
UNIVERSITY OF CALIFORNIA
Santa Barbara

Efficient and Automated Analysis of
Protein Structures

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in

Computer Science

by

Tolga Can

Committee in Charge:

Professor Yuan-Fang Wang, Chair
Professor Ambuj K. Singh
Professor Jianwen Su
Professor Matthew Turk

September 2004

The dissertation of Tolga Can is approved.

Professor Ambuj K. Singh

Professor Jianwen Su

Professor Matthew Turk

Professor Yuan-Fang Wang, Committee Chair

August 2004

Efficient and Automated Analysis of

Protein Structures

Copyright© 2004

by

Tolga Can

iii

To my wife, Aysu Betin-Can.

iv

Acknowledgements

I will remember my PhD career as a gratifying and engaging experience thanks to

many people including the faculty and the staff in my department, my friends, my

parents, and my wife.

First of all, I would like to thank Professor Yuan-Fang Wang for being a great

advisor throughout my graduate study. His enthusiasm, great ideas and directions

helped me stay on the right track all the time. His trust in me encouraged me to

overcome the hardest problems. I was inspired by his extensive knowledge and

wisdom and admired his humility. I am proud of being one of his students.

I would also like to thank Professor Ambuj K. Singh, Professor Jianwen Su, and

Professor Matthew Turk for serving on my committee and for keeping their doors

open all the time for any of the questions I had.

I would like to thank the Computer Science staff for all their efforts to help us

achieve our goals. They made us feel as part of the family.

I really enjoyed working in Vision Lab. I would like to thank all my friends in

the lab, Yujun Wang, Dan E. Koppel, Long Jiao, Wei Niu, and Xiang Fu for the

fruitful discussions we had. I would also like to thank members of the DBL lab I

collaborated with, Arnab Bhattacharya, Orhan Çamoğlu, and Tamer Kahveci.

I would like to thank my parents and my sister for supporting me and believing

in me all through my life as a student, even if the support had to come through once

a week phone calls from overseas for the last four years. Last but not the least, I

would like to thank my wife Aysu for always being with me with her endless love

and support.

v

Curriculum Vitæ
Tolga Can

Education

September 2004 Doctor of Philosophy in Computer Science, University of Califor-
nia, Santa Barbara.

December 2003 Master of Science in Computer Science, University of California,
Santa Barbara.

June 1998 Bachelor of Science in Computer Engineering, Middle East Tech-
nical University, Ankara, Turkey.

Fields of Study

Comparative proteomics, computer graphics, machine learning,
pattern recognition, volume visualization, bio-molecular image
databases, level set methods.

Publications

T. Can, O. Çamŏglu, A.K. Singh, and Y.-F. Wang
Automated Protein Classification Using Consensus Decision.
to appear in Journal of Bioinformatics and Computational Biology
(JBCB), 2005.

T. Can and Y.-F. Wang
Molecular Surface Generation and Interior Cavity Detection Using
Level Set Methods.
submitted to Pacific Symposium on Biocomputing (PSB),2005.

T. Can, O. Çamŏglu, A.K. Singh, and Y.-F. Wang
Automated Protein Classification Using Consensus Decision.
Computational Systems Bioinformatics (CSB),2004, Stanford, CA.

T. Can and Y.-F. Wang
Protein Structure Alignment and Fast Similarity Search Using Lo-
cal Shape Signatures.
Journal of Bioinformatics and Computational Biology (JBCB),2:1,
pages 215–239, 2004.

vi

A. Bhattacharya, T. Can, T. Kahveci, A. K. Singh, and Y.-F. Wang
ProGreSS: Simultaneous Searching of Protein Databases by Se-
quence and Structure.
Pacific Symposium on Biocomputing (PSB),2004, Hawaii.

Y. Wang, T. Can, Y.-F. Wang, and J. Su
Personalized Annotation and Information Sharing in Protein Sci-
ence with Information-Slips.
International Conference on Information and Knowledge Sharing
(IKS),2003, Scottsdale, AZ.

T. Can and Y.-F. Wang
CTSS: A Robust and Efficient Method for Protein Structure Align-
ment Based on Local Geometrical and Biological Features.
Computational Systems Bioinformatics (CSB),2003, Stanford, CA.

T. Can, Y. Wang, Y.-F. Wang and J. Su
FPV: Fast Protein Visualization Using Java 3D.
Bioinformatics,19:8, pages 913–922, 2003.

T. Can, Y. Wang, Y.-F. Wang and J. Su
FPV: Fast Protein Visualization Using Java 3D.
ACM Symposium on Applied Computing (SAC),2003, Melbourne,
FL.

T. Can, Y. Wang, Y.-F. Wang and J. Su
A Distributed Protein Visualization Application.
Georgia Tech-Emory International Conference on Bioinfomatics,
(poster), 2001, Atlanta, GA.

T. Can, V. Isler and Z. Ipekkan
Sensor Optimization In a Virtual Environment.
Conference on Computer Generated Forces and Behavioral Repre-
sentation,2000, Orlando, FL.

vii

Abstract

Efficient and Automated Analysis of
Protein Structures

by

Tolga Can

In recent years, computational complexity in structural bioinformatics attained a new
level with the vast increase in the amount of structural data available. The Protein
Data Bank (PDB), which is the single worldwide repository for 3-D macromolecular
structure data, contains more than 25k structures as of July 2004. However, exist-
ing methods for protein structure analysis are unable to cope with this increase in
the amount of available data. Therefore, this wealth of data requires computation-
ally efficient methods to be developed for the analysis of large numbers of protein
structures and their associated functions.

In this dissertation, we present methods for protein structure analysis that can
scale well with the amount of protein structure data available. Our work can be
described under three main categories: (1) visualization and surface modelling, (2)
structure comparison and similarity search, and (3) automated classification.

For efficiently visualizing protein structures using a scene-graph based graphics
API, we have developed methods to optimize the constructed scene-graph to enable
real-time visualization of very large protein complexes. Our method (FPV) achieves
up to 8 times interactive speed compared to existing methods. For generation of
molecular surfaces we recently developed a method based on a level set formulation
that can compute the surface and interior inaccessible cavities very efficiently (1.5
to 3.14 times faster on the average than compared methods).

For comparison and similarity search of protein structures we have developed a
method that utilizes local shape signatures based on the theory of differential geom-
etry. Our method (CTSS) is up to 30 times faster than CE, a widely used method for
structure comparison, while achieving the similar level of accuracy. We have also
developed an integrated sequence and structure analysis method (ProGreSS), which
enables biologists to perform joint sequence and structure similarity queries while
improving on the accuracy and efficiency of existing methods.

For an up-to-date view of the protein structure universe with the help of auto-
mated classification, we have developed an ensemble classifier based on decision

viii

trees rooted in machine learning. We show that higher classification accuracy can
be achieved using the joint hypothesis of the ensemble classifier.

ix

Contents

Acknowledgements v

Curriculum Vitæ vi

Abstract viii

List of Figures xiii

List of Tables xvi

1 Introduction 1
1.1 Biological Background. 2

1.1.1 Introduction to Protein Structures. 3
1.2 Overview of Dissertation. 6

2 Scalability Issues in Protein Structure Analysis 8
2.1 Growth of Protein Structure Databases. 9
2.2 Increase in Size of the Analyzed Data. 11

3 Efficient Visualization of Large Molecular Complexes 13
3.1 Introduction . 14
3.2 Related Work . 15
3.3 Why do we need a new visualization tool?. 16
3.4 Protein Visualization. 18

3.4.1 Data . 19
3.4.2 3D Representations. 20
3.4.3 Textual Information Windows. 23

3.5 Scene-graph optimization. 26

x

3.6 Performance Tests and Results. 31
3.7 Discussion. 39

4 Methods for Fast Molecular Surface Generation and Interior Cavity
Detection 43
4.1 Introduction . 44

4.1.1 Related work. 46
4.1.2 An overview of our method. 47

4.2 Methods . 48
4.2.1 Marking the volume inside the solvent-accessible surface. 50
4.2.2 Finding the solvent-excluded surface. 51
4.2.3 Interior cavity detection using fast marching level set method 53

4.3 Experimental Results. 55
4.3.1 Molecular surface generation and visualization performance 55
4.3.2 Interior cavity detection. 58

4.4 Discussion. 60

5 A Robust and Efficient Algorithm for Protein Structure Similarity Search 65
5.1 Introduction . 66
5.2 Methods . 70

5.2.1 Spline approximation and error handling. 74
5.2.2 Feature extraction. 75
5.2.3 Hashing for fast retrieval of candidates. 77
5.2.4 Pairwise comparison. 79

5.3 Interactive Visualization of the Results. 84
5.4 Experiments. 84

5.4.1 Evaluation of Pairwise Alignment Quality. 85
5.4.2 Evaluation of Sensitivity and Runtime Performance of Sim-
ilarity Search Queries. 88
5.4.3 Detailed Example Query Results. 92

5.5 Discussion. 96

6 Simultaneous Protein Sequence and Structure Similarity Search 100
6.1 Introduction . 101

6.1.1 Problem definition. 102
6.1.2 Related work. 103
6.1.3 An overview of our method. 104

xi

6.2 Feature vectors and index construction. 105
6.2.1 Feature vectors for structure. 106
6.2.2 Feature vectors for sequence. 107
6.2.3 Indexing feature vectors. 108

6.3 Query method. 111
6.3.1 Index search. 111
6.3.2 Statistical significance computation. 113
6.3.3 Post-processing. 115

6.4 Experimental evaluation. 116
6.4.1 Quality test . 117
6.4.2 Performance test. 121

6.5 Discussion. 123

7 Automated Protein Classification Using Consensus Decision 125
7.1 Introduction . 126
7.2 Problem Definition. 129

7.2.1 Building a component classifier using a comparison tool. 131
7.3 Classifiers Used in Our Ensemble Scheme. 132

7.3.1 Relationship between the classifiers. 134
7.3.2 Performance of component classifiers. 135

7.4 Automated Classification Using Ensemble Classifier. 140
7.4.1 Normalization of similarity scores. 141
7.4.2 Recognition of new categories using decision trees. . . . 142
7.4.3 Classification assignment for members of existing categories 150

7.5 Experimental Evaluation. 151
7.5.1 Training Procedure. 152
7.5.2 Validation Procedure. 154
7.5.3 Error analysis. 156

7.6 Discussion. 157

8 Conclusions and Future Work 159

Bibliography 162

xii

List of Figures

1.1 Theribbon model (a), thespacefillmodel (b), theCα trace (c), and
thesolvent-excluded surface(d). 4

3.1 Thebondsmodel. 19
3.2 Thebackbonemodel. 20
3.3 Theballs and sticksmodel. 21
3.4 Thespacefillmodel. 22
3.5 Theribbonmodel. 23
3.6 Molecule information window.. 25
3.7 Tree-view window.. 25
3.8 A fragment of an intuitive scene graph for thespacefillmodel. . . 28
3.9 The scene graph after applying the first technique.. 29
3.10 The scene graph after applying the second technique.. 30
3.11 Thespacefillmodel for the protein molecule 2mhr.. 33
3.12 Thebondsmodel for the protein molecule 2mhr.. 34
3.13 Theribbonmodel for the protein molecule 2mhr.. 35
3.14 Rendering speed for thespacefillmodel. 36
3.15 Thespacefillmodel for the protein 1aon.. 37
3.16 Rendering speed for thebondsmodel. 38
3.17 Rendering speed for theribbonmodel.. 39
3.18 Scene building times for thespacefillmodel. 40
3.19 Scene building times for thebondsmodel. 41
3.20 Scene building times for theribbonmodel. 42

4.1 A two-dimensional illustration of surface definitions.. 45
4.2 The grid cells whose centers fall inside the volume defined by the
solvent-accessible surface is markedinside. 50

xiii

4.3 The grid cells whose centers fall inside the probe circles are marked
outside. 52
4.4 A two-dimensional illustration of an inaccessible cavity.. 54
4.5 The molecular surface of 1hto generated by LSMS.. 62
4.6 The molecular surface of 2ptn generated by LSMS.. 63
4.7 The inaccessible cavities inside 2ptn along with its Cα trace. . . . 64

5.1 Spline approximation forCα coordinates. 76
5.2 The distance matrix.. 80
5.3 Local alignment with best score.. 82
5.4 Superimposed local alignment result.. 83
5.5 The user interface for CTSS.. 85
5.6 Pairwise alignment results, (a) CTSS (b) CE.. 87
5.7 Timing results for the query dataset.. 93
5.8 Helix-turn-helix match between 1faz:A and 1dj7:A.. 94
5.9 Shared motif between 1b16:A and 1h05:A.. 95
5.10 The helix-strand-helix-strand motif between 1b16:A and 1gci:. . . 96
5.11 The strand-helix-strand motif between 1b16:A and 1qp8:A.. . . . 97

6.1 Feature vectors for (a) protein structure, and (b) protein sequence. 108
6.2 Algorithm for building the index structure.. 109
6.3 A layout of the MBRs and data points on the search space forη = 4
in 2-D. 110
6.4 A sample query point and its query box forη = 4 in 2-D. 112
6.5 Percentage of query proteins correctly classified for different values
of c. 118
6.6 Percentage of query proteins correctly classified for different values
of distance threshold whenεt = εq. 119
6.7 Percentage of query proteins correctly classified for different values
of εt (εq) whenεq (εt) is fixed. 120
6.8 Percentage of query proteins correctly classified for different values
of w. 121
6.9 Number of proteins found from the same superfamily as the query
protein for ProGreSS and CTSS for different values ofc. 122
6.10 Comparison of running times of ProGreSS and CTSS+SW.. . . . 123

7.1 Comparison of HMM and Vast scores.. 133

xiv

7.2 Comparison of HMM and PSI-Blast scores.. 134
7.3 Comparison of Vast and Dali scores.. 136
7.4 Performance of individual classifiers on the membership problem
for the new proteins introduced in SCOP v1.61.. 137
7.5 Performance of individual classifiers on category assignment prob-
lem for the new proteins introduced in SCOP v1.61.. 139
7.6 Overview of the classification algorithm.. 142
7.7 The general structure of the decision trees suitable for protein clas-
sification purposes. 144
7.8 The decision tree for recognition of proteins that belong to existing
superfamilies. 147
7.9 An example histogram of the confidence levels for the training data. 149
7.10 Performance of individual classifiers compared to the ensemble on
category membership problem for the new proteins introduced in SCOP
v1.61. 152
7.11 Performance of individual classifiers compared to the ensemble clas-
sifier on category assignment problem for the new proteins introduced in
SCOP v1.61.. 153
7.12 Performance of individual classifiers compared to the ensemble on
category membership problem for the new proteins introduced in SCOP
v1.63. 155
7.13 Performance of individual classifiers compared to the ensemble on
category assignment problem for the new proteins introduced in SCOP
v1.63. 156

xv

List of Tables

3.1 Sizes of test proteins. 32

4.1 Molecular surface generation times for LSMS compared to those of
Swiss-PDBViewer, PyMol, and Chimera.. 56
4.2 Cavities computed using LSMS and comparison with results from
Swiss-PDBViewer.. 59

5.1 Pairwise alignment results. 87
5.2 List of query proteins . 89
5.3 Class distribution of the query proteins. 90
5.4 The sensitivity assessment. 91

7.1 Heuristic decision tree rules for the category membership problem. 150
7.2 Database and query data sets and their sizes.. 154

xvi

Chapter 1

Introduction

After the completion of the Human Genome Project [14], considerable effort is being

expended on structural genomics research with the aim of determining the structure

and function of as many gene products possible. The genomic data, combined with

the considerable amount of current structural data (26485 protein structures as of

July 27, 2004 at the Protein Data Bank [8]), will lead to the emergence of protein

structure analysis as a critical component in finding answers to some long-standing,

fundamental questions on how cells function, what the action pathways of certain

disease agents are, and what make human beings who we are.

