

Sensor Optimization in a Virtual Environment

Tolga Can
Veysi Isler

Department of Computer Engineering
Middle East Technical University

06531 Ankara TURKEY
+90-312-210-5597, +90-312-210-5579

tcan@ceng.metu.edu.tr, isler@ceng.metu.edu.tr

Maj. Ziya Ipekkan
General Plans and Policy Division

Technology, Defense Research and Armament Department
06100 Bakanlıklar Ankara TURKEY

+90-312-402-1387
zipekkan@tsk.mil.tr

Keywords:
sensors, coverage, surveillance, virtual environment, optimization, genetic algorithms

ABSTRACT: An algorithm for locating different types of sensors in a 3D virtual environment to achieve a desired
coverage of that environment while satisfying some constraints is being developed. In this context, the keyword
‘sensor’ is used to identify a FLIR (Forward Looking Infra-Red) camera. It can be extended to include Day-TV
cameras, night vision goggles and radars. In this problem, the sensor system is composed of two major types of
sensor platforms, namely moving and static platforms. The main goal of this system is to maintain security of the
overall or indicated regions of environment. While achieving this goal, the system should also satisfy constraints
imposed on the system. Maintaining stealth (remaining hidden), constraining route and placement locations are
examples of these constraints. As a result of the optimization of the sensor system, the optimal routes and viewing
directions for the moving sensors, the optimal locations and viewing directions for the static sensors will be found.

1. Introduction

Sensor optimization has been previously studied in
different research areas. A similar problem called
sensor planning has been studied by robotics and
computer vision communities, to locate the sensors on
a robot to enhance its navigation capabilities in a
closed environment [1]. The environments used in
these researches are mostly small, closed
environments, like offices, laboratories, etc. The goal
behind these optimizations is to collect as much
information as possible about the surrounding
environment. Thus working in an open, big virtual
environment has more difficulties involved than
working in a small environment [2].

Little research has been done considering the problem
of optimally locating sensors in a wide and open
synthetic environment. In the paper by Cook,
Gmytrasiewicz, and Holder [3] a solution for the

mission planning of unmanned ground vehicles (UGV)
is discussed. The underlying goals in their study are
similar to the ones discussed here: optimally covering
the area around a unit of unmanned ground vehicles to
maintain security, while remaining hidden from
possible enemies.

The rest of this paper is organized as follows. In
Section 2.1, the formulation of the optimization
problem will be presented. In Section 2.2 and Section
2.3 the methods used for analyzing the coverage and
stealth of the sensor platforms will be given. In Section
3, possible solutions for the problem will be discussed.
In Section 4, the main steps of a genetic algorithm will
be explained. Implementation details will be given in
Section 5, and finally the paper will be concluded in
Section 6.

mailto:tcan@ceng.metu.edu.tr
mailto:isler@ceng.metu.edu.tr
mailto:zipekkan@tsk.mil.tr

2. Optimization

The optimal attribute sets of a set of sensors, S, located
over a region A, is to be found. To be able to judge if a
set of attributes are optimal or not, we have to define
the goals of the optimization. We also have to define
methods to find out how well the system of sensors
satisfies these goals.

2.1 Optimization Goals

Establishing a desired coverage of the area of interest
and remaining hidden from possible enemies are the
two main goals of the sensor system.

To compute the coverage areas of the sensors, the area
A, which is a 3D polygonal region, is partitioned into a
set of sub-regions. These sub-regions are associated
with importance values, which are used to give
priorities to regions in the coverage process. The sub-
regions of the area A have the following properties:

U ai=A and I ai =∅ (0 ≤ i ≤ n, n: # of sub-regions).

The area importance function can be defined from the
set of sub-regions to real numbers (Asub→R):

imp: Asub→R, imp(ai)=ci area(ai)

ci is the area importance constant entered by the user,
and area(ai) is the area of the polygonal sub-region ai.

The time dimension should also be considered in the
optimization process because of the moving platforms
in the sensor set, S. Thus, the coverage performance
function of a sensor can be defined from set of sub-
regions × set of sensors × time to real numbers (Asub ×
S × T):

cover: Asub × S × T,
cover(ai,sj,t)=the area covered over ai by sensor sj at

time t.

