ID: 
1DL0) had two adjacent cysteines involved in a 
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disulphide linkage. She would like to share this discovery 
with other users. Following the report of user A’s finding, 
there were several more contributions from other users in 
the group on this topic. User B realized that user A’s 
discovery was related to the PDB keyword SSBOND. 
User C added that the protein with a PDB ID “4AAH” 
also had a vicinal S-S bond. User D pointed out a related 
paper in Nature Structural Biology in 2000. User E 
explained how to use the Sequence Retrieval System 
(http://srs.wehi.edu.au) to find all vicinal disulphide 
bonds as follows: First search the SwissProt for all 
instances of the feature “disulfide” yielding 69 entries. 
Then by linking the output to the PDB site one could find 
all the 16 related PDB entries. Further inspection of the 
headers indicated the following desired PDB files: 1DL0, 
1EH5, 1EI9, 1FLG, 1OBR, and 4AAH. 
This example shows that the users in the PDB community 
can help one another with valuable advices, timely 
discussions, and insightful contributions. At present, 
visualization of protein structures and organization of 
user-contributed information are separated. No protein 
visualization systems allow the users to contribute 
information and annotate it with the underlying structure 
for quick reference and browsing. Resorting to text 
comments on a monolithic bulletin board, where the user 
has to monitor and filter postings manually for relevant 
information, is hardly an adequate solution. 
Our i-slip technology tries to fill in these gaps. It follows 
the time-honored tradition of the yellow sticky note in 
that it can be a parasitic object, whose existence is 
strongly tied to the host object in a model. The host 
objects can be any combination of chains, residues, and 
atoms. Each i-slip has a content object to carry additional 
information, and can choose among various visual forms 
according to its functions. Each i-slip also maintains an 
anchor point relative to the host object, and adapts its 
orientation to the camera’s pose. So an i-slip moves along 
with the host object to identify the association 
relationship, and it can be viewed from multiple distances 
and vantage points.  
Our i-slips do not blindly duplicate the traditional sticky 
notes. In particular, we move beyond a passive reminder 
service model and incorporate into i-slips actions and an 
automated activation mechanism. The action could be 
predefined by the system or user-defined. Actions can be 
performed on-demand, or be invoked when specific 
events happen. Such i-slips can support automated user 
intervention and function customization. These added 
features greatly enhance the usability of i-slips. 
To illustrate the effectiveness of the concept, we have 
built a tool I-SLIPS, which represents a radical advance 
beyond the traditional 2D graphics and text annotation. 
Our system attaches i-slips directly to the 3D protein 
models. The users can interactively explore protein 
structures while calling up and reviewing additional 
information of the protein. To the best of our knowledge, 
it is the first tool to support user-contributed annotations 
and dynamic function invocation for 3D protein models. 
Our I-SLIPS system provides a 3D viewer for visualizing 

protein structures with i-slips, a 2D viewer for selecting 
host objects or submitting queries, a text i-slip editor for 
adding textual annotations and attaching actions. 
Together, these modules comprise a user-friendly 
environment for collecting user-contributed information 
and present such information in close association with the 
underlying structure for easy browsing. 
Furthermore, we generalize our previous fast protein 
visualization techniques [3] in Java 3D to I-SLIPS. The 
new technique supports efficient construction of Java3D 
scene graphs, while allowing the users to highlight host 
objects and manipulate i-slips. We also present a simple 
Java programming interface to plug in new i-slip 
templates and user-defined actions.  
The remainder of this paper is organized as follows: We 
introduce the concept of i-slips in Section 2. Details about 
the system I-SLIPS will be discussed Section 3. Two key 
implementation techniques are presented in Section 4. 
Finally we summarize our work and discuss future 
research direction in the conclusion section. 
Related work 
Our i-slips with text contents are similar to Post-it Notes 
[9] and TeleNotes [12]. A notable distinction is that they 
are only for 2D models. IRIS Annotator [7] does annotate 
3D models; however, its annotations for 3D objects can 
only be accessed within the 3D models. It supports simple 
actions to execute external programs. It does not support 
automated monitoring services and situation-aware 
behaviors. Besides, our system can plug in new 
annotation data and actions.  
Existing protein visualization tools such as Swiss-
PdbViewer [5], Protein Explorer [8], RasMol [10] etc., 
and collaboration systems for protein structures such as 
BioCoRE [2], Chimera [6], MICE [11] etc., do not 
support user annotations. Cn3D [4] provides label and 
style annotation to 3D protein structures. Their 
annotations are mainly used for visualization purpose, that 
is, to distinguish the selected residues against the rest of 
the protein. Besides, the labels only show residue names 
that are authoritative information. We go beyond the 
above systems by providing i-slips for sharing additional 
user-contributed protein structure information. Their 
functionality and user interface will be greatly enhanced 
with the support of i-slips. 