Existing methods for protein structure analysis are developed usually without

consideration of the increasing amount of available data. As a result of this, many of

the methods fail to give satisfactory performance when efficiency and interactivity is

of concern. To give an example, most of the widely used structure similarity methods

cannot perform an online query, instead they report results that are computed off-

line or report the results through e-mail. It is clear that this wealth of data requires

computationally efficient methods to be developed for the analysis of large numbers

1

Chapter 1. Introduction

of protein structures and their associated functions.

In this introductory chapter, we give the biological background necessary for

computer scientists to understand the material presented in the proceeding chap-

ters. We also give the overall picture of the area of computational protein structure

analysis and briefly describe the specific problems of protein structure comparison,

surface modeling, and protein classification.

1.1 Biological Background

In this section we first give an overview of the source of information in compu-

tational biology. Most of the problems in computational biology focus on three

primary sources of data: DNA or protein sequences, macromolecular structures and

the results of functional genomic experiments. Raw DNA sequences are strings

of the four base-letters (A, G, C, T) comprising genes, each typically 1,000 bases

long. The GenBank [7] repository for nucleic acid sequences hold approximately

28,507,990,166 bases in 22,318,883 sequence records as of January 2003. At the

next level are the protein sequences comprising strings of 20 amino-acid letters. At

present there are about 938,390 known protein sequences [12] as of September 2003,

with a typical bacterial protein containing approximately 300 amino acids. Macro-

molecular structural data represents a more complex form of information. There

are currently 26,485 entries in the Protein Data Bank (PDB) [8] as of July 2004,

containing atomic structures of proteins, DNA and RNA solved by x-ray crystallog-

raphy and NMR methods. A typical PDB file for a medium-sized protein contains

2

Chapter 1. Introduction

the three-dimensional coordinates of approximately 2,000 atoms.

Analyzing new protein structures published in the Protein Data Bank may re-

veal many unexpected functional and evolution relationships that were hidden at the

sequence level. Also, the computation of a molecular surface is essential in deter-

mining the surface residues of a protein that is in contact with the outer environment

of the protein structure. In Chapters 3 and 4, we present methods for interactively an-

alyzing the three-dimensional protein structure and computing its solvent-accessible

and solvent-excluded surface.

An essential aspect of managing this large volume of biological data lies in devel-

oping methods for assessing similarities between different biomolecules and identi-

fying those that are related. The algorithms we present in Chapters 5, 6, and 7 of this

dissertation are mainly of this category: analyzing the structure data and inferring

relationship to a large database of structures either by finding a list of similar struc-

tures or classifying the input structure into a category of a hierarchical classification

of the whole database.

1.1.1 Introduction to Protein Structures

Proteins are not linear molecules as suggested when the protein sequence is de-

scribed as astring of amino acid letters, -Lys-Ala-Pro-Met-Gly- etc., for example.

Rather, thisstring folds into an intricate three-dimensional structure that is unique to

each protein. It is this three-dimensional structure that allows proteins to function.

Thus, in order to understand the details of protein function, one must understand

protein structure.

3

Chapter 1. Introduction

In order to fully explore protein structure in detail a number of different types of

molecular models are used. Figure 1.1 shows four different commonly used models

for the same protein molecule, 1d9c. The details of these models are discussed in

the later chapters before the details of the methods that generate these models are

presented.

Figure 1.1: The ribbon model (a), thespacefillmodel (b), theCα trace (c), and the
solvent-excluded surface(d).

4

Chapter 1. Introduction

Protein structure is broken down into four levels:

• Primary structure: refers to thelinear sequence of amino acids. Proteins are

large polypeptides of defined amino acid sequence. The sequence of amino

acids in each protein is determined by the gene that encodes it. The gene is

transcribed into a messenger RNA (mRNA) and the mRNA is translated into

a protein by the ribosome. Primary structure is sometimes called thecovalent

structureof proteins because, with the exception of disulfide bonds, all of the

covalent bonding within proteins defines the primary structure. In contrast,

the higher orders of proteins structure (i.e. secondary, tertiary and quaternary)

involve mainly noncovalent interactions.

• Secondary structure: is local ordered structure brought about via hydrogen

bonding mainly within the peptide backbone. The most common secondary

structure elements in proteins are the alpha helix and the beta sheet (sometimes

called beta pleated sheet).

• Tertiary structure: is theglobal folding of a single polypeptide chain. A ma-

jor driving force in determining the tertiary structure of globular proteins is the

hydrophobic effect. The polypeptide chain folds such that the side chains of

the nonpolar amino acids arehiddenwithin the structure and the side chains

of the polar residues are exposed on the outer surface. Hydrogen bonding

involving groups from both the peptide backbone and the side chains are im-

portant in stabilizing tertiary structure. The tertiary structure of some proteins

is stabilized by disulfide bonds between cysteine residues.

5

Chapter 1. Introduction

• Quaternary structure: involves the association of two or more polypeptide

chains into a multi-subunit structure. Quaternary structure is the stable associ-

ation of multiple polypeptide chains resulting in an active unit. Not all proteins

exhibit quaternary structure. Usually, each polypeptide within a multi-subunit

protein folds more-or-less independently into a stable tertiary structure and the

folded subunits then associate with each other to form the final structure.

1.2 Overview of Dissertation

In Chapter 2, we give the details of the scalability problems related to protein struc-

ture analysis. The methodologies we have developed to solve these scalability prob-

lems are presented in three parts. The first part, consisting of Chapters 3 and 4,

deals with computation of different structural representations of protein molecules.

In Chapter 3, we present methods for efficiently visualizing protein structures using

a scene-graph based graphics API. In Chapter 4 we propose an efficient level-set

based method for computing the solvent-accessible surface and interior inaccessi-

ble cavities of a protein structure. The second part, Chapters 5 and 6, considers the

problem of similarity searches in large protein databases. In Chapter 5 we explain

in detail the methods we have developed for extracting structural features of protein

molecules and aligning them by using geometric hashing techniques. In Chapter 6

we show how joint sequence and structural alignment can be performed by using

a novel index structure. The third part, Chapter 7, presents an ensemble classifier

framework for automated classification of protein structures. Finally, in Chapter 8,

6

Chapter 1. Introduction

we conclude with a brief summary of the dissertation and future directions.

7

Chapter 2

Scalability Issues in Protein Structure
Analysis

Understanding a protein’s structure with the help of protein structure analysis tools

helps researchers to better determine how the protein works in its biological role.

Analysis of a protein structure also involves studying the interaction of that protein

with other protein structures, because proteins do not perform their functions in

isolation. Furthermore, a global view of the protein structure universe is important

to have a better understanding of this huge protein interaction network and also of

the relationships of proteins from different species.

The Protein Data Bank (PDB) [8] is the single worldwide repository for protein

structure data, and contains more than 25k structures as of July 2004. Currently,

about 100 new protein structures per week are published in the PDB (226 new struc-

tures between July 27, 2004 and August 10, 2004 updates). Furthermore, with the

advances in experimental structure determination technologies, the structural data of

large protein/DNA, protein/RNA, or protein/protein complexes can be determined

8

Chapter 2. Scalability Issues in Protein Structure Analysis

accurately and made available at the Protein Data Bank. However, existing methods

for protein structure analysis are unable to cope with both the increase in the amount

of available data and the increase in the size of structural data to be analyzed.

In this chapter we discuss the scalability problems encountered in protein struc-

ture analysis related to both the growth in protein structure databases and the in-

crease in size of analyzed data.

2.1 Growth of Protein Structure Databases

Despite the tremendous cost and time required for experimental determination of

protein structures, protein structure databases grow at a considerably high rate. It

should be also noted that the ratio of protein structures with known macromolecular

structure to the total repertoire of protein sequences is very low: currently about

5%. This ratio also tells us that, if we knew the structure of every protein sequence

as produced by the genome sequencing projects, the structure databases would be

about 20 times larger than current size of the Protein Data Bank (as of July 2004).

This wealth of data raises significant questions about the ability of existing methods

in handling structure similarity search and classification in a reasonable amount of

time.

Most of the existing methods [80, 42, 60] for protein structure comparison are

designed for pairwise comparison. Therefore, in order to conduct a similarity search

of a protein structure against a database of protein structures, one needs to perform

an exhaustive search by pairwise comparing the query protein to all of the database

9

Chapter 2. Scalability Issues in Protein Structure Analysis

proteins one by one. For example, if we use CE [80] for such a similarity query

against the current Protein Data Bank, this would take about 7 hours on an Intel

Pentium 4 Processor at 2.0GHz and 512MB of RAM, where a pairwise comparison

takes about 1 second. Furthermore, if one wants to perform an all-to-all comparison

of the Protein Data Bank for obtaining a global picture of the relationships among

proteins, this would take about 10 years on that same single processor machine.

Clearly, this is not a reasonable approach, and methods for conducting fast similarity

searches should be developed.

A global view of the protein structure universe is also established with the help of

structural classification databases [44, 68, 64]. These databases are used to define the

relationships—in terms of sequence, structure, and function—of proteins. Of these

classification schemes, SCOP [64] is created mainly by manual inspection. This is

perhaps the reason that it is accepted by many researchers as the most accurate clas-

sification scheme (or the ground truth). However, SCOP is updated every six months

since it is quite a labor intensive process to manually place a protein structure into

the correct category in a hierarchical classification of 25K protein structures. Fur-

thermore, a 100 protein per week growth rate means about 2600 protein structures

in six months. Therefore, if one requires a dynamic, up-to-date view of the protein

structure universe, accurate automated classification techniques should be developed

to aid in manual classification process.

10

Chapter 2. Scalability Issues in Protein Structure Analysis

2.2 Increase in Size of the Analyzed Data

One of the long-term goals of the NIH Roadmaps Structural Biology initiative is to

provide structural information on large, macromolecular complexes1. This goal does

not seem very far with the advances in experimental structure determination tech-

nologies. As a result growing number of the structural data of large protein/DNA,

protein/RNA, or protein/protein complexes will be determined accurately and made

available at the Protein Data Bank.

In order to understand how protein machines, i.e., complexes, work—and to

figure out how to fix them when they do not—researchers need to view the pro-

tein complexes in several different orientations and using several different models,

mimicking the way these assemblies twist and bend inside living cells. However,

current visualization methods are not able to cope with the growing size of data to

be analyzed. Large complexes such as virus capsids, ribosomes, and chromosomes

can contain as many as 40K–100K atoms in their structure data. The increasing

complexity of the protein structure model causes problems both in building a three-

dimensional model for the molecular complex and in interacting with the rendered

three-dimensional model. We show in the proceeding chapters that the space (mem-

ory) requirement of some of the methods are so large that they cannot even build

a three-dimensional model of some large molecular complexes. Furthermore, even

if they can build a three-dimensional model, the interactive rendering performance

drops drastically, i.e., less than 1 frames per second, as the size of the molecu-

lar complexes get larger. Therefore, development of efficient methods that scales

1http://nihroadmap.nih.gov/structuralbiology/index.asp

11

Chapter 2. Scalability Issues in Protein Structure Analysis

well with the size of molecular complexes is crucial. One of the existing methods,

Chimera [45], provides an extension,the Multiscale Extension, to its base protein

analysis framework to cope with increasing size of molecular complexes. However,

as we demonstrate in the proceeding chapters, new methods should be developed

that can scale well with the size of molecular complexes.

12

Chapter 3

Efficient Visualization of Large
Molecular Complexes

In this chapter we present the methods we have developed to optimize scene-graphs

for efficiently visualizing large protein structures [16]. The protein visualization sys-

tem presented here is based on Java 3DTM. Java 3D provides compatibility among

different systems and enables applications to be run remotely through web browsers.

However, using Java 3D for visualization has some performance issues with it. The

primary concerns about molecular visualization tools based on Java 3D are in their

being slow in terms of interaction speed and in their inability to load large molecular

complexes. This behavior is especially apparent when the number of atoms to be

displayed is huge, or when several proteins are to be displayed simultaneously for

comparison. Large complexes such as virus capsids, ribosomes, and chromosomes

can contain as many as 40K–100K atoms in their structure data. This increasing

complexity of the protein structure model causes problems both in building a three-

dimensional model for the molecular complex and in interacting with the rendered

13

Chapter 3. Efficient Visualization of Large Molecular Complexes

three-dimensional model. In this chapter we present techniques for organizing a

Java 3D scene graph to tackle these problems. We demonstrate the effectiveness of

these techniques by comparing the visualization component of our system with two

other Java 3D based molecular visualization tools. In particular, for van der Waals

display mode, with the efficient organization of the scene graph, we could achieve

up to eight times improvement in rendering speed and could load molecules three

times as large as the previous systems could.

3.1 Introduction

Protein visualization has become an important research topic, especially in light of

the accomplishment of the Human Genome Project [14]. The ability to visualize the

3D structure of proteins is critical in many areas such as drug design and protein

modeling. This is because the 3D structure of protein determines its interaction with

other molecules, hence its function, and the relation of the protein to other known

proteins. For example, hemoglobin’s cup shape, which accommodates the oxygen-

binding heme group, suggests its ability to carry oxygen in the bloodstream. There

are many well established ways of visualizing the 3D protein structures. Each way

of visualization highlights a different aspect of the protein molecule, as mentioned

by Clay Shirky [82].

Growing number of new structure data in Protein Data Bank open new ways

for collaboration, thus emphasizes the need for visualization tools that are portable.

Moreover, studying the interaction between protein molecules may also require vi-

14

Chapter 3. Efficient Visualization of Large Molecular Complexes

sualizing huge numbers of atoms, thus researchers also need tools that are capable

of loading and displaying this huge amount of data.

3.2 Related Work

Many tools have been developed to visualize a protein whose structure has been

determined. In this section we will talk about a subset of these tools, which are

closely related to our molecular visualization system. One of the earliest of those

tools is Roger Sayle’s RasMol [77]. RasMol is now being developed under the

name of Protein Explorer. Swiss-PdbViewer [37], which is tightly linked to the

automated protein modeling server Swiss-Model, provides a user-friendly interface

to analyze several proteins at the same time. MOLMOL [50] is another molecular

graphics program for the display, analysis, and manipulation of the 3D structures of

biological macromolecules, with special emphasis on nuclear magnetic resonance

(NMR) solution structures of proteins and nucleic acids. Most of these programs are

implemented using C language and OpenGL API and they have relatively large user

communities.

There are relatively few protein visualization tools which were developed using

Java and the Java 3D API. WebMol [88] is a protein structure viewing and analysis

program, which has more functionality, but limited 3D model types. These two

programs do not use the Java 3D API; instead they use their own graphics constructs

based on Java.

15

Chapter 3. Efficient Visualization of Large Molecular Complexes

JIMD Interactive Molecular Dynamics with Java1, is being developed using

Java 3D, but their focus is on molecular dynamics and simulation. Tripos Java3D

Molecule Viewer2, is a new tool currently under development. JMV and JMVS2

(two systems we used for performance comparison) are molecular visualization tools

and offer a variety of 3D representations and display options. JMV is developed by

the Theoretical Biophysics Group in the Beckman Institute for Advanced Science

and Technology at the University of Illinois at Urbana-Champaign with NIH sup-

port. These two tools have very similar functionality compared to our molecular

visualization system. One advantage of JMV over JMVS2 is that it is being build as

a toolkit, so that other developers can use it as part of their systems.