The coverage function is computed using computer
graphics techniques. The area importance function is
used in the computation of the coverage function.

The stealth function of a sensor can be defined
similarly from set of sub-regions × set of sensors ×
time to real numbers (Asub × S × T) as:

stealth: Asub × S × T,
stealth(ai,sj,t)=the part of sensor platform ai seen from

the sub-region sj at time t.

The stealth function is computed using line of sight
calculations. A probability distribution function over
area A is used to place enemies on the sub-regions and
calculate the line of sights between enemy forces and
the sensor platforms. The probability distribution
function is defined again by the user.

Considering the time dimension, the function to be
optimized in the time interval T=t1,t2 is the summation:

Σ w1 cover(ai,sj,t) + w2 stealth(ai,sj,t)
where,

(0 ≤ i ≤ n, n : # of sub-regions)
(0 ≤ j ≤ m, m : # of sensors in the system)
(t1 ≤ t ≤ t2)

In this summation the cover() and stealth() are
computed in discrete time intervals, ∆t.

2.2 Coverage Analysis

The coverage analysis function is used to compute the
part of the region A that is seen (covered) by the
sensors in the sensor set S. A quantitative and a visual
result of this computation are provided. The
quantitative result is used by the optimization
algorithm, while the visual result is used for evaluation
and verification of the optimization results.

A similar study by Silicon Graphics for visualizing the
terrain parts seen by an unmanned air vehicle (UAV)
has been done [4]. The projective texturing and shadow
testing method presented in that study are used to find
the coverage area of a sensor.

The 3D terrain model and the sensor information, such
as the location, viewing direction, viewing range, and
the field of view angle is used to compute the coverage
area. This method uses the rendered sensor view. By
defining it as a texture, it is mapped back on to the
terrain after automatically generating the texture
coordinates using backward projection.

The boundaries of the region, which the sensor senses
is found with the projective texturing method. But
using projective texturing alone cannot identify the
regions, which are occluded by possible terrain
features such as hills and valleys. Depth testing is used
to identify those regions, which are actually not seen
by the sensor. In depth testing the depth information in

the rendered sensor view is compared with the
computed depth coordinate, r, which is found after
backward projecting that view as a texture image. If the
computed r value is not less than or equal to the real
depth value in the sensor view, then that part of the
terrain is actually not seen by the sensor, and thus the
texture is not mapped on it. The depth testing
mechanism, which is provided in hardware by high end
Silicon Graphics Workstations, is illustrated below in
Figure 2.2.1.

Figure 2.2.1 The Depth Test

The quality of the simulated sensor view depends on
the distance, and the viewing angle between the sensor
and the target. The idea behind the lighting calculations
in computer graphics is very similar to this interaction
between the sensor and the terrain. So, the quality of
the data is simulated by putting a spot light source on
the sensor platform pointing in the sensor viewing
direction, which is shown in Figure 2.2.2.

Figure 2.2.2 Simulation of the Data Quality

The result of the coverage computations can be
presented on the 3D model of the terrain from any view
location and direction. An orthographic view of the
whole area is processed and a quantitative result is

produced by processing that view. The visual result of
the coverage analysis, and the sensor view is shown in
Figure 2.2.3. The sensor view, which is shown on the
lower right corner of Figure 2.2.3, is used to obtain the
real depth information, which is used in the depth
testing process. For the coverage analysis calculations
the sensor view, with the sensor properties such as
location and viewing direction of the sensor, are used.
In the visual result of the coverage analysis, the parts
seen by the sensor are shown shaded with a gray tone.
The black parts in the image are the regions which are
inside the boundaries of the coverage area but not seen
by the sensor.

