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ABSTRACT: An algorithm for locating different types of sensors in a 3D virtual environment to achieve a desired 
coverage of that environment while satisfying some constraints is being developed. In this context, the keyword 
‘sensor’ is used to identify a FLIR (Forward Looking Infra-Red) camera. It can be extended to include Day-TV 
cameras, night vision goggles and radars. In this problem, the sensor system is composed of two major types of 
sensor platforms, namely moving and static platforms. The main goal of this system is to maintain security of the 
overall or indicated regions of environment. While achieving this goal, the system should also satisfy constraints 
imposed on the system. Maintaining stealth (remaining hidden), constraining route and placement locations are 
examples of these constraints. As a result of the optimization of the sensor system, the optimal routes and viewing 
directions for the moving sensors, the optimal locations and viewing directions for the static sensors will be found.   
 
1. Introduction 
 
Sensor optimization has been previously studied in 
different research areas. A similar problem called 
sensor planning has been studied by robotics and 
computer vision communities, to locate the sensors on 
a robot to enhance its navigation capabilities in a 
closed environment [1]. The environments used in 
these researches are mostly small, closed 
environments, like offices, laboratories, etc. The goal 
behind these optimizations is to collect as much 
information as possible about the surrounding 
environment. Thus working in an open, big virtual 
environment has more difficulties involved than 
working in a small environment [2].  
 
Little research has been done considering the problem 
of optimally locating sensors in a wide and open 
synthetic environment. In the paper by Cook, 
Gmytrasiewicz, and Holder [3] a solution for the 

mission planning of unmanned ground vehicles (UGV) 
is discussed. The underlying goals in their study are 
similar to the ones discussed here: optimally covering 
the area around a unit of unmanned ground vehicles to 
maintain security, while remaining hidden from 
possible enemies. 
 
The rest of this paper is organized as follows. In 
Section 2.1, the formulation of the optimization 
problem will be presented. In Section 2.2 and Section 
2.3 the methods used for analyzing the coverage and 
stealth of the sensor platforms will be given. In Section 
3, possible solutions for the problem will be discussed. 
In Section 4, the main steps of a genetic algorithm will 
be explained. Implementation details will be given in 
Section 5, and finally the paper will be concluded in 
Section 6. 
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2. Optimization 
 
The optimal attribute sets of a set of sensors, S, located 
over a region A, is to be found. To be able to judge if a 
set of attributes are optimal or not, we have to define 
the goals of the optimization. We also have to define 
methods to find out how well the system of sensors 
satisfies these goals.  
 
2.1 Optimization Goals 
 
Establishing a desired coverage of the area of interest 
and remaining hidden from possible enemies are the 
two main goals of the sensor system. 
 
To compute the coverage areas of the sensors, the area 
A, which is a 3D polygonal region, is partitioned into a 
set of sub-regions. These sub-regions are associated 
with importance values, which are used to give 
priorities to regions in the coverage process. The sub-
regions of the area A have the following properties: 
 
U ai=A and I ai =∅  (0 ≤ i ≤ n, n: # of sub-regions). 
 
The area importance function can be defined from the 
set of sub-regions to real numbers (Asub→R): 
 
imp: Asub→R, imp(ai)=ci area(ai) 
 
ci is the area importance constant entered by the user, 
and area(ai) is the area of the polygonal sub-region ai. 
 
The time dimension should also be considered in the 
optimization process because of the moving platforms 
in the sensor set, S. Thus, the coverage performance 
function of a sensor can be defined from set of sub-
regions × set of sensors × time to real numbers (Asub × 
S × T): 
 
cover: Asub × S × T, 
cover(ai,sj,t)=the area covered over ai by sensor sj at     

time t. 
 
The coverage function is computed using computer 
graphics techniques. The area importance function is 
used in the computation of the coverage function. 
 