2. I-SLIP — A Customizable Portable 
Information Container  

In this section we introduce the concept of an 
“information-slip (i-slip)” and its new features.  
2.1 Concept of an i-slip 
I-slips are small 3D objects that coexist with and augment 
the host 3D objects. An i-slip keeps information about the 
host object, maintains a suitable visual configuration for 
display, and records a content object. The host object is 
part of a 3D model. The visual configuration defines the 
way to visualize the i-slip in a 3D environment, and its 
position relative to the underlying 3D model. The content 
object stores additional information about the host object.  
In our application scenario, the host objects can be any 



combination of chains, residues and atoms in a protein 
structure, e.g., all the residues in a beta sheet, or the CA 
atom of a particular residue, etc. An example of an i-slip 
is shown in Figure 1, where the i-slip is shown as a hand 
icon and the host object is the residues in the first alpha 
helix in chain A of PDB ID: 1JPN. 

 
Figure 1: An i-Slip on the first alpha helix in 1JPN 

An interesting visualization issue in a 3D world is that 
objects (and hence the attached i-slips) can be viewed 
from many different perspectives. While 3D geometry can 
be viewed as such, the same is not true for i-slips with 2D 
icons and text description. Hence, to be legible, texts and 
icons for i-slips should be displayed with some 
appropriate size and oriented toward the viewer. This 
turns out to be an interesting issue in visualizing. In our 
system, we design the visual form with a display behavior 
that automatically compensates for the rotation that skews 
the i-slip and brings the i-slip back to an orientation to 
face the viewer (camera). 
The anchor point is the position for an i-slip in a 3D 
model. It is initially computed as a random position inside 
the bounding box of the underlying host object. The initial 
camera position is to make the center of the bounding box 
the center of the screen, and the viewing distance is twice 
of the longest side of the box. This viewing configuration 
allows the user to focus the view on the i-slip. 
The content object may contain augmentative information 
from authoritative systems such as the PDB, or user-
contributed information. For example, a text i-slip in our 
implementation stores free text annotation. Each text i-
slip contains the following fields: author, time of last 
update, and body. The body contains free text. The time 
of the last update is automatically updated by the system. 
For the i-slip in Figure 1, it records a text description 
about the first alpha helix. 
2.2 Domain specific I-slips 
The content object of an i-slip can carry a variety of 
domain-specific information through customization. In 
our current design, we implemented a missing-residue i-
slip and a bond-angle i-slip for visualizing predefined 
remarks in PDB data files together with the underlying 
protein model. I-slips for missing residues are extracted 
from REMARK 465 in a PDB data file. It contains the 
following fields:  molecule name, chain number, residue 
name, and sequence number. I-slips for erroneous bond 
angles are extracted from REMARK 500. It contains the 
following fields:  molecule name, chain number, residue 