Figure 2.2.3 A Snapshot from the Coverage Analysis

For the quantitative results of the coverage analysis,
the visual coverage results of the sensor platforms in
the system are merged in the image space. The regions
covered by sensors are identified after processing the
resulting image, and a matrix data is produced. The
matrix data has the same dimensions with the
processed image, i.e. the number of cells in the matrix
data is equal to the number of pixels of the image. The
binary information in this coverage matrix, Cmatrix,
indicates whether a cell is covered by a sensor or not.
The terrain importance values are converted to a matrix
data of the same size, Impmatrix. The coverage
performance of a sensor system at time t is computed
as shown:

Σ cover(ai,sj,t) = Σx Σy Impmatrix,x,y Cmatrix,x,y

(0 ≤ i ≤ n, n : # of sub-regions)
(0 ≤ j ≤ m, m : # of sensors in the system)
(0 ≤ x ≤ X, X : horizontal size of Impmatrix and Cmatrix)
(0 ≤ y ≤ Y, Y : vertical size of Impmatrix and Cmatrix)

2.3 Maintaining Stealth

To evaluate the sensor system considering the stealth
performance, the probability distribution function,
which indicates the possible enemy locations, is used.
A number of enemy observers are scattered on the
terrain according to the probability distribution
function specified by the user. After the line of sight
calculations carried out between the enemy observers
and sensor platforms, the numbers of sensors seen by
the enemy observers are found out. This process is
repeated several times and the average of the results of
these line of sight calculations is used as the measure
of maintaining stealth. Thus the stealth function used in
the optimization algorithm is computed at time t by:

 Σn # of sensors seen by the enemy
Σstealth(ai,sj,t) =

 n

 n : # of stealth performance finding processes.
(0 ≤ i ≤ n, n : # of sub-regions)
(0 ≤ j ≤ m, m : # of sensors in the system)

3. Possible Solutions to the Optimization

Problem

The sensor optimization problem is a multi-objective
optimization problem. As a result of the optimization,
the attribute set of the sensors in the sensor system is
found. The attributes in this set are the routes,
coordinates and viewing directions of the sensors.
Defining a mathematical objective function composed
of these attributes is impossible, because the objective
function is also dependent on the terrain that the sensor
system is placed on. Thus optimization methods that
depend on calculus and enumeration cannot be used in
this sensor optimization problem.

Random search methods, which try to find the best
solution by searching the solution space randomly, are
appropriate for the sensor optimization problem. Some
heuristics can be incorporated into the search method
to decrease the convergence time.

Among the random search methods the genetic
algorithm method is chosen for the sensor optimization
problem described here.

4. The Genetic Algorithm

Genetic algorithm is based on the evolution concept
that is present in the nature. It is a blind search method

in the sense that the algorithm does not know what it is
optimizing. To find an optimal solution in the solution
space, it uses a fitness function to compare the
goodness of the solutions. Reproduction and mutation
operators are used to produce new solutions. The
advantage of a genetic algorithm is that it deals with a
group of solutions, so that it is avoided to follow a
single path, which may not lead to a solution. The steps
of a genetic algorithm can be listed as follows:

i. An initial set of possible solutions is created
randomly. This set forms the population and the
coded solutions form the chromosomes.

ii. The fitness function is used to find how fit each
chromosome is.

iii. Chromosome pairs are chosen for reproduction
and mutation. A new population is created.

iv. Chromosomes in the old population, which are
not fit enough, die and they are replaced by the
fitter new generation chromosomes.

v. If the new generation is fit enough to be an
optimal solution or enough number of
generations have passed, then the solution is the
best chromosome in the current population.
Otherwise the steps from iii are repeated.

The new solution found after mating the selected two
chromosomes is generated by crossing-over the genes
between the selected chromosomes. This crossover
operation aims to combine to promising properties of
the parent chromosomes to produce a fitter child. The
mutation operator randomly changes the genes of a
chromosome with a probability of mutation. It aims to
cause jumps to new solution groups in the solution
space.

The genetic algorithm may be unable to find the
optimum solution of a problem but it guarantees to find
an acceptable optimal solution in a reasonable time.
The convergence time of a genetic algorithm is greatly
affected by the factors such as the population size, the
mutation probability, and the number of chromosomes
die in each generation. A genetic algorithm can be fine-
tuned by finding the best values for these parameters in
a specific problem through experiencing.

5. Implementation

A genetic algorithm is implemented for optimization of
the parameters of a sensor system in a virtual
environment. The coverage and stealth performance
functions are the critical functions in the algorithm,
which are used to find how fit a solution is. The
solution set is composed variable sensor parameters
such as the route, location, and viewing direction.

These parameters are coded into a chromosome
structure to be used in the genetic algorithm.