Molecular Biology Toolkit3 is another general toolkit that includes visualization

components based on Java3D. However, it is still an ongoing work and right now

no visualization application using this toolkit is available for evaluation and testing

purposes.

3.3 Why do we need a new visualization tool?

Many tools have been developed to visualize protein structures. Tools that have been

based on Java 3DTM are compatible among different systems and they can be run

remotely through web browsers. However, using Java 3D for visualization has some

performance issues with it. The primary concerns about molecular visualization

1http://www.gwdg.de/˜ovormoo/jimd/
2ftp://ftp.tripos.com/pub/java3d
3http://mbt.sdsc.edu/

16

Chapter 3. Efficient Visualization of Large Molecular Complexes

tools based on Java 3D are in their being slow in terms of interaction speed and in

their inability to load large molecules. This behavior is especially apparent when

the number of atoms to be displayed is huge, or when several proteins are to be

displayed simultaneously for comparison.

There is growing trend in adopting the JavaTM technology in the fields of bioinfor-

matics and computational biology [62]. The main advantages of Java are its compat-

ibility across different systems/platforms and having the ability to be run remotely

through web browsers. Using Java 3D as a graphics engine has also the additional

advantage of rapid application development, because Java 3D API incorporates a

high-level scene graph model that allows developers to focus on the objects and the

scene composition. Java 3D also promises high performance, because it is capa-

ble of taking advantage of the graphics hardware in a system. The speed observed

should depend on the quality of the graphics hardware on the machine. However,

a common complaint about visualization systems based on Java 3D is their being

slow in terms of interaction speed even with a good graphics hardware accelerator.

Also memory errors may be seen even with a small number of objects. The reason

for these anomalies may be the developer himself (constructing a bad scene graph)

or certain limitations of the Java 3D API, which is discussed below.

The Java 3D API implementations are layered on top of the existing lower-level

immediate-mode [28] 3D rendering APIs, such as OpenGL and Direct3D. Java 3D

is fundamentally a scene-graph-based API. Most of the constructs in the API are

biased toward retained mode and compiled-retained mode rendering [85]. Java 3D

itself also offers immediate-mode rendering if a developer wants more control and

17

Chapter 3. Efficient Visualization of Large Molecular Complexes

flexibility. The programmer can ignore the scene graph structure and send the graph-

ical constructs directly to the renderer. However, in immediate mode, Java 3D has

no high-level information concerning graphical objects or their composition. Be-

cause it has minimal global knowledge, Java 3D can only perform localized opti-

mizations on behalf of the programmer. Thus, using immediate-mode directly may

cause drastic performance drops. Using a scene-graph-based development scheme a

developer should expect better performance, but some molecular scenes (e.g. con-

taining too many atoms) may require too much memory or computation time. Thus,

performance drops occur because of an heavyweight scene graph. In this section we

explain the techniques to create efficient scene graph structures, which allow load-

ing large molecules (more than 4000 amino acids) and render them in an acceptable

interactive speed. We demonstrate the effectiveness of the developed techniques by

comparing the visualization component of our system with two other Java 3D based

molecular visualization tools. In particular, for van der Waals display mode, with

the efficient organization of the scene graph, we could achieve up to eight times im-

provement in rendering speed and could load molecules three times as large as the

previous systems could.

3.4 Protein Visualization

In this section, we briefly discuss how we create molecular scenes from the protein

data. We also present two accompanying textual views, which are helpful in brows-

ing the amino acid sequence and viewing the hierarchical organization of the protein

18

Chapter 3. Efficient Visualization of Large Molecular Complexes

data. The techniques for expediting rendering based on Java 3D will be discussed in

Section 3.5.

3.4.1 Data

PDB files are obtained from the Protein Data Bank (PDB) [8], which is an archive

of experimentally determined 3D structures of biological macromolecules. PDB

files contain 3D coordinates of each atom of the protein molecule. We use these

3D coordinates and atom types to calculate the bonding information and to estimate

the secondary structure. This information is needed for some of the 3D molecular

representations described below.

Figure 3.1: Thebondsmodel.

19

Chapter 3. Efficient Visualization of Large Molecular Complexes

3.4.2 3D Representations

Each representation of a protein molecule highlights a different aspect of the struc-

ture. They have advantages and disadvantages compared to each other. For example,

the space-fill model can be helpful in understanding the volume a protein molecule

occupies, but it lacks information about how amino acids are connected to each

other, i.e. how the chain is formed. We describe below different 3D models pro-

vided by our visualization system, and explain their use and the way they are built.

Bonds Model: Bonds model is created as a wire-frame model representing the bond-

ing information in the protein molecule. Figure 3.1 shows abondsrepresentation of

the molecule Oxygen Binding (PDB ID: 2mhr).

Figure 3.2: Thebackbonemodel.

20

Chapter 3. Efficient Visualization of Large Molecular Complexes

Backbone Model: The backbone model is created by using thealpha carbon, car-

bon, and nitrogen atoms in the molecule. The position of the atoms are used to

transform the spheres that represent them. The backbone bonds within each amino

acid and the peptide bonds (between amino acids) are also shown in the model. This

model is useful for understanding the protein molecule as a chain, and realizing

amino acids’ positions in this chain.

Figure 3.2 shows the backbone model of the molecule Oxygen Binding (PDB

ID: 2mhr). When we interact with the 3D model of the backbone of a molecule, we

can easily recognize how the amino acid sequence is formed in four parallel helices.

Figure 3.3: Theballs and sticksmodel.

Balls and Sticks Model: The balls-sticks model shown in Figure 3.3 represents

21

Chapter 3. Efficient Visualization of Large Molecular Complexes

all of the existing bonds in the molecule as sticks and all the atoms as equal sized

spheres.

Figure 3.4: Thespacefillmodel.

Space-fill (van der Waals) Model: The space-fill model is useful in visualizing

the volume a protein molecule occupies (see Figure 3.4. It gives an overall view of

the molecule and thus provides a good view of the tertiary structure. In this model

each atom is modeled using its van der Waals radius, so that the viewer gets an idea

of the relative sizes of the atoms making up the protein molecule. The atoms are

represented by concrete spheres centered at the corresponding atomic coordinates

read from the PDB file.

Ribbon Model: The ribbon model is used to display the secondary structures in the

protein molecule. The secondary structure is predicted from the atomic coordinates

22

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.5: Theribbonmodel.

in the PDB file, by using the algorithm developed by Kabsch and Sander [48]. The

ribbon model is created using hermite curves. Our implementation is based on the

program called MolScript [51]. Figure 3.5 shows the ribbon model of the same

molecule 2mhr. Here, different colors for different secondary structures are used.

3.4.3 Textual Information Windows

Having a textual representation of the protein molecule has many benefits. First of

all it shows the linearity of the protein structure. The name of amino acids forming

the chain is provided in a sequence view. Furthermore, the underlying hierarchy of

the molecule can be captured when a tree view is used. We describe below the two

23

Chapter 3. Efficient Visualization of Large Molecular Complexes

accompanying information windows provided by our visualization component.

Molecule Information Window: The molecule information window contains infor-

mation about molecule’s name, number of amino acids it contains, the amino acid

chain, the secondary structure information, and information about currently selected

sub-structure. The amino acid chain is displayed using one-letter representations of

the amino acids. The molecule name info is read from the PDB file. Although it is

possible to gather secondary structure information also from the PDB file, because

of the fact that most of the PDB files available do not contain that information, the

secondary structure information is calculated by using the prediction algorithm de-

veloped by Kabsch and Sander [48]. The information about the secondary structure

is also displayed using one letter codes aligned with the amino acid codes (H:helix,

B:residue in isolated beta bridge, E:extended beta strand, G:310 helix, I:pi helix,

T:hydrogen bonded turn, S:bend).

When the user makes selections on the molecule during the interaction with a 3D

model, the corresponding part of the amino acid chain in the information window is

highlighted. If the selection is in the level of atoms, the selected atom information

is also displayed in theinformation window.

Figure 3.6 shows the molecule information window during interaction with the

Antitumor Protein (PDB ID: 1D8V) protein. The currently selected amino acid is

Threonine, whose one letter code isT, and it is the 10th amino acid in the first (and

only) chain of the protein molecule. We see in the secondary structure information

that this amino acid is part of acoil, and currently selected atom isalpha carbon.

Tree View Window: Although a protein is a linear structure of amino acids, there’s

24

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.6: Molecule information window.

a hierarchy in the primary structure of protein molecules. A proteinmoleculeis

composed of one or morechainsof amino acids. A chain may contain severalamino

acids, probably in the order of hundreds. Each amino acid has an eight atombody

and aside chain, i.e. residue, which may be made up of 1 to 18 atoms. We provide

a tree viewwindow that visualizes this hierarchical structure of a protein molecule.

Figure 3.7: Tree-view window.

25

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.7 shows the tree view window while browsing through the hierarchy.

In this snapshot the molecule has a very simple hierarchy, since it contains only one

chain. But it is still useful to understand how the protein molecule is built. We

provided a two-way interaction between the tree view and the 3D view. The user

can interact with the tree by selecting its nodes. The corresponding sub-structure is

highlighted in the 3D model. When the interaction is with the 3D model, and if a

selection is made on it, the corresponding tree node is highlighted accordingly.

3.5 Scene-graph optimization

In this section we describe the techniques we have used to speed up real time inter-

action and to be able to load very large molecules. The key issue here is the way the

scene graph structure is created from a protein structure file (PDB). A scene graph

consists of Java 3D objects, called nodes, arranged in a tree structure. The factors

that affect efficiency are thenumberandtypesof nodes in the scene graph structure.

All the node objects in a scene graph are derived from the Node class. Java

3D refines the Node object class into two subclasses: Group and Leaf node objects.

Group node objects group together one or more child nodes. A group node can point

to zero or more children but can have only one parent. Leaf node objects contain the

actual definitions of shapes (geometry), lights, sounds, and so forth. A leaf node has

no children and only one parent.

Our method comprises two components:

(i) Converting TransformGroup nodes to Group nodes by applying the transforma-

26

Chapter 3. Efficient Visualization of Large Molecular Complexes

tion in the Geometry node level,

(ii) Combining shapes that have the same appearance into a single Shape3D node.

The first component helps increasing the real time interaction speed while the sec-

ond component decreases the memory needed by the scene graph structure, thus

allowing loading larger molecules.

We explain these two techniques by giving an example of creating a space-fill

(van der Waals) model of a protein molecule. The space-fill model consists of

spheres of different sizes transformed to the their correct atomic locations according

to the 3D atomic coordinates read from the PDB file. The intuitive way to create

a space-fill model is to use the Sphere objects provided by the Java 3D API to cre-

ate spheres of desired size and add them to the TransformGroup objects to translate

them to their correct position. Figure 3.8 shows a scene graph structure created by

using this method. However, as the number of atoms in a molecule increases the

number of TransformGroup nodes increases since each atom has a unique position

in the molecule. This makes interaction with the scene very inefficient because at

each frame all the TransformGroup nodes need be processed to get the new position

of each atom. This process involves a 4x4 matrix multiplication for each Transfor-

mGroup object.

To improve on the situation, one observation we made is that the protein molecule

is static during interaction, i.e. individual atoms do not move freely. So, according to

the interaction’s natureoneTransformGroup node is enough for representing protein

molecule’s rigid structure’s position. However, by using Java 3D’s Sphere nodes it

is not possible to implement this solution, because the Sphere class does not allow

27

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.8: A fragment of an intuitive scene graph for thespacefillmodel.

creation of a sphere at an arbitrary position. Thus the only way to create a sphere at

a specific position is to put a TransformGroup node above it.

But, there’s a way to get around this restriction of Java3D. We have implemented

our own Sphere class, which allows a sphere to be built at a specific location. By

doing this, what we actually did was to propagate the transformation in the Transfor-

mGroup node to the geometry level, by creating geometry at a given static location.

This puts a little overhead to the scene building process, i.e. by applying transforma-

tions during scene graph creation, but as we show in the next section this overhead is

acceptable. The more important thing is that we have reduced the number of Trans-

28

Chapter 3. Efficient Visualization of Large Molecular Complexes

formGroup nodes in our scene graph toone (the one for the whole molecule) by

getting rid ofall the TransformGroup nodes representing individual atoms. As will

be shown later, this modification improves the interactive rendering speed signifi-

cantly. Figure 3.9 shows the scene graph after this improvement.

Figure 3.9: The scene graph after applying the first technique.

As seen in Figure 3.9 each sphere is represented by a Shape3D object which

encloses itsgeometryandappearance. The scene graph contains as many Shape3D

objects as the number of atoms in the protein molecule. As the molecule size in-

creases these increasing number of Shape3D nodes may cause memory problems.

One way to overcome this is to put spheres with the same appearance under a sin-

29

Chapter 3. Efficient Visualization of Large Molecular Complexes

gle Shape3D node by combining their geometry information into a single geometry

array. The number of Shape3D objects we need is equal to the number of different

sphere appearances. For example, if we want to color each atom in a different color,

we only need 6 Shape3D nodes, since the protein molecules consist of 6 different

atoms (Carbon, Oxygen, Nitrogen, Hydrogen, Sulphur, and Phosphate). This way

we can get rid of many Shape3D objects and free up memory space. This technique

enables us load very large molecules, which contain as many as 4000 amino acids.

Figure 3.10 shows the scene graph after application of this second technique.

Figure 3.10: The scene graph after applying the second technique.

What we have provided with these techniques is actually a hybrid method com-

bining both retained mode and immediate mode graphics. The immediate mode is

simulated by breaking the scene graph hierarchy and collapsing some nodes into a

single node to save up memory space and to increase real-time interaction speed. In

the next section we demonstrate the effectiveness of our methods by providing some

test results.

30

Chapter 3. Efficient Visualization of Large Molecular Complexes

3.6 Performance Tests and Results

We have compared our system (FPV) to two other molecular visualization tools ac-

cording to theirscene buildingandreal time interaction speedperformances. These

tools chosen for the tests (JMV 0.85 and JMVS2) are among the few available

molecular visualization tools based on Java 3D. We have chosen JMV and JMVS2

because they are closer to our system in terms of purpose and functionality.

The tests were performed using JAVA2 JRE 1.4.1 and JAVA 3D 1.2.104 (Di-

rectX version) on a Microsoft Windows XP machine with Intel Pentium 4 Processor

at 2.0GHz and 512MB of RAM. We have dedicated 256MB of this as the maximum

size of memory allocation pool for Java Virtual Machine. The graphics accelera-

tor card used for the tests was 64MB DDR NVIDIA GeForce4 MX Graphics Card.

The data set comprised 22 protein structures in PDB format ranging in size from

29 amino acids (1bh0) to 8337 amino acids (1aon). Table 3.1 shows the protein

molecules and their sizes respectively (both in terms ofnumber of amino acidsand

number of atoms).