name, sequence number, and deviation angle. 
An i-slip is an open, customizable information container. 
New i-slip templates can be easily plugged in to 
accommodate domain specific information. The ability to 
adapt to new user data formats greatly increases the 
functionality, usability, and flexibility of our system. 
2.3 I-slips with Actions 
I-slips contain not only static data. A novel feature of our 
i-slips is that they can also store actions (or programs to 
be executed). The actions can be easily activated on-
demand at some later time. This is convenient especially 
for executing certain repetitive tasks. 
In the current design, we provide several predefined 
actions. One is to pop up a window and display a text 
message. The action is usually used for displaying 
warning messages, or instructions. Another predefined 
action is to open a related URL. The action can be used to 
go to other websites, and display web pages related to the 
current protein structure, e.g., to display the summary 
information from the PDB file, or to query a certain 
Internet archive for relevant information and models. 
Our action mechanism also allows the users to easily plug 
in new actions. Such plug-ins allow the user to run their 
algorithms or programs on the selected host object. An 
abstract action, which is named ActionRoot in our 
implementation, defines an action name and an abstract 
method. The action name is used to identify an action. 
The abstract method, which we call actionPerformed, 
defines an interface for the program implementation when 
an action is performed. A user-defined action is required 
to be declared as a subclass of ActionRoot and 
implements the actionPerformed method. The arguments 
of actionPerformed allow user codes to access the 
molecule structure, protein viewer and the host object, 
and provide an input parameter. An example to add an 
action for protein structure comparison will be introduced 
in Section 4. We note here that the user-defined action 
behavior in our system was not extensively studied and 
implemented in the previous systems for annotations.  
2.4 Event-driven activation mechanism 
Actions are usually executed manually on-demand. In 
many cases, the user may register the action to be invoked 
automatically later when a specified event happens. For 
example, when a user first loads a protein structure, it will 
be helpful if a protein-structure-checking web service can 
be performed automatically. In the current 
implementation, we define events to reflect changes of the 
display environment. Each action can define an event, 
which is the condition to trigger the action. With the 
event-driven mechanism, an alert i-slip can monitor the 
environment for the specified condition, and then 
performs the actions if its condition becomes true.  
Events supported in our current implementation are listed 
below: “Protein viewer is first shown”; “Protein view is 
changed”; “I-Slips are shown in protein viewer”; “I-Slips 
are hidden in protein viewer”; “New I-Slip is added”; 
“Existing I-Slip is modified” and “Existing I-Slip is 
deleted”. Many possible actions might be performed for 



an event. For example, summary of best views, structure 
features, related protein structures, possible display 
options will be useful when a user first loads a protein 
data file for visualization. Detection of specific structure 
features to current camera’s position will be very useful 
when the protein view is changed. In a distributed 
environment where multiple users participate in a 
collaborative session, notifications will be useful. 
Specifically, notifications of the events happened in the 
instructor’s machine alert the students to pay attention to 
a certain protein feature or perform a certain action. 
For example, we can use “Action for related URL” to go 
to What-IF (http://www.cmbi.kun.nl/gv/whatcheck/) and 
get a check report for the current protein structure.  If the 
event is properly set, the window in  
Figure 2 will be shown when user first opens the 3D 
structure viewer. 

 
Figure 2: Get What-If check report  

2.5 Storage and transportation of i-slips 
In our system, i-slips are internally represented as 
serializable Java objects. They can be sent and received 
over a network. At the secondary storage level, i-slips are 
stored as XML files. This facilitates the sharing and 
transportation of i-slips for different discussion groups. It 
also provides an open interface for other systems to 
“read” i-slips.  

3. Tools to Support I-Slips 
We have developed a tool named I-SLIPS to demonstrate 
the concept of i-slips. I-SLIPS is a Java application 
running in a network environment. As shown in Figure 3, 
it needs to access external data source PDB.  

 
Figure 3: The System Configuration 

In I-SLIPS, the 3D structure viewer is used to visualize 
3D protein models with i-slips. The 2D sequence viewer 
provides a tree view for the protein sequence. In the 2D 
sequence viewer, the users can select objects to add i-
slips, and query related i-slips. The query results are 
displayed in an i-slip query tree. Currently, our tool 
provides three i-slip templates: a text i-slip editor, a 
missing-residue template, and a bond-angle template. The 
I-Slip API is used to add, delete, modify, and query the 
repository for host objects and i-slips. The Molecule API 
is used to parse and build scene graphs, and get sequences 