The sensor platforms in this problem are ground-based
platforms; that is the moving platforms follow the
surface of the terrain while static platforms are placed
on a fixed location on the terrain. In the optimization
process, which is carried out for a time interval T, the
moving platforms are considered as static platforms at
the time instant t. The only varying property of a
moving sensor platform, in a time interval T, is
assumed to be its position. The viewing direction of the
sensor on the platform is assumed to be constant in the
interval T.

A sample solution set, which is composed of the
parameters of the sensor system of 1 moving and 2
static sensors, are coded as a chromosome and is
shown below in Table 5.1.1:

Table 5.1.1 A Sample Solution Set

Here, the x, y, ix, iy values are in meters (coordinates on
the terrain) and the r, h, p values are in degrees. The x,
y coordinates for a static sensor indicate its position on
the terrain. The z coordinate of the platform is the
determined by the terrain height. For the moving
platforms ix, iy coordinates indicate the initial position
of the platform. Again the ix coordinate is determined
by the terrain height value. The h and p are the heading
and pitch values of the sensor. The rolling value of the
sensors is assumed to be zero. The α value of the
moving sensor indicates the moving direction.

The initial population for the genetic algorithm is
formed by generating random solution sets as in Table
5.1.1. The method of finding the fitness of a particular
solution is explained in the following pseudo-code:

fitness = 0;
w1 = weight_of_coverage_performance;
w2 = weight_of_stealth_performance;
for t=t1 to t2 do step ∆t
begin
 compute_new_coords_for_moving_platforms();
 update_coords_of_moving_platforms();
 fitness=fitness+(w1*cover_per()+w2*stealth());
end

The time interval T=[t1,t2] is the same for all the
solution sets, so a normalization on the computed
fitness values is not needed. The genetic algorithm
uses these fitness values and tries to find the best
solution with the best fitness value.

6. Conclusion

In this study a sensor system, which is composed of
moving and static sensors, are optimized using a
genetic algorithm. The objective of this optimization is
to maintain the security of a specific area of interest.
An optimal set of parameters of the sensors in the
sensor system is found as a result of the optimization.

The genetic algorithm was able to find satisfactory
solutions when tested on a 4x4 km. area. The area
regions having high importance values were covered
by more than one sensor most of the time, but no
solution set was able to cover the whole region. The
optimization times changed from 1 hour to 3 hour to
find a good solution. To decrease the optimization
time, some heuristics can be incorporated into the
genetic algorithm.

7. References

[1] Briggs, Amy J., Donald, Donald, Bruce R.:

“Robust Geometric Algorithms for Sensor
Planning”, Proceedings of the Second
International Workshop on Algorithmic
Foundation of Robotics, Toulouse, France, 1996.

[2] Stamos, Ioannis, Allen, Peter K.: “Interactive
Sensor Planning”, IEE Computer Society
Conference on Computer Vision and Pattern
Recognition, 1998.

[3] Cook, Diane J., Gmytrasiewics, Piotr, Holder,
Lawrence B.: “Decision-Theoretic Cooperative
Sensor Planning”, IEEE Transaction on Pattern
Analysis and Machine Intelligence 18 (18), 1996.

[4] UAV Technical Paper, Silicon Graphics
 http://www.sgi.com/software/performer/brew/uav.html

Author Biographies

TOLGA CAN is research assistant in Department of
Computer Engineering, Middle East Technical
University. He received his B.Sc. from the same
department in 1998. He is working in the Virtual
Environments Group in Modeling and Simulation
Laboratory as part of his master thesis.

VEYSI ISLER is a faculty member of the Department
of Computer Engineering, Middle East Technical
University (METU). He received his B.Sc. degree in
Computer Engineering from the same university, in
1987. He worked as a research assistant and instructor
for the Department of Computer Engineering and
Information Sciences, at Bilkent University where he
received his M.S. and Ph.D. degrees between 1987 and
1995. He is the coordinator of Virtual Environments
Group in Modeling and Simulation Laboratory of
METU.

ZIYA IPEKKAN received M.S. degree in OR from
Naval Postgraduate School, Monterey, USA, in 1989.
He initiated development of several models,
approaches and solutions to assessment and evaluation
of force structures. He is currently responsible for
Modeling and Simulation activities within Turkish
Armed Forces.