We have chosen three different types of visual representations to perform the

tests: the spacefill (or van der Waals) model, the bonds (or wireframe) model, and

the ribbon model. The ribbon model type did not exist in JMVS2 so that part of test

was performed on JMV and our system only. Thetubemodel type of JMV, which

was very close to our ribbon representation, was compared as the ribbon model. We

tried to make the visual representations as close as possible by adjusting the display

options of the compared systems, e.g. number of sphere divisions. Figures 3.11,

31

Chapter 3. Efficient Visualization of Large Molecular Complexes

Protein Size Size
(PDB ID) (# of residues) (# of atoms)

1bh0 29 242
1ptq 50 402
1df4 68 463
1gcm 102 814
1k52 144 1122
2aid 198 1516
1d9c 242 1993
1a4f 287 2250
3mds 406 3282
1syn 528 4300
1d3a 606 4602
1a05 716 5386
1duv 999 7648
1a0s 1239 9606
13pk 1660 12508
1f8r 1992 15291
1b25 2476 19144
1l1f 3030 23244
1dp0 4092 32500
1h6d 5196 35555
1gyt 6036 46152
1aon 8337 58688

Table 3.1: Sizes of test proteins

32

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.11: Thespacefillmodel for the protein molecule 2mhr.

3.12, and 3.13 shows, for each system, the visual representations used for the tests.

The calculation of the timings and rendering speed measurements was possible

because source codes of both tools were available. We’ve measured the scene build-

ing times and real-time interaction speed. The scene building times become impor-

tant, when the user wants to switch between models during interaction. The latency

between switching from one representation to another can be intolerable if it is more

than a few seconds. One may consider building all the available models during start-

up to decrease model switching time during interaction, but this requires much more

memory compared to the memory required by a single model type. Therefore, the

size of the largest loadable protein molecule decreases drastically. All the programs

that we’ve compared use the suggested approach, which is building a specific model

type on demand. That’s why we’ve taken scene building times into consideration.

The importance of the real-time interaction speed is obvious. It is one of the main

33

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.12: Thebondsmodel for the protein molecule 2mhr.

quality metrics of interactive visualization tools.

Figures 3.14, 3.16, and 3.17 show results of the rendering speed tests. To mea-

sure rendering speed we’ve used a RotationInterpolator object to have the molecules

rotate around y-axis at a constant speed. We then calculated rendering speed by

looking at the difference in frame numbers at certain time intervals. Values of 25

and more are ideal in the graphs showing the results of rendering speed tests, be-

cause 25fps is the highest frequency the human eye can detect.

In the spacefill model rendering speed test, our system had better performance

compared to the other programs, while they performed close to each other. That’s

because the new Sphere classes that we have implemented to get rid of the Transfor-

mGroup nodes and encapsulate many spheres under a single Shape3D node. Thus

our system had up to eight times better rendering speed performance (at protein

1duv) compared to the other programs. Furthermore, our system was able to load

34

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.13: Theribbonmodel for the protein molecule 2mhr.

the largest molecule, which has 58688 atoms, while JMV and JMVS2 could at most

load proteins that have 35555 and 23244 atoms respectively. Figure 3.15 shows the

largest molecule of the test set displayed by our program, FPV. Furthermore, our

program could render this molecule at 4 frames per second.

In the Bonds Model test, the performances of our system and JMV were close

to each other, while JMVS2 had acceptable speeds for only small molecules. JMV

performed better than FPV for large molecules, but it should be noted that even

for those large molecules FPV could establish a rendering speed over 26 frames

per second. So the difference between JMV and our program was not noticeable

practically. Our scene graph structure for the bonds model consists of a single line

segments array for all of the bonds of the protein molecule, thus resulting in a very

simple scene graph structure. The JMV program uses a similar approach thus has

similar performance results. However, the scene graph used by JMVS2 tries to put

35

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.14: Rendering speed for thespacefillmodel.

every bond in a separate Shape3D object, thus resulting in a very poor performance.

The rendering speed comparison of the ribbon model was performed only with

the JMV program. Our program performed better than JMV as seen in Figure 3.17.

In ribbon model test, we could again load the largest molecule in our data set (1aon),

which was 8337 amino acids long, while the largest molecule loaded by JMV had

3030 amino acids (1l1f). Furthermore, FPV achieved up to 20 times better rendering

speed performance (at protein 1b25) compared to JMV.The main reason for this was

again our method of combining related primitives under a single scene graph node.

Figures 3.18, 3.19, and 3.20 show results of the Java 3D scene graph building

tests. By presenting these results we show that the scene graph manipulation tech-

36

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.15: Thespacefillmodel for the protein 1aon.

niques we’ve developed do not cause any overhead on molecular scene building.

For thespacefillmodel JMV program performed worst among all three programs

compared. The time required to build the molecular scene grows very quickly with

the size of the protein. For the large molecules the time required for JMV to build

a molecular scene can grow up to hundreds of seconds, which is not acceptable.

JMVS2 and our program had reasonable scene building times in the scene graph

building tests for thespacefillmodel type.

37

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.16: Rendering speed for thebondsmodel.

For the bonds model, our program and JMV had similar results and the scene

building time was negligible (much less than 1 sec). This time JMVS2 performed

poorly compared to our system and JMV. In these results, it is seen that processing

some primitives together under a single Shape3D note has benefits rather than an

overhead.

Our program outperformed JMV on the scene graph building test for the ribbon

model. As mentioned before the ribbon model tests were not performed for JMVS2

because it didn’t have a ribbon type representation. It can be seen from Figure 3.20

that scene graph building times for FPV were less than 1 second for all the test

proteins. This means FPV has a very low latency when switching between model

38

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.17: Rendering speed for theribbonmodel.

types during interaction with the molecule. The results for this test again shows that

processing related primitives together under a single group node has benefits instead

of an overhead during scene building.

3.7 Discussion

In this chapter, we have presented a high-performance protein visualization applica-

tion called FPV. We’ve proposed implementation techniques to increase the usabil-

ity of our application by improving the real-time rendering speed and increasing the

range of protein data that can be examined. These improvements are accomplished

39

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.18: Scene building times for thespacefillmodel.

by modifying the scene graph structure used by the Java 3D API. We have showed

the effectiveness of our methods by comparing our system to two other molecular

visualization tools based on Java 3D.

In order to make our tool more attractive to researchers, we are looking for ways

to increase the functionality of our system. One way incorporating new functional-

ity is providing new 3D representation types for protein molecules, such as electron

density map and molecular surface representation. Since we’ve designed the visu-

alization system as a toolkit, it is easy to add new functionalities depending on an

application’s needs, such as adding superpositioning functionality to the Graphics

Module for comparison of protein structures. The design of our system also allows

40

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.19: Scene building times for thebondsmodel.

users to decouple and use components of the system, such as PDB Loader Module.

41

Chapter 3. Efficient Visualization of Large Molecular Complexes

Figure 3.20: Scene building times for theribbonmodel.

42

Chapter 4

Methods for Fast Molecular Surface
Generation and Interior Cavity
Detection

Molecules interact through their surface residues. Calculation of the molecular sur-

face of a protein structure is thus an important step for a detailed functional anal-

ysis. One of the main considerations in comparing existing methods for molecular

surface computations is their speed. Most of the methods that produce satisfying

results for small molecules fail to do so for large complexes. Large complexes such

as virus capsids, ribosomes, and chromosomes can contain as many as 100K atoms

in their structure data. This increasing complexity of structural data poses a signifi-

cant problem for analytical molecular surface computation methods since they need

to search for all the possible solvent probe placements on the surface by examining

every pair, and triple of molecule atoms. In this chapter we present a grid-based

approach to compute and visualize a molecular surface at a desired resolution. Our

method is based on the emerging level set methods that are used for computing

43

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

evolving boundaries in several application areas from fluid mechanics to computer

vision. Our method is able to calculate the surface and interior inaccessible cavi-

ties very efficiently even for very large molecular complexes. We have compared

our method to some of the most widely used molecular visualization tools (Swiss-

PDBViewer, PyMol, and Chimera) and our results show that we can calculate and

display a molecular surface 1.5 to 3.14 times faster on the average than all three of

the compared programs. Furthermore, we demonstrate that our method is able to de-

tect all of the interior inaccessible cavities that can accommodate one or more water

molecules.

4.1 Introduction

Interactions between molecules are usually induced by the properties of their sur-

face components. Sequences may diverge and secondary structure arrangements

may change topology with the evolutionary process, however surface properties that

are essential to protein function are usually conserved. Therefore, calculation and

analysis of molecular surfaces play an important role in discovering the functional

properties of a protein.

Three main molecular surface definitions exist in the literature[31]. Figure 4.1

shows an illustration of those definitions. Thevan der Waalssurface is the area

of the volume formed by placing van der Waals spheres at the center of each atom

in a molecule.Solvent-accessible surfaceis formed by rolling a solvent, orprobe,

sphere over the van der Waals surface. The trajectory of thecenterof the solvent

44

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

sphere defines the solvent-accesible surface. Whereas, thesolvent-excluded surface

is defined as the trajectory of theboundaryof the solvent sphere in contact with

the van der Waals surface. Solvent-excluded surface is usually referred to asthe

molecular surface. Molecular surface and solvent-accessible surface are the most

commonly used representations for both graphical visualizations and quantitative

calculations of the surface area[31].

Solvent Accesible
Surface (SAS)

van der Waals
Surface

Re-entrant Surface
+

Contact Surface

 =
Molecular Surface

(Solvent Excluded Surface)

Figure 4.1: A two-dimensional illustration of surface definitions.

Protein molecules are usually well packed. In fact, the packing efficiency of

atoms inside proteins is roughly as expected for the close packing of hard spheres[31].

However, Hubbard and Argos[47] analyzed internal packing defects orcavities(both

empty and water-containing) within protein structures and defined 3 cavity classes:

45

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

within domains, between domains, and between protein subunits. These cavities

may have several important functions. Takanoet al. show that buried water molecules

in internal cavities contribute to protein stability[86]. Water-filled cavities also play

the role of modulating pKa values of acidic and basic residues surrounding the

cavities[55]. Therefore, in the absence of high-resolution structural data capable

of resolving all the water molecules inside protein cavities, it is extremely useful

to develop accurate and fast computational methods for quantitatively calculating

the shapes and sizes of these cavities. The proposed technique addresses both the

surface generation and cavity detection problems.

4.1.1 Related work

Numerous methods have been developed to compute molecular surfaces. Here, we

describe some of those methods. See [31] for a more thorough review of the area.

One of the earliest algorithms was proposed by Connolly [18, 19]. A molecular dot

surface is formed as a combination of convex, toroidal, or concave patches when a

probe sphere is tangent to one, two, or three atoms respectively.

A grid based algorithm was described by Nichollset al.[66] and used in the

programGRASP[65]. The method we propose in this chapter is similar to their

algorithm except for the detection of the interior cavities. They detect the cavities

by choosing a seed point at an extrema, that does not belong to a cavity. All points

associated with it, those which can be reached by travelling along triangle edges,

are deemed thenoncavity surface. All others belong to cavities. Note that this will

give an incorrect assessment if there is more than one disconnected surface. Unlike

46

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

GRASP, our method can handle such topologies naturally without any effort.GRASP

is currently available only for SGI machines, therefore it is not among the programs

that we used for comparison.

Sanneret al.[74] developed a method that relies on the reduced surfaces for

computing the molecular surfaces. The reduced surface corresponds to the alpha

shape[25] for that molecule with a probe radiusα. An implementation of this

method (MSMS package) is used by the UCSF Chimera[45] molecular graphics

program, which is one of the programs that we compared our method to.

All of the described methods work very well for small molecules. However, one

may need to analyze large complexes as the interaction of proteins with DNA and

RNA is essential for many cellular functions. Therefore, development of a method

that is capable of interactively analyzing and visualizing the molecular surface rep-

resentations of these large complexes is extremely important.

4.1.2 An overview of our method

We use a grid based approach to compute the molecular surface of a protein with

known structure. Our method, which we name LSMS:LevelSet method forMolecular

Surface generation, proceeds in three stages:

1. Mark grid cells that are inside the solvent-accessible surface.

2. Mark grid cells that are outside the solvent-excluded surface.

3. Use the fast marching level set method to determine the outer surface and

interior cavities of the molecule.

47

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

The volume and area calculations of the molecular surface as well as the internal

inaccessible cavities is then carried out very efficiently on the processed grid. For

visualizing the molecular surface, a triangular mesh is generated using the marching

cubes method[57].

We have evaluated LSMS for generating molecular surfaces of very large molec-

ular structures having 27375 (PDB id: 1a8r) to 97872 (PDB id: 1hto) atoms. We

compared our results to PyMol[21], Chimera[45], and Swiss-PDBViewer[37] and

our results show that LSMS is faster than all of those tools. We have also performed

experiments to evaluate the extent of LSMS’s interior cavity detection capabilities.

We compare the internal cavities found by LSMS to the cavities found by Swiss-

PDBViewer. Our results show that LSMS can find all the cavities that can accom-

modate one or more water molecules. Hence, our technique makes two significant

contributions: (1) time and memory efficient mechanisms for computing and visu-

alizing molecular surfaces and (2) accurate determination of interior cavities.

The rest of the chapter is organized as follows. We present the details of our

technique in Section 3.2. We present the experimental results of molecular surface

performance tests and interior cavity detection tests in Section 3.3. We conclude

with a brief discussion in Section 3.4.

4.2 Methods

The input to our method is the atomic coordinates of the molecular structures as

a PDB[8] file. We ignore the hydrogen atoms during the surface computation and

48

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

employ the commonly usedunited atomapproach[31]. In this approach, the size of

an atom is enlarged by accounting for its hydrogens. We use the same united atom

radii applied in Rasmol’s[77] spacefill rendering1.

The molecular structure is then placed and centered on a three-dimensional or-

thogonal grid of a desired resolution. The size and the resolution of the grid is

the same along all of the three dimensions and constant during molecular surface

computations. The resolution of the grid with the size of the molecule defines a

quality measure that directly corresponds to the quality measure employed by Swiss-

PDBViewer[37], that is the number of grid cells per 1.4Å. We resize the molecule

uniformly in all dimensions so that it fits completely inside the cubic grid. The qual-

ity is therefore given by(N/L)× 1.4, whereN is the resolution andL is the length

of the molecule (inÅ) along the major axis.

A molecular surface for the input structure is computed in three stages. First, we

mark grid cells that are inside the solvent-accessible surface of the molecule. Then,

the grid cells that are outside the solvent-excluded surface is marked as outside.

However, at the end of the second stage the cavities inside the molecule are also

marked as outside cells. The surface surrounding those cavities is not distinguished

from the outside molecular surface that is accessible to solvent molecules. There-

fore, we use the level set method to distinguish the outer surface from the interior

cavities, by shrinking a boundary that initially encloses all of the molecule.

The volume and area calculations of the molecular surface as well as the inter-

nal inaccessible cavities is then carried out very efficiently on the final processed

1http://www.umass.edu/microbio/rasmol/rasbonds.htm

49

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

grid. For visualizing the molecular surface, we generate a triangular mesh using

the marching cubes method[57]. The details of the above steps are explained in the

following subsections.

Figure 4.2: The grid cells whose centers fall inside the volume defined by the
solvent-accessible surface is markedinside.

4.2.1 Marking the volume inside the solvent-accessible surface

The first stage in the molecular surface computation consists of marking the grid

cells inside the volume defined by the solvent-accessible surface. We proceed as

follows. By default all the grid cells are considered outside of the surface. Then,

by traversing all of the atoms of the molecular structure we mark the cells, whose

50

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

centers fall inside the volume defined by the solvent-accessible surface, as inside.

Figure 4.2 illustrates the process in two dimensions for one of the atoms of the

molecule. The extension to three dimensions involves spheres instead of circles.