The stealth function of a sensor can be defined 
similarly from set of sub-regions × set of sensors × 
time to real numbers (Asub × S × T) as: 
 
 
 

stealth: Asub × S × T, 
stealth(ai,sj,t)=the part of sensor platform ai seen from 

the sub-region sj at time t. 
 
The stealth function is computed using line of sight 
calculations. A probability distribution function over 
area A is used to place enemies on the sub-regions and 
calculate the line of sights between enemy forces and 
the sensor platforms. The probability distribution 
function is defined again by the user. 
 
Considering the time dimension, the function to be 
optimized in the time interval T=t1,t2 is the summation: 
 

Σ w1 cover(ai,sj,t) + w2 stealth(ai,sj,t) 
where,  

(0 ≤ i ≤  n,  n : # of sub-regions) 
(0 ≤ j ≤  m, m : # of sensors in the system) 
(t1 ≤ t ≤  t2) 

 
In this summation the cover() and stealth() are 
computed in discrete time intervals, ∆t. 
 
2.2 Coverage Analysis 
 
The coverage analysis function is used to compute the 
part of the region A that is seen (covered) by the 
sensors in the sensor set S. A quantitative and a visual 
result of this computation are provided. The 
quantitative result is used by the optimization 
algorithm, while the visual result is used for evaluation 
and verification of the optimization results.  
 
A similar study by Silicon Graphics for visualizing the 
terrain parts seen by an unmanned air vehicle (UAV) 
has been done [4]. The projective texturing and shadow 
testing method presented in that study are used to find 
the coverage area of a sensor. 
 
The 3D terrain model and the sensor information, such 
as the location, viewing direction, viewing range, and 
the field of view angle is used to compute the coverage 
area. This method uses the rendered sensor view. By 
defining it as a texture, it is mapped back on to the 
terrain after automatically generating the texture 
coordinates using backward projection.  
 
The boundaries of the region, which the sensor senses 
is found with the projective texturing method. But 
using projective texturing alone cannot identify the 
regions, which are occluded by possible terrain 
features such as hills and valleys. Depth testing is used 
to identify those regions, which are actually not seen 
by the sensor. In depth testing the depth information in 



the rendered sensor view is compared with the 
computed depth coordinate, r, which is found after 
backward projecting that view as a texture image. If the 
computed r value is not less than or equal to the real 
depth value in the sensor view, then that part of the 
terrain is actually not seen by the sensor, and thus the 
texture is not mapped on it. The depth testing 
mechanism, which is provided in hardware by high end 
Silicon Graphics Workstations, is illustrated below in 
Figure 2.2.1. 
 

 
Figure 2.2.1 The Depth Test 

 
 
The quality of the simulated sensor view depends on 
the distance, and the viewing angle between the sensor 
and the target. The idea behind the lighting calculations 
in computer graphics is very similar to this interaction 
between the sensor and the terrain. So, the quality of 
the data is simulated by putting a spot light source on 
the sensor platform pointing in the sensor viewing 
direction, which is shown in Figure 2.2.2. 
 

 
Figure 2.2.2 Simulation of the Data Quality 

 
The result of the coverage computations can be 
presented on the 3D model of the terrain from any view 
location and direction. An orthographic view of the 
whole area is processed and a quantitative result is 

produced by processing that view. The visual result of 
the coverage analysis, and the sensor view is shown in 
Figure 2.2.3. The sensor view, which is shown on the 
lower right corner of Figure 2.2.3, is used to obtain the 
real depth information, which is used in the depth 
testing process. For the coverage analysis calculations 
the sensor view, with the sensor properties such as 
location and viewing direction of the sensor, are used. 
In the visual result of the coverage analysis, the parts 
seen by the sensor are shown shaded with a gray tone. 
The black parts in the image are the regions which are 
inside the boundaries of the coverage area but not seen 
by the sensor. 
 