or coordinates for the underlying protein model. Other 
utility tools, such as an FTP tool to automatically 
download protein data files and corresponding secondary 
structure information from the PDB, are also available but 
not shown in Figure 3. 
Figure 3 also shows the architecture of the current version 
of I-SLIPS. The data for i-slips and protein structures are 
stored in a single machine. The advantage is that the users 
can work locally and annotate protein structures with i-
slips. After it is done, the corresponding XML files can be 
electronically mailed to others for review. The 
client/server version to support synchronous distributed 
collaboration is currently under development. 
More details about the components in I-SLIPS, including 
screen dumps, are presented below. Figure 1 shows the 
3D structure viewer. It is based on the work on fast 
protein visualization [3]. The users can surf inside the 3D 
structure using mouse buttons to zoom in/out, rotate, and 
pan. The novel feature is the incorporation of the i-slips.  
Figure 4 shows the 2D sequence viewer. It allows easy 
correlation of residues in the sequence with atoms in the 
3D structure. This is accomplished by highlighting - just 
as with a text editor. Click-dragging the mouse across a 
region in the sequence window will cause the letters to 
become red (selected), and double clicking on a residue 
will select all the neighboring residues which are in the 
same secondary structure. To select a chain or an atom, 
simply double click it in the corresponding list. Once 
chains, residues or atoms are selected, they will be 
highlighted in red color in the 3D structure window. And 
the converse is true as well: double-clicking an atom in 
the structure window will cause it and the corresponding 
letter in the sequence window to light up. Furthermore, 
the users can switch between the sequence and secondary 
structure for a selection. This can be done by clicking on 
the button above the sequence of residues. The secondary 
structure helps the users to select relating residues.  

 
Figure 4: 2D sequence viewer 

For example, let’s walk through the procedure of 
selecting the first alpha-helix in chain B. A drop list for 
PDB ID allows the users to choose a protein structure that 
is locally available. A chain is selected in the chain list 
box. The sequence of protein is shown in the middle 
display panel. The user first clicks on the button above the 



sequence to show the secondary structure in the sequence 
panel, and then drags the mouse over the first continuous 
H at chain B. Then a line will be added automatically to 
the host-object list box. To deselect the host object, select 
a line and double click it in host-object list box. 
Once the host object is selected, a query request is sent to 
the i-slip repository for related i-slips. Those i-slips whose 
host objects overlap with the selected host object will be 
returned. If no host object is selected, all the stored i-slips 
will be returned. Returned i-slips are categorized and 
displayed in a tree as shown in the Figure 4. 
A new i-slip can be added by clicking the button “New I-
Slip.” Figure 5 shows the editor window for a text i-slip. 
It has five panels. A host object information panel on the 
top left shows information about the host object of this i-
slip. A text input panel on the upper left is for entering 
information on the subject, author, and message fields, 
and for selecting an icon to be used for visualization. On 
the lower left, an action panel lets the users select a 
predefined action, add a parameter, and set the event to 
trigger the action. On the bottom left, the command panel 
houses the control buttons (save, delete, and cancel). A 
preview panel on the right includes a graphical 
representation of the i-slip and the 3D hosts object it 
attached to. For the atoms not selected, only the bonds are 
displayed, so as to highlight the i-slip and its host objects. 

 
Figure 5: The Text i-slip Editor 

Figure 6 shows two templates for domain-specific 
information, where the left one is for bond angles and the 
right one is for missing residues. 
We now explain how the examples in Section 1 are 
supported in I-SLIPS. Information about missing residues 
and bond angles in protein structures can be extracted 
automatically from remarks in the PDB data files. The 
corresponding i-slips are organized in the query tree in 
Figure 4. The users can double click on the i-slips in the 
query tree or in the 3D viewer for detailed information. 
The templates are shown in Figure 6. For user-contributed 
information in the second example, they can be stored in a 
text i-slip. Augmentative information can be stored in the 
body field. Related URL link can be described as 
“Related URL Action.” 