There are a couple of points to consider in terms of the computational complexity

of the procedure described above. The marking of the grid cells that are inside takes

O(m · k) time, wherem is the number of atoms andk is the average number of

grid cells occupied by an atom. Note that this process may visit the same grid cell

more than once, since the enlarged van der Waals volume of the atoms may intersect.

Another approach to overcome this repetition may be traversing the grid cells in one

pass and checking if they are inside an atom or not. The brute force implementation

of this technique will takeO(N3 · m) time in the worst case, where N is the grid

resolution along one dimension and each grid cell is checked for intersection with

every atom. We can optimize this by building an octree data structure over the atoms

of the molecule. This will reduce the time complexity toO(N3 · log m). However,

our experiments on a 256×256×256 grid showed that even with this optimization

the second approach is about 6 times slower than the first approach, that hasO(m·k)

time complexity. It takes 11.34 seconds to process the protein 1pma (45892 atoms),

on a 256×256×256 grid using the octree approach, however, it only takes 1.86

seconds when the molecule traversing approach is used.

4.2.2 Finding the solvent-excluded surface

After marking the grid cells inside the volume of the solvent-accessible surface,

the next step is to mark out the parts that fall inside the solvent molecule, hence the

51

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

Figure 4.3: The grid cells whose centers fall inside the probe circles are marked
outside.

name,solvent-excluded surface. This process is the most computationally expensive

stage of our method. It involves finding all the probe spheres centered on the solvent-

accessible surface. Then, for each such probe, the grid cells that are inside the

probe sphere is marked as outside of the molecular surface. Figure 4.3 illustrates

this procedure in two dimensions. The grid cells that are marked as inside in the

previous stage are now marked outside by this procedure, if they fall inside a probe

circle. Again, the extension of this illustration to three dimensions involve probe

spheres instead of probe circles.

The time complexity of the second stage depends on the resolution of the grid

52

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

as well as the complexity of the solvent-accessible surface. A protein surface which

contains a lot of pockets (outside cavities) will require a larger number of probes

compared to a surface that is smooth. Therefore, it would require more computation

time. The complexity of this stage isO(P · k), whereP is the number of possi-

ble placements of the solvent (probe) molecule, andk is the number of grid cells

occupied by it.

4.2.3 Interior cavity detection using fast marching level set method

The result of the first two stages is a grid that represents the volume occupied by

solvent-excluded surface of the molecular structure. However, the interior inacces-

sible cavities is not distinguished from the surrounding space in this representation.

As a result, the volume occupied by them is excluded in the total molecular volume.

Furthermore, if one computes the molecular surface area using that grid, the result-

ing surface area will not be the area of the molecule in contact with its surrounding

environment, but it will also include the surface areas of the interior inaccessible

cavities. Therefore, we need to distinguish between the outer surface and the inte-

rior cavities. Figure 4.4 illustrates an inaccessible cavity in two dimensions. Note

that, in three dimensions the illustration should not be realized as a torus shape, but

instead as a small sphere inside a larger sphere, where the small one would be the

inaccessible cavity.

We propose a method based on the level set method to solve this problem. The

level set method[79, 69] provides a mathematical framework to compute evolving

boundaries. It is based on a continuous formulation usually by partial differential

53

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

Outer Surface
Inaccesible Cavity

Figure 4.4: A two-dimensional illustration of an inaccessible cavity.

equations and allows one to deform an implicit surface, which is usually the zero iso-

contour of a scalar (level set) function. The topological changes, e.g., split, merge,

are handled naturally by the level set method. The level set formulation works in

any number of dimensions and the computation can easily be restricted to a narrow

band near the zero level set for efficiency.

The idea is to initialize a boundary that encloses the molecule, then shrink the

surface at a constant speed. The stopping criterion in the speed function is the en-

counter with a grid cell that is marked as inside. The evolution of the boundary stops

completely when all of the boundary points are stopped by an inside grid cell. The

key observation here is that during this shrinkage process, the boundary has a fixed

signed speed, i.e., a grid cell passed over by the boundary will not be visited again

by any part of the boundary.

With this observation we can apply the fast marching method, in which the clos-

est grid points to the boundary are considered first, and a grid cell that is processed

54

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

is never processed again. In this procedure we maintain a narrow band of grid cells

that represents the current boundary, and update that narrow band as the boundary

evolves. At the end of this procedure the outer surface is detected, and the voids in-

side the molecular surface are detected as interior inaccessible cavities. We present

examples of interior cavities in the experimental results section.

4.3 Experimental Results

We have conducted two sets of experiments to evaluate the performance and utility

of our method. First, we evaluate the performance of LSMS for computing and visu-

alizing molecular surfaces of very large complexes. Then, we compare the cavity de-

tection accuracy by comparing our results to cavities reported by Swiss-PDBViewer.

We explain the experiments in detail in the following subsections.

4.3.1 Molecular surface generation and visualization performance

Computing and visualizing the solvent-excluded surface of a molecular structure is

a computationally challenging task. Most of the existing visualization tools achieve

similar performance for small molecules despite the difference of underlying meth-

ods used. However, not all of the methods can cope with the increasing size of the

molecules. Therefore, we have selected a challenging set of large molecular struc-

tures as a benchmark dataset. The dataset consists of 15 large complexes that contain

27375 to 97872 atoms in their structure data.

We have compared LSMS’s molecular surface generation performance to three

55

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

surface generation time (sec.) surface quality
Protein size LSMS SPDBV PyMol Chimera LSMS SPDBV
1a8r 27375 11.66 14.96 51.34 16.36 1.03 1
1h2i 32802 15.66 17.33 40.78 40.04 1.29 1
1fka 34977 37.14 51.56 85.14 77.25 1.34 1
1gtp 35060 15.81 19.75 50.17 67.04 1.28 1
1gav 43335 20.31 35.24 86.62 78.35 1.28 1
1g3i 45528 26.80 37.51 63.90 u 1.41 1
1pma 45892 40.78 u 51.10 u 1.67 1
1gt7 46180 14.91 22.60 57.75 54.39 1.16 1
1fjg 51995 30.34 48.44 85.79 u 1.33 1
1aon 58884 47.28 61.20 95.84 u 1.41 1
1j0b 60948 18.28 44.97 100.14 u 1.18 1
1ffk 64281 69.83 72.07 135.80 196.65 1.27 1
1otz 68620 42.05 51.27 78.05 u 1.45 1
1ir2 87087 21.09 u 120.52 93.87 1.23 1
1hto 97872 38.95 89.68 u u 1.28 1

Table 4.1: Molecular surface generation times for LSMS compared to those of
Swiss-PDBViewer, PyMol, and Chimera.

56

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

other programs that are widely used in the computational biology community and

are freely available. PyMOL[21] is an open source molecular graphics system

with an embedded Python[73] interpreter designed for real-time visualization and

rapid generation of high-quality molecular graphics images and animations. UCSF

Chimera[45] is another tool implemented in Python. The solvent-excluded molecu-

lar surfaces produced by Chimera are created with the help of the MSMS package[74].

Swiss-PDBViewer[37], or SPDBV for short, is another molecular viewer with ex-

tended functionality. There is little amount of documentation about the molecular

surface component of SPDBV. Nevertheless, it can be understood from the docu-

mentation that the surface computation is carried out on an orthogonal grid as in

LSMS. The probe size is 1.4̊A as in other methods, however all the molecule atoms

have a fixed radius. The current version of SPDBV does not allow changing of these

parameters. The only value that can be altered is the smoothness (quality) parame-

ter. By default it is 1, which means 1 grid point every 1.4Å. This quality should be

enough for most purposes as also indicated by SPDBV’s developers2.

Table 4.3 shows the molecular surface generation times. All of the tests are

performed on a Microsoft Windows XP machine with Intel Pentium 4 Processor at

2.0GHz and 512MB of RAM. The results we report here use the programs’ default

parameter sets and do not include the time taken to load the molecule into memory.

The timings for Swiss-PDBViewer are acquired using a quality value of 1. We

also compute and report a quality measure for LSMS that directly corresponds to

SPDBV’s quality measure, i.e., number of grid cells per 1.4Å. Protein sizes in

2http://us.expasy.org/spdbv/text/surface.htm

57

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

the table are shown as number of atoms. The entryu in the table means that the

program is not able to generate a molecular surface for that protein. We have used

a 256×256×256 resolution grid for timing LSMS. The quality of the surface is

affected by the size of the molecule as well as the resolution of the grid. We resize the

molecule uniformly in all dimensions so that it fits completely inside the cubic grid.

The quality is therefore given by(N/L) × 1.4, whereN is the resolution andL is

the length of the molecule along the major axis. Figure 4.5 shows the largest protein

in our dataset in 256×256×256 resolution and a quality of 1.28. The boundaries of

the 256×256×256 resolution grid is also shown. LSMS can interactively render the

surface of 1hto with 9 frames per second display rate.

Table 4.3 shows that LSMS is up to 2.46 times faster than SPDBV (achieved at

protein 1j0b) and is 1.5 times faster on the average, while achieving a better quality

for every test protein. LSMS is also 3.14 times faster than both PyMol and Chimera

on the average. Also, it is important to note that for some of the test cases SPDBV,

PyMol, and Chimera are not even able to generate the molecular surface, whereas

LSMS successfully computes the surfaces for all of the test cases.

4.3.2 Interior cavity detection

The outer boundary of the solvent accessible surface is found by shrinking an initial

enclosing boundary at a constant speed with the fast marching level set method.

Figure 4.6 shows such an outer surface of the protein 2ptn computed and displayed

by LSMS. However, as we have stated earlier there may exist inaccessible cavities

inside the molecular surface that are not visible, i.e., occluded by the molecular

58

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

of cavities cavity volume (̊A3) molecule volume (̊A3)
Protein LSMS SPDBV LSMS SPDBV LSMS SPDBV
1eca 1 1 31.46 134 16688.98 16824
2act 7 2 322.33 281 6842.76 6509
2cha 10 4 338.01 436 28728.13 27705
2lyz 3 2 96.12 162 15778.44 15133
2ptn 6 3 394.41 380 27037.94 25897
5mbn 4 2 127.05 189 19796.24 19768
8tln 14 2 356.28 170 40280.45 38498

Table 4.2: Cavities computed using LSMS and comparison with results from Swiss-
PDBViewer.

surface. Nevertheless, analysis of these cavities may be required to study the buried

water molecules inside them which may contribute to protein folding stability.

Figure 4.7 shows the internal cavities of the same protein 2ptn that can accommo-

date one or more water molecules. The Cα trace is also shown along with the cavities

to provide visual clues of relative locations of the cavities inside the molecule.

We have analyzed internal cavities of a set of seven protein molecules. We com-

pared those results to the results reported by Swiss-PDBViewer. Table 4.3.1 shows

the results of the cavity detection experiment. We have examined the number of

separate cavities as well as the total cavity volume in cubic angstroms found by

LSMS and SPDBV. The volume occupied by the molecular surface is also shown to

give an idea about the size of the proteins. The results show that LSMS can find all

the cavities found by SPDBV. We have also verified these results by further visual

inspection. LSMS usually finds more cavities compared to SPDBV. The disagree-

ments in number of cavities and total volume of cavities are probably caused by

59

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

the employment of different van der Waals radii by the two methods, as there is no

unique established standard for those, as well as SPDBV’s fixed atom radii strategy.

4.4 Discussion

In this chapter we have presented a method to calculate the solvent-excluded surface

as well as the interior inaccessible cavities of a molecular structure. Our method

is based on a fast marching level set method that efficiently formulates a constant

signed speed evolving boundary. We have shown that our method, LSMS, is able to

calculate the surface and the cavities very efficiently even for very large complexes.

The experimental comparison of LSMS to some of the most widely used molecular

visualization tools shows that we can calculate and display a molecular surface faster

than all three of the compared programs. LSMS can also detect all the cavities that

can accommodate one or more water molecules.

A future research direction based on our work described in this chapter is the

development of methods for computation of molecular surfaces dynamically as the

probe radius changes. Starting on the van der Waals volume and using distance-

transform one can generate a list of initial surface points (zero distance) and then

propagate from those points outward to a particular distance,k (the maximum probe

radius). The solvent-accessible surface for a particular probe radiusr < k is then

readily computed by this method. The solvent-excluded surface can also be deter-

mined dynamically by shrinking the accessible surface using another distance trans-

form (fixed-speed level set formulation). All the points that arer distance from the

60

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

initial surface will give the solvent-excluded surface. This two-step level set method

can be used to adjust the probe radius dynamically.

An application of molecular surface computations is the comparison of generated

surfaces. Molecular surface comparison is a more difficult computational challenge

compared to sequence or structure comparison methods. Finding surface similari-

ties among a family of proteins may help reveal the functional determinant of that

family, and the other dual problem of finding a complementary surface (the docking

problem) may help in drug discovery and development. Several surface properties

can be considered when comparing protein surfaces: electrostatic potential, surface

curvature, cavity size, molecular surface area, and molecular volume.

61

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

Figure 4.5: The molecular surface of 1hto generated by LSMS.

62

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

Figure 4.6: The molecular surface of 2ptn generated by LSMS.

63

Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity

Detection

Figure 4.7: The inaccessible cavities inside 2ptn along with its Cα trace.

64

Chapter 5

A Robust and Efficient Algorithm for
Protein Structure Similarity Search

In this chapter we present a new method for conducting protein structure similar-

ity searches, which improves on theefficiency of some existing techniques. As

the number of known protein structures is increasing at a considerably high rate,

significant questions arise about the ability of existing methods in handling struc-

ture similarity search in a reasonable amount of time. Most of the existing meth-

ods [80, 42, 60] for protein structure comparison are designed for pairwise compari-

son. Therefore, in order to conduct a similarity search of a protein structure against a

database of protein structure, one needs to perform an exhaustive search by pairwise

comparing the query protein to all of the database proteins one by one. Clearly, this

is not a reasonable approach, and methods for conducting fast similarity searches

should be developed.

The method we propose in this chapter is grounded in the theory of differential

geometry on 3D space curve matching. We generate shape signatures for proteins

65

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

that areinvariant, localized, robust, compact, andbiologically meaningful. The in-

variancy of the shape signatures allows us to improve similarity searching efficiency

by adopting a hierarchical coarse-to-fine strategy. We index the shape signatures us-

ing an efficient hashing-based technique. With the help of this technique we screen

out unlikely candidates and perform detailed pairwise alignments only for a small

number of candidates that survive the screening process. Contrary to other hash-

ing based techniques, our technique employs domain specific information (not just

geometric information) in constructing the hash key, and hence, is more tuned to

the domain of biology. Furthermore, the invariancy, localization, and compactness

of the shape signatures allow us to utilize a well-known local sequence alignment

algorithm for aligning two protein structures. One measure of the efficacy of the

proposed technique is that we were able to perform structure alignment queries 36

times faster (on the average) than a well-known method while keeping the quality of

the query results at an approximately similar level.

5.1 Introduction

The number of known protein structures is increasing rapidly, as more researchers

are joining the hunt for novel protein structures, more experimental apparatus are

deployed, and more theoretical frameworks and software tools are developed for

predicting protein structures. Protein structure comparison tools play an important

role in this enterprise. In predicting a protein structure from its sequence, researchers

usually form a new candidate structure. To avoid potential exponential explosion of

66

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

structures, that new structure is compared with previously known structures for ver-

ification/tuning/correction. Discovering similar folds or similar substructures thus

provides restrictions on the conformational space and serves as a starting point for

producing useful models [11].