 
 

Figure 2.2.3 A Snapshot from the Coverage Analysis 
 
For the quantitative results of the coverage analysis, 
the visual coverage results of the sensor platforms in 
the system are merged in the image space. The regions 
covered by sensors are identified after processing the 
resulting image, and a matrix data is produced. The 
matrix data has the same dimensions with the 
processed image, i.e. the number of cells in the matrix 
data is equal to the number of pixels of the image. The 
binary information in this coverage matrix, Cmatrix, 
indicates whether a cell is covered by a sensor or not.  
The terrain importance values are converted to a matrix 
data of the same size, Impmatrix. The coverage 
performance of a sensor system at time t is computed 
as shown: 
 
Σ cover(ai,sj,t)  =  Σx Σy Impmatrix,x,y Cmatrix,x,y   
 
(0 ≤ i ≤ n,   n  : # of sub-regions) 
(0 ≤ j ≤ m,  m : # of sensors in the system) 
(0 ≤ x ≤ X,  X : horizontal size of Impmatrix and Cmatrix) 
(0 ≤ y ≤ Y,  Y : vertical size of Impmatrix and Cmatrix) 
 
 



 
2.3 Maintaining Stealth 
 
To evaluate the sensor system considering the stealth 
performance, the probability distribution function, 
which indicates the possible enemy locations, is used. 
A number of enemy observers are scattered on the 
terrain according to the probability distribution 
function specified by the user. After the line of sight 
calculations carried out between the enemy observers 
and sensor platforms, the numbers of sensors seen by 
the enemy observers are found out. This process is 
repeated several times and the average of the results of 
these line of sight calculations is used as the measure 
of maintaining stealth. Thus the stealth function used in 
the optimization algorithm is computed at time t by: 
 

                  Σn # of sensors seen by the enemy  
Σstealth(ai,sj,t) =      

            n 
 
 n  : # of stealth performance finding processes. 
(0 ≤ i ≤ n,   n : # of sub-regions) 
(0 ≤ j ≤ m,  m : # of sensors in the system) 
 
3. Possible Solutions to the Optimization 

Problem 
 
The sensor optimization problem is a multi-objective 
optimization problem. As a result of the optimization, 
the attribute set of the sensors in the sensor system is 
found. The attributes in this set are the routes, 
coordinates and viewing directions of the sensors. 
Defining a mathematical objective function composed 
of these attributes is impossible, because the objective 
function is also dependent on the terrain that the sensor 
system is placed on. Thus optimization methods that 
depend on calculus and enumeration cannot be used in 
this sensor optimization problem.  
 
Random search methods, which try to find the best 
solution by searching the solution space randomly, are 
appropriate for the sensor optimization problem. Some 
heuristics can be incorporated into the search method 
to decrease the convergence time.  
 
Among the random search methods the genetic 
algorithm method is chosen for the sensor optimization 
problem described here.  
 
4. The Genetic Algorithm 
 
Genetic algorithm is based on the evolution concept 
that is present in the nature. It is a blind search method 

in the sense that the algorithm does not know what it is 
optimizing. To find an optimal solution in the solution 
space, it uses a fitness function to compare the 
goodness of the solutions. Reproduction and mutation 
operators are used to produce new solutions. The 
advantage of a genetic algorithm is that it deals with a 
group of solutions, so that it is avoided to follow a 
single path, which may not lead to a solution. The steps 
of a genetic algorithm can be listed as follows: 

i. An initial set of possible solutions is created 
randomly. This set forms the population and the 
coded solutions form the chromosomes. 

ii. The fitness function is used to find how fit each 
chromosome is. 

iii. Chromosome pairs are chosen for reproduction 
and mutation. A new population is created. 

iv. Chromosomes in the old population, which are 
not fit enough, die and they are replaced by the 
fitter new generation chromosomes. 

v. If the new generation is fit enough to be an 
optimal solution or enough number of 
generations have passed, then the solution is the 
best chromosome in the current population. 
Otherwise the steps from iii are repeated. 