 
Figure 6: Domain-specific templates 

4. Key Implementation Issues 
In this section, we discuss two key techniques in the 
implementation: fast protein visualization technique with 
i-slips, and Java programming technique to support user-
defined i-slip templates and actions. These techniques 
make our system flexible, adaptable, and efficient. 
The visualization component of the I-SLIPS is 
implemented in Java 3D. Java 3D is a cross-platform API 
for developing 3D graphics applications in Java. Java 3D 
describes a 3D scene in a scene graph (basically, a tree 
structure). The interior nodes in the graph correspond to 
various grouping operations to collect simpler objects into 
larger, more complicated constructs (e.g., grouping atoms 
into a residue, and residues into a molecule). The exterior 
nodes are 3D objects and components to describe the 
shape, appearance, and behavior of these objects, and 
other entities such as lights, background, etc. 
We previously have developed techniques to achieve fast 
protein visualization [3]. Unfortunately these techniques 
cannot be used with the introduction of i-slips. For 
example, if we combine shapes of the same appearance, 
the user cannot highlight the part of them as host objects.  

 
Figure 7: The scene graph of a visualization model with i-slips 

In I-SLIPS, we represent each atom by a shape3D object. 
Each shape3D object is directly attached to the 
BranchGroup node for the whole molecule. That means 
that we reduce the number of Group nodes to zero. So the 
scene graph of a protein with i-slips has two parts as 
shown in Figure 7. The part for i-slips is shown in the left 
dotted rectangle, while the part for the molecule is shown 
in the right dotted one. Each part has a Java 3D 
BranchGroup object. So we can change the visualization 
models for molecules, and show or hide i-slips. As shown 



in Figure 7, a shape3D is created at its coordinates for 
each atom. All the shape3D objects are added to BG2 
directly, as well as the LineArray for bonds. Similarly, 
Shape3D objects for i-slips with a visual form of 3D 
objects are added to BG2 directly. For i-slips with 2D 
icons or text, we add a TransformGroup node TG and 
attach a billboard behavior to TG. Thus makes i-slip 
discernable from the underlying object rotation.  
The flat structure of scene graph uses the least number of 
group nodes to reduce memory and calculation. It makes 
the visualization of protein structures with i-slips fast and 
efficient. 
Now we discuss how user-defined templates and actions 
are implemented in I-SLIPS. The procedure to add a new 
i-slip template and action is similar, we only illustrate 
how to add an action. An abstract class called ActionRoot 
defines the Java programming interface for actions. As 
shown in Figure 8, each action has an actionName, and 
method named “actionPerformed”. Method 
actionPerformed needs either no arguments, two 
arguments (the host object and an input string), or four 
arguments that include additional access to the molecule 
and viewer.  

 
Figure 8: Abstract class for all user-defined actions 

To add a new action, a new Java class is to inherit 
ActionRoot. For example, to add the action for “Structure 
comparison”, a class ActionStruCmp is defined as shown 
in the top of Figure 9. In the constructor, an action name 
is given. Through the arguments in actionPerformed, 
ActionStruCmp is applicable to chain objects. It compares 
the selected chain in the current molecule with a specified 
chain in another protein structure. Then the user can 
further code to display the comparison result.  

 
Figure 9: A user-defined action and its registration 

After the class for a new action is developed, it needs to 
be registered. In I-SLIPS, it can be simply done via a Java 
class UserActionRegister. The source code for 
UserActionRegister is shown in the bottom of Figure 9.  

5. Conclusions 
We have demonstrated the application of our i-slips 
system for visualization and collaboration in protein 
science. Our contribution lies in representing authoritative 
information and user-contributed information uniformly 
as i-slips and allow augmentative information to be 
associated with the underlying model. Our i-slips move 
beyond the passive reminder service model in traditional 
notes to provide action and interactivity. Our i-slips also 
support user-defined i-slips templates and actions, which 
simplify the task of adapting our i-slip tools to other 
application domains. Many application systems can 
benefit from the i-slip technology to enhance 
collaboration and user interface. The source code of the I-
SLIPS tool and full version of this paper are available at: 
http://www.cs.ucsb.edu/~yjwang/i-slips/index.html.  
Many useful features can be added to our system to 
further enhance its functionality, such as synchronous 
collaboration, advanced visualization techniques to 
visualize host objects, and query and search mechanism 
based on XML. I-slips can be further improved by adding 
these and other new functionality. 
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