Structure comparison is an NP-Hard problem [53]. There are no fast structural

alignment algorithms that can guarantee optimality within any given similarity mea-

sure. Therefore, existing structure comparison methods employ heuristics. There are

different approaches for extracting structural features. Some methods use only the

coordinates of theCα atoms [42, 80]. They infer the global structure by examining

the inter-atomic distances between residues. There are also quite a few methods that

use secondary structure elements (SSEs) to simplify the problem by finding initial

alignments of SSEs [33, 43, 58, 83, 91] to guide the match of amino acids.

Some methods rely on localized features. In Leibowitzet al. [54], a feature

extraction method was proposed that examines the k-tuples of atoms in a spherical

shell neighborhood of a residue. For retrieving similar structures, geometric hashing

is used, which was first introduced in computer vision [52]. Geometric hashing is

also used by Nussinovet al. [67] and Pennecet al. [70]. However, those techniques

are not localized as Leibowitzet al. [54], and can be slow due to the large amount

of redundant information kept. It can take as much as 18 seconds to compare two

proteins [70]. Nevertheless, geometric hashing is the first approach that targets the

need of indexing for fast similarity searches in a large structure database. Another

advantage of geometric hashing is that it can also be used for multiple structural

alignment [54]. However, one complaint about the pure geometrical methods is

67

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

that since they do not make use of domain specific knowledge, they may overlook

some biologically significant relationships such as secondary structure assignment

or residue properties, e.g., hydrophobicity.

Another difficulty in the structural comparison problem is the choice of a mea-

sure to quantify the similarity between compared structures [35]. One of the widely

used measures is the RMSD (root mean square distance) measure [26]. It is a mea-

sure of similarity based on the closeness of correspondingCα atoms of two protein

structures. However, a match may involve only a subset of allCα atoms. I.e., there

may exist biologically significant local alignments (even when the molecules do not

share a global structural similarity). So the length of the alignment becomes an im-

portant measure. The information on the gaps in the alignment also gives hints on

the quality of the alignment [26]. Some methods also compute thep-value, e-value,

or z-valueto quantify the statistical significance of the match [33, 42, 80]. In this

chapter, we do not address the problem of finding a universal similarity measure,

instead we employ a measure used by Gerstein and Levitt [30], which involves the

RMSD and the length of an alignment.

The many variations of protein structure comparison algorithms briefly surveyed

above show us that the problem of structure comparison is indeed hard. Furthermore,

most of the algorithms are for pairwise comparison. I.e., they need to perform an

exhaustive sequential scan of a structure database to find similar structures to a target

query protein. This approach may not be feasible as the structure databases, such as

the PDB [8], grow in size. Thus, fast and accurate methods for conducting structure

similarity searches are needed (there are some efforts in designing methods that

68

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

utilize indexing to make similarity searches more efficient, e.g., indexing DALI’s

distance matrices [6]).

In this chapter, we present a new method for protein structure similarity search

and alignment.The main contribution is to improve on the efficiency of similar-

ity searches. The result is that our method is able to find, efficiently, meaningful

structural similarities in proteins about 30 times faster than CE [80], a widely used

method for conducting protein structure alignment. We were also able to find sim-

ilarities that were overlooked by other existing techniques. Salient features of our

method are that we construct signatures for structural matching that areinvariant

(i.e., they are not affected by the translation and rotation of a protein structure in

space),localized(i.e., the signature at each residue location is completely deter-

mined by the local structure around that particular residue),robust(i.e., small per-

turbations of atomic coordinates induce small changes in the associated signatures),

compact(i.e., the size of the signatures isO(n), n: number of residues), andbio-

logically meaningful(i.e., we incorporate secondary structure assignment into the

signature). These signatures are constructed and indexed off-line to improve query

efficiency. The on-line matching process is carried out in a coarse-to-fine hierarchi-

cal manner to enable fast protein structure similarity search and detailed pairwise

alignment that handles alignments with gaps. We have implemented our method as

an interactive tool that allows visual inspection of the alignment results and iterative

discovery of possible suboptimal alignments that may have biological importance.

In the following sections we describe in detail our method. In Section 4.4 we

present experimental results. And finally we conclude with future directions and

69

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

discussions.

5.2 Methods

Our method is grounded in the theory of differential geometry on 3D space curve

matching. The idea of representing protein structures by using differential geometry

was first introduced by Rackovsky and Scheraga [72]. However, their work fo-

cuses on investigating local curvature and torsion differences between very similar

proteins and relating curvature and torsion values to secondary structure conforma-

tions, such as alpha helices and beta sheets. On the other hand, our work focuses

on finding large scale structural alignments between two protein structures by using

curvature and torsion values.

It is well established in differential geometry [22] that the necessary and suffi-

cient condition for structure isomorphism of two space curves is the correspondence

of their curvature and torsion values, expressed as a function of the intrinsic arc

length. Intrinsic arc length(s) satisfies the property that|Ċ(s)| = |dC(s)/ds| = 1,

whereC denotes the space curve. Such a parametrization is in general difficult to

obtain in real world applications. However, for protein structure matching, theCα

atoms along the backbone can be considered equally spaced because of the con-

sistency in chemical bond formation. Hence, we can use the polygonal arc length

betweenCα atoms as a convenient parameterization without loss of generality. Note

that the fundamental theorem of differential geometry does not apply togappedsim-

ilarities. However, ungapped local isomorphism can still be detected and by using

70

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

dynamic programming, the matching local substructures can be connected to allow

for a larger structural alignment with gaps.

Because of the limited resolution of the apparatus used and noise inherent in any

measurement process, the atom positions of a protein structure are imprecisely spec-

ified. In order to have robust and reliable shape signatures, smoothing of data points

is needed to cope with experimentation and resolution related errors. Approximation

splines are used to smooth data points [38, 49]. Furthermore, we use variable error

estimates for smoothing different type of secondary structures. This is biologically

meaningful, because certain secondary structures (liketurns) are much more likely

to have errors in them.

After smoothing theCα coordinates of a protein with a polynomial spline, we

compute its shape signature. The shape signature of a protein is a list of signature

triplets, one for each of its residues. A signature triplet of a residue consists of

its secondary structure assignment and curvature and torsion values at itsCα posi-

tion. Thus, we name our method as CTSS, which is the abbreviation forCurvature,

Torsion, andSecondaryStructure. These signatures are rotation and translation in-

variant. In other words if two different curves produce similar curvature and torsion

values, then it can be concluded that they are similar (modulo rotation and transla-

tion) [22]. Curvature and torsion at a point along the curve provide localized ge-

ometrical information. The smoothing process produces a stable signature that is

robust in the presence of measurement noise. Furthermore, our method is not purely

geometrical because we incorporate biological information such as the secondary

structure assignment into the shape signatures. Thus, we achieve stability and ro-

71

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

bustness in the description at the expense of added computation of curve fitting and

data smoothing. However, this smoothing and fitting process is performedoff-line

with a lenient time constraint. Hence, the trade-off is reasonable and beneficial.

After extracting the signatures, we build a hash table to index the space of invari-

ant signatures. For a query protein structure, we compute its shape signatures using

the same feature extraction procedure described above. Then, in the screening phase,

we retrieve candidates of similar structures by using a voting mechanism based on

the similarity of the hash keys. This allows efficient pruning of unlikely matching

candidates, without expensive pairwise search of all proteins in the database.

For candidate proteins surviving the pruning process, we use a well-known dy-

namic programming algorithm (developed for sequence alignment [84]) to align

pairwise the signatures of two proteins structures. The alignment result is a set

of correspondences of structurally related residues. Those correspondingCα atoms

are superimposed and an RMSD (root mean square distance) value is computed for

that subset. The length of the alignment and RMSD is used to compute a score [30]

approximately reflecting the quality of the alignment. We also present the results of

the alignment visually for further inspection. The main steps of our method can thus

be summarized as follows:

For each protein in the database (anoff-lineprocess):

1. Calculate a spline fitting to best approximate the positions of theCα atoms.

2. Compute,for each residue, curvature and torsion values at theCα position

along the spline. The secondary structure assignment of that residue is also

recorded in the signature.

72

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

3. Compute a hash key based on the signature and store that in a hash table.

For a query protein (anon-lineprocess):

1. Repeat steps 1 to 2 above and use the shape signature to screen the candi-

dates from the hash table. Perform the following steps only for the candidates

surviving the screening process.

2. For two proteins (a candidate database protein and the query), construct the

normalized scoring matrix based on the distances between extracted features.

3. Run Smith-Waterman [84] local sequence alignment algorithm on the scoring

matrix.

4. Superimpose the corresponding residues using a fast least-squares solution [5,

87].

5. Report results in an interactive visual form.

For each query, the first step in the on-line process is an efficient hashing based

screening of the database of proteins, and the last four steps are for comparing two

protein structures pairwise (the query and a candidate). A normalized scoring ma-

trix is created on which the dynamic programming algorithm is run. A number of

local regions with the highest alignment scores are chosen as candidates of structural

similarity and passed to the final step of superimposition. For those highly similar

regions, we superimposeCα coordinates of the associated residues and check the

RMSD of the alignment. We assign scores to them according to their lengths and

73

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

RMSD values and return the best scoring alignment as the best structural alignment.

In the following sections we explain each step of our method in detail.

5.2.1 Spline approximation and error handling

The protein structure data are retrieved from the Protein Data Bank [8]. For each

residue of the protein we obtain the 3D coordinates of itsCα atoms from the PDB

file. As a result, each protein is represented by approximately equi-distant sampling

points in 3D space. To construct a smoothing spline best approximating those points,

we use theJava AppLibpackage (http://www.sscc.ru/matso/rozhenko/applib/), which

is an approximation library for Java.

We use the quintic spline approximation, which is for 1-D curves. For a space

curve, we use 3 independent smoothing splines parameterized with respect to the

polygonal arc lengtht. The library package constructs the quintic smoothing spline,

C(t), to given data,σ(ti), i = 0, ..., n − 1, wheren is the size of theCα backbone,

providing as small second derivative as possible (i.e., minimizing curvature). The

method also ensures that the constructed spline does not deviate from the input data

more than a given threshold by satisfying the following equation:

n−1∑
i=0

w−1
i ‖C(ti)− σ(ti)‖2 ≤ ε2 (5.1)

wherewi are positive weights, andε is the maximum allowed deviation level. The

larger a weight used for a residue, the greater the deviation is allowed. For our

experiments we have usedw = 0.2 for helices,w = 0.4 for strands, andw = 2.0 for

turns. Also notice that,ε is a measure for the total deviation of the spline curve from

74

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

the data points. We have used a more intuitive measure,ε0. It is an average error

measure, not dependent on the length of the protein. We compute theε in Eq. (5.1)

with the following equation:

ε =
√

ε2
0 · n (5.2)

Figure 5.1 shows an example of approximating 3D quintic spline for a small pro-

tein (1ei0:A), where individual spheres represent theCα atoms and the dark colored

3D curve passing through them is the constructed smoothing spline. The average er-

ror estimate,ε0, is 0.6Ao. The curvature along the spline is minimized. In addition,

as seen in the figure, we allow more smoothing of the data where there is aturn (the

top part connecting two helices) and less smoothing where there is ahelix.

5.2.2 Feature extraction

Curvature is defined as [22]:

κ = |C̈| (5.3)

And torsion is defined as:

τ =
1

κ2
[Ċ C̈ ...C] (5.4)

where the square brackets have the special meaning of:

75

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

Figure 5.1: Spline approximation forCα coordinates.

[Ċ C̈ ...C] =

∣∣∣∣∣∣∣∣∣

Ċx Ċy Ċz

C̈x C̈y C̈z

...C x

...C y

...C z

∣∣∣∣∣∣∣∣∣
(5.5)

In other words, the curvature of a point on the curve denotes how rapidly the

curve pulls away from the tangent at that point, or how non-colinear a curve is. Sim-

ilarly, the torsion of a point on the curve denotes how rapidly the curve pulls away

from the osculating plane at that point, or how non-planar a curve is [22]. We com-

pute the average curvature and torsion in a close neighborhood of a residue. Since

computation of torsion involves the third derivative of the spline polynomial, we

76

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

have used quintic spline approximation, which guarantees the fourth order deriva-

tive continuity.

We also use the secondary structure assignment of a residue as a structural fea-

ture. Secondary structure assignment information is retrieved from the PDB web

site [8]. PDB uses the DSSP method [48] to determine the secondary structure

assignments of proteins. The signature value regarding the secondary structure as-

signment is one of thehelix, turn, or strand. It should be noted that other biological

properties of a residue, such as hydrophobicity, can also be used as part of the sig-

nature - if discrimination based on those traits are desirable.

5.2.3 Hashing for fast retrieval of candidates

After the feature extraction phase, we perform a quantization and normalization

procedure on the curvature and torsion values. After that procedure each curvature

and torsion value resides in the interval [0,255].

Each signature feature represents one dimension in our hash table. Therefore, we

create a three dimensional hash table for curvature, torsion, and secondary structure

type. To ensure a robust and reliable retrieval of candidates, the resolution of the

hash table must be judicially chosen. The coarser the resolution, the smaller the size

of the hash table gets. However, coarser resolutions reduce the discriminating power

of the curvature-torsion descriptor and result in more false positive candidates sur-

viving the screening process. On the other hand, finer resolutions increase the size of

the hash table. The descriptor also becomes more susceptible to random error fluc-

tuation, resulting in true positives being screened out. After some experimentation,

77

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

we have chosen the resolution of our hash table to be64× 64× 3.

For each signature triplet,(κ, τ, ss), we compute a hash key, which is simply

(κ/4, τ/4, ss). By using that key as an index to the hash table, we store the signature

triplet into the hash table along with its host protein chain identifier and its residue

number. This process is executedofflinefor each protein in the database.

For a query protein,p, we extract its shape signatures as described in subsections

4.2.1 and 4.2.2. We perform similar quantization and normalization of the curvature

and torsion values. For each residue of the query protein, we compute a hash key

using its signature triplet,(κp/4, τp/4, ssp). We retrieve the hash table entry indexed

by that key. We accumulate a vote for each database protein stored in that entry.

We repeat this process for each residue of the query protein. At the end, we assign

a significance score,a-score, to each of the database proteins. We compute the

a-scoreof a database protein by normalizing its accumulated votes by its length

(number of residues). Proteins with highera-scores are promising candidates that

may have structural similarity to the query protein. We sort the proteins according

to theira-scores and we select the topN queries. We use a cutoff value instead of

a threshold, becausea-scoreis not universal like a statistical significance score, i.e.,

it also depends on the length of thequeryprotein. Finding a better scoring scheme

is among our future work. For our experiments we have chosenN to be200, which

means we screen out approximately 90% of the database after the pruning phase.

By using the voting mechanism described above, we efficiently retrieve candi-

dates of similar structures. Hence, we avoid exhaustive scan of the entire database.

78

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

5.2.4 Pairwise comparison

We perform pairwise comparison only for the candidates surviving the screening

process. For two proteins under consideration, we first construct a normalized scor-

ing matrix and then use a modified version of Smith-Waterman [84] dynamic pro-

gramming algorithm on that distance matrix. The best scoring local alignment de-

fines a set of correspondences of residues, which is then superimposed by a fast

closed-form solution. The details of pairwise comparison are explained below.