 
The new solution found after mating the selected two 
chromosomes is generated by crossing-over the genes 
between the selected chromosomes. This crossover 
operation aims to combine to promising properties of 
the parent chromosomes to produce a fitter child. The 
mutation operator randomly changes the genes of a 
chromosome with a probability of mutation. It aims to 
cause jumps to new solution groups in the solution 
space. 
 
The genetic algorithm may be unable to find the 
optimum solution of a problem but it guarantees to find 
an acceptable optimal solution in a reasonable time. 
The convergence time of a genetic algorithm is greatly 
affected by the factors such as the population size, the 
mutation probability, and the number of chromosomes 
die in each generation. A genetic algorithm can be fine-
tuned by finding the best values for these parameters in 
a specific problem through experiencing. 
 
5. Implementation 
 
A genetic algorithm is implemented for optimization of 
the parameters of a sensor system in a virtual 
environment. The coverage and stealth performance 
functions are the critical functions in the algorithm, 
which are used to find how fit a solution is. The 
solution set is composed variable sensor parameters 
such as the route, location, and viewing direction. 



These parameters are coded into a chromosome 
structure to be used in the genetic algorithm. 
 
The sensor platforms in this problem are ground-based 
platforms; that is the moving platforms follow the 
surface of the terrain while static platforms are placed 
on a fixed location on the terrain. In the optimization 
process, which is carried out for a time interval T, the 
moving platforms are considered as static platforms at 
the time instant t. The only varying property of a 
moving sensor platform, in a time interval T, is 
assumed to be its position. The viewing direction of the 
sensor on the platform is assumed to be constant in the 
interval T. 
 
A sample solution set, which is composed of the 
parameters of the sensor system of 1 moving and 2 
static sensors, are coded as a chromosome and is 
shown below in Table 5.1.1: 
 
 
 
 
 
 
 
 
 

Table 5.1.1 A Sample Solution Set 
 
 
Here, the x, y, ix, iy values are in meters (coordinates on 
the terrain) and the r, h, p values are in degrees. The x, 
y coordinates for a static sensor indicate its position on 
the terrain. The z coordinate of the platform is the 
determined by the terrain height. For the moving 
platforms ix, iy coordinates indicate the initial position 
of the platform. Again the ix coordinate is determined 
by the terrain height value. The h and p are the heading 
and pitch values of the sensor. The rolling value of the 
sensors is assumed to be zero. The α value of the 
moving sensor indicates the moving direction.  
 
The initial population for the genetic algorithm is 
formed by generating random solution sets as in Table 
5.1.1. The method of finding the fitness of a particular 
solution is explained in the following pseudo-code: 
 
 
 
 
 
 
 
 

 
fitness = 0; 
w1 = weight_of_coverage_performance; 
w2 = weight_of_stealth_performance; 
for t=t1 to t2 do step ∆t 
begin 
    compute_new_coords_for_moving_platforms(); 
     update_coords_of_moving_platforms(); 
     fitness=fitness+(w1*cover_per()+w2*stealth()); 
end 
 

 
The time interval T=[t1,t2] is the same for all the 
solution sets, so a normalization on the computed 
fitness values is not needed.  The genetic algorithm 
uses these fitness values and tries to find the best 
solution with the best fitness value. 
 
6. Conclusion 
 
In this study a sensor system, which is composed of 
moving and static sensors, are optimized using a 
genetic algorithm. The objective of this optimization is 
to maintain the security of a specific area of interest.  
An optimal set of parameters of the sensors in the 
sensor system is found as a result of the optimization.  
 
The genetic algorithm was able to find satisfactory 
solutions when tested on a 4x4 km. area. The area 
regions having high importance values were covered 
by more than one sensor most of the time, but no 
solution set was able to cover the whole region. The 
optimization times changed from 1 hour to 3 hour to 
find a good solution. To decrease the optimization 
time, some heuristics can be incorporated into the 
genetic algorithm.  
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