Distance matrices

The distance matrices we compute should not be confused with the inter-atomic

distance matrices of the DALI method [42]. The distance matrices we compute are

the signature distance matrices between two proteins. The entrydAB
ij of the distance

matrix denotes the distance between the quantized and normalized signature values

of the ith residue of proteinA and thejth residue of proteinB, and it is defined by

the following equations:

dAB
ij =

√
(κA

i − κB
j)2 + (τA

i − τB
j)2 + sAB

ij (5.6)

sAB
ij =





c, if SS(rA
i) 6= SS(rB

j)

−c, if SS(rA
i) = SS(rB

j).

(5.7)

whereSS(rA
i) denotes the secondary structure assignment of theith residue of pro-

tein A. This measure is basically the Euclidian distance between the curvature and

79

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

torsion tuples,(κA
i , τA

i) and(κB
j , τB

j), regulated by the secondary structure assign-

ment agreement. Agreement on secondary structure assignment decreases the dis-

tance by a constantc, and disagreement increases the distance by the same constant.

We have usedc = 20 in our experiments. Our choice of incorporatingsAB
ij into

the signature as an offset instead of a multiplication factor is because the secondary

structure assignments are not 100% correct, and may mislead the alignment if they

are the dominant factor in the distance equation. Figure 5.2 shows an example dis-

tance matrix for the shape signature relationships between the proteins 1faz:A and

1ytf:D. Darker regions indicate higher similarity of signatures.

Figure 5.2: The distance matrix.

We convert those distance values to normalized score values in the interval [low,

high] to be used by the local alignment in the dynamic programming phase. This is

done by using the following equation:

80

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

scoreAB
ij = low +

−dAB
ij + (256

√
2 + c)

256
√

2 + 2c
· (high− low) (5.8)

We have chosen the low score to be−10.0 and the high score to be20.0, because

they define a range similar to that of the PAM matrix [20]. The score of the alignment

makes sense this way by comparing it to the sequence alignment scores.

Local alignment by dynamic programming

The shape signatures can be thought of as protein sequence data with the alphabet,

Σ=all possible triplets ofCurvature,Torsion, andSecondaryStructure assignment.

We define a similarity score between two signature values, Eq. (5.8), which is anal-

ogous to the entries of scoring matrices such as PAM [20] and BLOSUM [40] that

define similarity scores between residue types. However, we do not compute a static

scoring matrix, instead a distance matrix for each pair of proteins is created as ex-

plained in Section 4.2.4.

We then run the dynamic programming algorithm for sequence alignment by

Smith and Waterman [84] using the dynamically computed and normalized scoring

matrix. As in local sequence alignment we use an affine gap cost model, in which

opening and extending gaps have different costs. For our experiments, we have used

an opening gap penalty of14 and an extending gap penalty of10.

The complexity of alignment by using this method isO(mn), wherem andn are

the numbers of residues in the compared proteins respectively. Figure 5.3 shows the

best local alignment of 1faz:A and 1ytf:D on the distance matrix and the detection

of a Helix-Turn-Helix (HTH) motif shared between those structures (3D result seen

81

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

in Figure 5.4). The diagonal light colored line shows the associated residues of two

proteins.

Figure 5.3: Local alignment with best score.

However, the best local alignment returned by the algorithm is not guaranteed to

be the best structural alignment. Because of gaps in the alignment, the sub-structures

represented by the alignment may actually have a high RMSD (e.g., those gaps may

be regions of twists and turns affecting the overall alignment). Thus, we superim-

pose the query protein on the database protein and check the RMSD values of a

number of best local alignments to obtain the best local alignment.

Superimposition

We use a fast least-squares solution to superimpose an ordered corresponding set of

points in 3D space. Given a minimum of three pairs of point correspondences, the

best rotation and translation,R andT, can be computed efficiently inO(n) time,

82

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

wheren is the number of corresponding points. A non-iterative least-squares so-

lution based on the singular value decomposition (SVD) was suggested by Arunet

al. [5] to find a closed-form solution. Umeyama [87] provided modifications to Arun

et al. [5] to ensure that a correct rotation matrix, instead of a reflection, is computed

when the data are noisy.

With the help of the superimposition, we compute the minimum RMSD values

of the top local alignments. We assign a score to each alignment by using a similarity

measure based on normalized RMSD [30] as defined by the following equation:

SCORE =
length of alignment + 135

225 ∗RMSD of alignment
(5.9)

Figure 5.4: Superimposed local alignment result.

We return the best scoring alignment as the best structural alignment between the

83

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

compared protein structures. Figure 5.4 shows the superimposed result of the best

local alignment found for 1faz:A and 1ytf:D. That alignment reveals a Helix-Turn-

Helix motif shared between those protein structures. The Helix-Turn-Helix motif

is usually found in DNA-binding proteins, and consists of a recognition helix and a

stabilizing helix separated by a short loop.

5.3 Interactive Visualization of the Results

We use Java 3D graphics library1 to visualize the results. The main advantage is that

we do not have to generate visualization scripts and invoke external visualization

tools like RASMOL in order to visualize the alignment results. Furthermore, our

tool is platform independent and can be run within a web browser. Both the aligned

3D structures and the shape signature distance matrices are presented to the user.

The result of the alignment is also shown to the user on the distance matrix. The

user can select other suboptimal alignments and inspect their biological significance.

Figure 5.5 shows the user interface with the shared motif between 2cro:and 2wrp:R.

5.4 Experiments

We have conducted two sets of experiments to evaluate the quality of the pairwise

alignments produced by CTSS and to evaluate the sensitivity and running time per-

formance of similarity search queries. We have chosen a widely used structural

1http://java.sun.com/products/java-media/3D/

84

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

Figure 5.5: The user interface for CTSS.

alignment method, CE [80], to compare our results.

We present our experiment results in three subsections. In the first subsection,

we present the results of pairwise alignment tests. In the second subsection, we

assess the sensitivity of similarity search queries method by using the SCOP [64]

structural classification and compare the run-times of the queries against CE’s run-

times. In the last subsection we present two example queries in detail for which

we demonstrate visually the shared motifs we have discovered between the query

proteins and a number of database proteins.

5.4.1 Evaluation of Pairwise Alignment Quality

There is no universally accepted measure to quantify the quality of a structural align-

ment [26]. However, we can use an approximate measure [30] that involves the

85

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

RMSD and the length of the aligned substructure. For this test we have selected the

ASTRAL SCOP 1.63 database [13] that contains protein structures with less than

40% sequence identity to each other. Low sequence identity presents challenges to

structure alignment algorithms, as it is not possible to use sequence similarity to

predict structure similarity.

There are 5226 protein domains in the ASTRAL 40% database. 5187 of them

are domains that span single chains. Out of these 5187 protein chains, 2952 chains

contain single domains and we selected those as our test database. We selected

single domain chains because this way we can uniquely assign a SCOP superfam-

ily to a whole chain. We could not find structures (from Protein Data Bank) for

13 protein chains in this list, because they were either replaced by another pro-

tein chain in the PDB or they contained some errors that failed our structure parser.

This leaves us with 2939 protein chains as our protein structure database. There are

4,314,453 (2938×2937/2) possible pairwise alignments that we can perform using

this database. However, the purpose of this test is to evaluate our method’s ability

to align well the structures with known similarity (i.e., from same SCOP superfam-

ily). A similar test was performed by Gerstein and Levitt [30] to evaluate different

methods on an earlier version of the SCOP database. Out of 4,314,453 pairs 16,300

of them are from the same SCOP family. Thus, we have conducted 16,300 pairwise

alignments by both CTSS and CE.

For each pairwise alignment we have recorded the RMSD and length of the

alignment. Figure 5.6 shows the RMSD/length plot for all the pairwise alignments

conducted by CTSS and CE.

86

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

Figure 5.6: Pairwise alignment results, (a) CTSS (b) CE.

Method Name # of good # of bad avg. length of good avg. RMSD of good
CTSS 15103 1197 36.160 1.083
CE 12981 3319 155.063 3.099

Table 5.1: Pairwise alignment results

By using a demarcation line (the dark diagonal line),RMS = 4(N+135)/225 [30],

it is possible to approximately separate the successful matches from unsuccessful

matches. The points below the demarcation line are qualified asgood alignments

and the points above the line arebad alignments. Table 5.4.1 shows the number of

good alignmentsandbad alignmentsas well as the average length and RMSD of

good alignments.

It can be seen from the table that CTSS has more alignments that are quali-

87

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

fied asgood alignments. This table also shows that the alignments found by CTSS

is smaller than the ones found by CE. However, the average RMSD is also much

smaller for those smaller alignments. In other words, we can say that on the average

CTSS performs well for finding small shared substructures (motifs) accurately, i.e.

with low RMSD.

5.4.2 Evaluation of Sensitivity and Runtime Performance of Sim-

ilarity Search Queries

To evaluate the sensitivity of our method for performing similarity searches, we have

used a benchmark similar to the one used by Fischeret al. [27] Our test database

of 2939 protein chains comprises 867 different superfamily classes. 443 of these

classes have more than one representative protein chain, i.e., 424 superfamilies have

single members in the ASTRAL 40% database. We have selected a representative

protein chain from each of the 443 superfamilies as the first alphabetic protein chain

identifier (PDB ID) of that superfamily. This gives us 443 query (probe) protein

chains to evaluate sensitivity. However, because of time constraints we have selected

the first alphabetic 100 out of 443 protein chains. When we use CE to perform 100

queries on a database of 2939 proteins, it takes 293,900 pairwise alignments to finish

(approximately 18 days on a single machine). Table 5.4.2 show the query proteins

selected as benchmarks sorted by the number of member protein chains in their

superfamilies.

The list of query proteins we have is a good representative of the SCOP database,

88

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

chain ID sf ID # of sf members chain ID sf ID # of sf members
1a7j 52540 69 1auia 56300 6
1a8q 53474 45 1a2pa 53933 5
1a34a 49611 38 1a8ra 55620 5
1ajsa 53383 33 1af8 47336 5
1alva 47473 33 1agre 48097 5
1aoy 46785 32 1aoha 49384 5
1a7s 50494 28 1atza 53300 5
1aq0a 51445 28 1auk 53649 5
1a6m 46458 26 1a59 48256 4
1alu 47266 26 1a6bb 57756 4
1a06 56112 25 1agi 54076 4
1aba 52833 25 1ako 56219 4
1ac6a 48726 25 1amx 49401 4
1agg 57059 24 1apxa 48113 4
1a8e 53850 22 1atb 57567 4
1a3k 49899 21 12asa 55681 3
1aqb 50814 21 1a32 47060 3
1acw 57095 20 1a3aa 55804 3
1avpa 54001 19 1a41 56349 3
1avqa 52980 19 1a44 49777 3
1akha 46689 18 1a4ya 52047 3
1awj 50044 18 1a73a 54060 3
1aqca 50729 17 1a9na 52058 3
19hca 48695 15 1acf 55770 3
1a3c 53271 14 1ad1a 51717 3
1aac 49503 14 1ad2 56808 3
1ast 55486 14 1ahsa 49818 3
1afra 47240 13 1am2 51294 3
1a1w 47986 12 1amua 56801 3
1a53 51366 12 1ass 52029 3
1agqa 57501 12 1at3a 50789 3
1a28a 48508 11 1avac 50386 3
1atx 57392 11 1aw1a 51351 3
153l 53955 10 1axn 47874 3
1a0tp 56935 9 16pk 53748 2
1a17 48452 9 1a12a 50985 2
1afj 55008 9 1a1x 50904 2
1ak7 55753 8 1a2za 53182 2
1aoea 53597 8 1a48 56104 2
1apq 57196 8 1a6f 54211 2
1awcb 48403 8 1ab4 56719 2
1a0aa 47459 7 1acz 49452 2
1a4ma 51556 8 1aep 47857 2
1a4sa 53720 7 1ah7 48537 2
1aly 49842 7 1aiw 51055 2
1a0ca 51658 6 1ajj 57424 2
1a6s 47836 6 1ak4c 47943 2
1a7ta 56281 6 1akp 49319 2
1a8i 53756 6 1ap8 55418 2
1adr 47413 6 1auz 52091 2

Table 5.2: List of query proteins

89

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

Class Name # of query proteins
all alpha (α) 22
all beta (β) 21
alpha/beta (α/β) 24
alpha+beta (α + β) 21
other (small, membrane, multi-domain) 12

Table 5.3: Class distribution of the query proteins

because theclassdistribution of the query set is roughly equal to theclassdistribu-

tion of the whole SCOP database. Table 5.4.2 shows the class distribution of the

query list.

Given a query (probe) protein chain, the goal of similarity search is to retrieve

proteins with similar structure from a database of protein structures. Another prop-

erty of similarity search is that the retrieved results are sorted according to a sim-

ilarity measure defined by the query method. A method with good sensitivity is

expected to return members of its superfamily at the top ranks of the query results.

CE computes a statistical significance score, thez-score, for the structural align-

ment of two protein chains. We have used thez-scores of the results to sort the

database proteins. CTSS uses a similarity measure defined by Equation 5.9. When

executing these queries we ran CE for all the database proteins for pairwise compar-

ison to the query protein. On the other hand, our method, CTSS, executes queries in

two phases: the screening phase, and the pairwise comparison phase. It is important

to note that in the screening phase we do not perform any detailed pairwise align-

ment. We use our hash index structure to find candidates of similarity by computing

the a-scores for all the database proteins (refer to Section 4.2.3 for explanation of

90

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

Method Name at rank 1 at rank< 5 at rank< 10 overall score
CTSS 55 73 82 0.646
CE 88 90 92 0.895

Table 5.4: The sensitivity assessment

thea-score).

For each of the 100 queries performed we registered the ranks at which a member

from the same superfamily could be found. Table 5.4.2 shows the results of the

similarity search queries. We counted the number of queries at which a member

at rank 1, below rank 5, and below rank 10 could be found (excluding the query

protein itself). In addition we computed the overall performance of the methods by

the same equation defined by Fischeret al. [27],
∑

1/ri/|L|, whereri denotes the

rank of the correct superfamily achieved by query proteini and|L| is the number of

query proteins in the benchmark: 100. For 92 of the queries, CE found a database

protein that is in the same superfamily with the query protein in the first 10 results.

CTSS accomplished this for 82 of the queries. The reason for CTSS performing

worse than CE is that, CTSS is more focused on finding small structural motifs

that may be detected in proteins from different superfamilies. Superfamily members

usually share structural similarity in the larger scale and this can be detected better

by CE. However, the performance of our method is still acceptable and as we show

in the following paragraphs CTSS performed queries much faster than CE.

To evaluate the efficiency of CTSS, we have measured query execution times.

The tests were run on a computer with dual AMD Athlon MP 1600+ processors

with 2 GB of RAM, running Linux 2.4.19. We have used 1GB as the maximum size

91

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

of memory allocation pool for the Java Virtual Machine executing the query pro-

grams. The source code of CE is available publicly. To rule out disk I/O in timings,

we have modified CE’s reading of the protein structures. I.e., when performing an

exhaustive search on a database of protein chains we load all proteins in the database

into memory and do not consider the loading time when measuring the timings for

CE.

Figure 5.7 shows the timing results. The timing for CTSS shows the total running

time of pruning and pairwise comparison phases. Notice that the y-axis is plotted

in log-scale. The average running time for CE is 11,877.42 seconds. The average

running time for CTSS is 323.17 seconds. On the average our method is 36.8 times

faster than the CE method. This is mainly because CE method need to do an exhaus-

tive search by aligning all 2939 proteins to the query protein pairwise, whereas our

method screens out 80% of the proteins very fast and performs pairwise queries for

only 20% of the database that survive the screening process.

5.4.3 Detailed Example Query Results

Other than the alignment quality, and query sensitivity and performance tests, we

have also performed more challenging queries for the protein chains 1faz:A and

1b16:A by using another data set that includes protein chains with less sequence

identity. The data set consists of a representative set of proteins selected using the

PDBSELECT method [41]. The PDBSELECT database is a subset of the structures

in the PDB that does not contain homologue sequences, i.e., no two proteins have

more than 25% sequence identity. As mentioned before, low sequence homologues

92

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

Figure 5.7: Timing results for the query dataset.

present challenges to structure alignment algorithms, as it is not possible to use

sequence similarity to predict structure similarity. There are 1949 protein chains in

that representative database (December 2002 version)2. Below, we present detailed

results from those queries.

For the protein chains 1faz:A and 1ytf:D, we have found that they share a Helix-

Turn-Helix motif, with length 42, and with RMSD 2.8Ao. Those structures share

only 1.9% sequence identity globally. The structural alignment program CE can find

this alignment with length 52, but with much higher RMSD of 4.4Ao. The result of

that alignment is depicted graphically in Figure 5.4. This figure and the subsequent

alignment figures show only the aligned parts of the protein chains. The unaligned

(non-similar) parts are not shown for a more clear presentation of the aligned parts.

We have also discovered some motifs not detected by other alignment tools, such

2http://homepages.fh-giessen.de/˜hg12640/pdbselect/

93

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

Figure 5.8: Helix-turn-helix match between 1faz:A and 1dj7:A.

as CE [80] or DALI [42]. For example, we have found the Helix-Turn-Helix motif

between 1faz:A and 1dj7:A, with length 38 and RMSD 3.68Ao, and with 2 gaps in

1dj7:A. Figure 5.8 shows the two proteins separately and the shared motif between

them.

Another motif that was not detected by others and discovered by our program

was between 1b16:A and 1h05:A. The length of that Helix-Strand-Helix motif is 35

with RMSD 3.26Ao. Figure 5.9 shows that motif.

We have conducted a comparison between 1b16:A and 1gci:. They share a

Helix-Strand-Helix-Strand (HEHE) motif and the length of the alignment was 46,

with RMSD 3.34Ao. Those protein chains have 8.5% sequence identity. That shared

94

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

Figure 5.9: Shared motif between 1b16:A and 1h05:A.

motif can be seen in Figure 5.10.

Our program does not only find small motifs between protein structures. In

our test cases we have also found longer structural alignments. 1b16:A and 1oaa:

alignment has length 209 with RMSD 4.6Ao.

Figure 5.11 shows the Strand-Helix-Strand motif discovered between 1b16:A

and 1qp8:A. We have found a substructure match of length 35, with RMSD 1.58Ao,

and with two gaps of length one. Those proteins share 8.1% sequence identity.

Finally, we have also conducted a detailed pairwise comparison test between the

protein structures 2cro:and 2wrp:R. Those structures were previously compared

by Pennec and Ayache [70]. We have found a longer motif between those structures

compared to what they reported and moreover our program can detect that shared

95

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

Figure 5.10: The helix-strand-helix-strand motif between 1b16:A and 1gci:.

substructure in just a fraction of a second (compared to 18 seconds reported in Pen-

nec and Ayache [70]). The alignment result can be seen in Figure 5.5.

5.5 Discussion

In this chapter, we have presented a new method for protein structure alignment.

Our method comprises a novel technique for extracting compact and localized shape

signatures for protein structures, an indexing component based on hashing to avoid

an exhaustive scan of the entire structure database, and a pairwise alignment method

for accurately aligning shape signatures even in the presence of small gaps.

The novelty of the proposed technique lies in the methods of feature design, ex-

traction, and smoothing. Together, these methods ensure the success of the ensuing

96

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

Figure 5.11: The strand-helix-strand motif between 1b16:A and 1qp8:A.

phases of protein structure screening and pairwise alignment. Extracting localized

features and embedding both geometric and biological information in the signature

are the major difference compared to other structural alignment methods. We have

also employed an efficient screening phase based on hashing followed by an accu-

rate pairwise alignment phase that can handle gapped alignments efficiently. Our

experiments showed that our technique is able to execute protein structure similar-

ity searches efficiently and discover biologically meaningful motifs shared between

protein structures that were overlooked by other methods.

However, one question that comes to mind is how descriptive these localized

signatures(O(n)) are in representing the structure of a protein? It is a fair question,

especially when one considers that other existing algorithms generate signatures in

97

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

the order ofO(n2) or O(n3) to capture the structure of a protein of lengthn. Here,

we have the support of the theory of differential geometry, which states that space

curves generating the same curvature and torsion values are isomorphic. It is true

that the existence of gaps along the alignment of curves fails that theory. However, as

the computation of curvature and torsion is a localized process, local isomorphism

can still be detected based on such localized signatures. CTSS does not address

the problem of finding alignments consisting of multiple structural fragments that

are separated by large gaps. Obviously, that problem, which is tried to be solved

by other methods, requires more computation (NP-hard). However, we present an

approximation to that problem and this helps us identify small structural motifs very

quickly and accurately. Our initial experiment results proved that our technique is a

promising one. We have been able to find shared motifs between protein structures

efficiently.

We are currently investigating indexing methods other than hashing for faster and

more accurate screening of candidates of structural similarity. Thea-score, defined

to assess the significance of a match (in the pruning phase), has room for improve-

ment. We will work on finding methods to incorporate thestatisticalsignificance of

the accumulated votes to thea-score.

The analogy between sequence and structure comparison introduced by our method

promises other benefits. Existing sequence comparison algorithms like BLAST [1],

which can conduct very efficient sequence similarity searches, can be tailored to

conduct structure similarity searches (or multiple structural alignments) with the use

of our localized shape signatures that is a one to one mapping to the sequence (i.e.,

98

Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

each residue has one localized signature value).

99

Chapter 6

Simultaneous Protein Sequence and
Structure Similarity Search

The most profitable research in bioinformatics often results from integrating mul-

tiple sources of data [29]. For instance, the 3D coordinates of a protein are more

useful if combined with data about the protein’s function, occurrence in different

genomes, and interactions with other molecules. In this way, individual pieces of

information are put in context with respect to other data.

In this chapter, we consider the problem of similarity searches on protein databases

based on both sequence and structure information simultaneously [10]. As the num-

ber of known protein structures increases conducting similarity searches in a reason-

able amount of time becomes more important. Current techniques used for similarity

searches usually involves a sequence similarity query followed by a structure sim-

ilarity query for the top results of the sequence query results. However, we claim

that if a simultaneous query that incorporates both the sequence and structure infor-

mation is more efficient and less error prone than a sequence query followed by a

100

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

structure query.

Our technique presented in this chapter extracts feature vectors from both the

sequence and structure components of the proteins. These feature vectors are then

combined and indexed using a novel multi-dimensional index structure. For a given

query, we employ this index structure to find candidate matches from the database.

We develop a new method for computing the statistical significance of these candi-

dates. The candidates with high significance are then aligned to the query protein

using the Smith-Waterman technique to find the optimal alignment. The experimen-

tal results show that our method can classify up to 97 % of the superfamilies and up

to 100 % of the classes correctly according to the SCOP classification. Our method

is up to 37 times faster than CTSS (that was detailed in Chapter 5), combined with

Smith-Waterman technique for sequences.

6.1 Introduction

The industrialization of molecular biology research has resulted in an explosion of

bioinformatics data (DNA and protein sequences, protein structures, gene expression

data and genome pathways). Each of these data present a different type of informa-

tion about the functions of the genes and the interactions between them. Most of the

earlier work focuses on only one type of data since each type of data has a differ-

ent representation and the means of similarity varies for each data type. Combined

learning from multiple types of data will help biologists achieve more precise results

for several reasons: a) The probability of having false positive results due to errors

101

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

in data generation decreases since it is less likely for the same error to appear in

all the datasets. b) More than one aspect of the biological objects can be captured

simultaneously.

As an example, for proteins, functionally similar homologs can be found by the

sequence similarity of the proteins. On the other hand, distant homologs that have

similar functionality can be revealed by the 3-D structure similarity of the proteins.

A combined search based on both sequence and structure can find the entire func-

tionally related set of proteins for a given query protein. Such a search would reveal

more precise information about the function and the classification of a new protein.

Moreover, new insights on the relationship between sequence and structure can be

gained with the help of combined searches.

6.1.1 Problem definition

In this chapter, we consider the problem of joint similarity searches on protein se-

quences and structures. A protein is represented as an ordered list of amino acids,

where each amino acid has a sequence and a structure component (the terms amino

acid and residue are used interchangeably). The sequence component of an amino

acid is its residue name indicated by a one letter code from a 20 letter alphabet. The

structure component consists of the Secondary Structure Element (SSE) type of that

residue (α-helix, β-sheet, or turn), and a 3-D vector which shows the position of its

carbon-alpha (Cα) atom.

A query is specified by a four-tuple<Q, εq, εt, τ>, whereQ is a query protein,

εq ∈ [0, 1] and εt ∈ [0, 1] are the distance thresholds for sequence and structure

102

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

components, andτ is the boolean value regarding the use of SSE information. A

sample query may be as follows:

“Find the protein chains in PDB that have sub-patterns whose sequence differs

by at most 20 % and structure differs by at most 5 % from that of 1f53-A, and the

matching residues are of the same type of SSEs as that of 1f53-A.”

In this example, the query tuple is<Q = 1f53-A, εq = 0.2, εt = 0.05, τ =

true>. The values forεq andεt, 0 ≤ εq, εt ≤ 1, denote the importance of the se-

quence and structure information to the user respectively. Smaller values for these

parameters results in closer matches. Similarly,τ = true means that the types of the

SSEs should match andτ = falseignores the SSE types.

6.1.2 Related work

It has been one of the most important goals in molecular biology to elucidate the re-

lationship among sequence, structure, and function of proteins [90, 39, 76]. A hand-

ful of algorithms and tools have been developed to analyze sequence and structure

similarities between the protein molecules. These methods are usually focused on

either the sequence (Smith-Waterman (SW) [84], BLASTP [1, 34], PSI-BLAST [3])

or the structure information (VAST [60], DALI [42], CE [80], PSI [15], CTSS [17])

for finding similarities between different proteins.

On the other hand, a few tools have been developed for providing integrated en-

vironments for analyzing the sequence and structure information together. Protein

Analyst [75], 3DinSight [4], and the integrated tools by Huanget al. [46] are among

those tools. They provide a combination of separate (but cooperating) programs for

103

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

integration of sequence and structure analysis under a single working environment.

The components of these systems are usually run one after another, with one’s re-

sults being the input to the other. Unlike these tools, JOY [63] executes a single

alignment program (sequence or structure), and it also provides additional informa-

tion (e.g., structural features such as SSE type) on the resulting alignments in terms

of annotations.

Although these tools provide integration of multiple types of data, they perform

search on only one type of data at a time. We believe that integration of multiple

data sources at indexing and search level would provide more precise and efficient

tools.

6.1.3 An overview of our method

We extract feature vectors on sequence and structure components of proteins by

sliding a window on each protein in the database. Each feature vector maps to a point

in a multi-dimensional space. This multi-dimensional space consists of orthogonal

dimensions for sequence and structure. Later, we partition the space with the help

of a grid and index these points using Minimum Bounding Rectangles (MBRs).

Given a query, our search method runs in three phases:

Phase 1 (index search):Feature vectors (i.e., points) are extracted from the query

protein. For each of these query points, all the database points that are withinεq and

εt distance along the sequence and the structure dimensions are found using the in-

dex structure. Each such point casts a vote for the protein to which it belongs as in

geometric hashing [89].

104

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

Phase 2 (statistical significance):For each database protein, a statistical signifi-

cance value is computed based on the votes it obtained in Phase 1 and its length.

Phase 3 (post-processing):The topc proteins of highest significance are se-

lected, wherec is a predefined cutoff. The optimal pairwise alignment of thesec

proteins to the query protein are then computed using the SW technique. Finally,

the Cα atom of the matching residues are super-positioned using the least-squares

method by Arunet al. [5] to find the optimal RMSD (Root Mean Square Distance).

We name our method asProGreSS(Protein Grep by Sequence andStructure)

since it enables queries based on sequence and structure simultaneously.

The contributions of this work can be summarized as follows:

1. A new query model that incorporates both sequence and structure is defined.

2. A new method that maps protein sequences into a multi-dimensional space,

using a sliding window, based on a given score matrix is developed.

3. A novel index structure that stores synopsis for sequence and structure of

proteins simultaneously is proposed.

4. A new method that computes the statistical significance of the matches in the

index structure is developed.

6.2 Feature vectors and index construction

In this section, we develop new methods to extract features for protein structures and

sequences. Feature vectors for structures are computed as the curvature and torsion

values of the residues in a sliding window. Curvature and torsion values provide

105

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

a necessary and sufficient condition for the isomorphism of two space curves [17].

Feature vectors for sequences are computed using a sliding window and a score

matrix that defines the similarity between all the amino acids. We also propose a

novel index structure to provide efficient access to these features.

6.2.1 Feature vectors for structure

We slide a window of a pre-specified size,w, on the proteins (i.e., each positioning

of the window containsw consecutive residues). We will discuss the choice ofw

later. Figure 6.1(a) depicts two positionings of the window. For a given window,

the curvature and torsion values for each residue in that window is computed. The

resulting vector contains 2w values since two values are stored per residue in the

window. This vector maps to a point in a 2w-dimensional space. Having a large

number of dimensions increases the cost for computing the similarity [9] and the

cost for storing the vectors. Therefore, we reduce the number of dimensions to a

smaller number,dt, using the Haar wavelet transformation, at the cost of reduced

precision. We usedt = 2 in our experiments. The transformed vector is normalized

to [0,1]dt space. Along with each feature vector, we also store the SSE types of the

residues.

As w increases, the feature vector contains information about the correlation

between larger number of residues. Thus the similarity between two feature vectors

implies longer matches. On the other hand, very large values forw may cause false

dismissals since shorter matches may be discarded due to their neighboring residues.

We setw = 3 for our experiments.

106

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

6.2.2 Feature vectors for sequence

The similarity between two amino acids of protein sequences is usually defined us-

ing score matrices (e.g., PAM and BLOSUM). A score matrix consists of 20 rows

and columns; one for each amino acid. The entries of a score matrix denote the score

for aligning a pair of residues. If two amino acids are similar (e.g., having similar

chemical properties or being close in mutation cycle), then the score for that pair is

large, otherwise it is small.

Given a score matrixM , we call each row ofM thescore vectorof the amino

acid corresponding to that row. Thus, each entry of this vector shows the similarity

of that amino acid to one of the 20 possible amino acids. We define the distance

between two amino acids as the Euclidean distance between their score vectors.

This is justified, because if the score of aligning two amino acidsx andy is high

in a score matrix, then they are similar. Therefore, ifx is similar (or dissimilar) to

another amino acidz, theny is also similar (or dissimilar) toz.

Similar to protein structures, we extract feature vectors for protein sequences by

sliding a window of lengthw (see Figure 6.1(b) forw = 3.). Each positioning of the

window containsw amino acids. We append the score vectors of these amino acids

in the same order as they appear in the window to obtain a vector of size 20w. This

vector maps to a point in 20w-dimensional space. Since the number of dimensions

is too large for efficient indexing even for small values ofw, we reduce the number

of dimensions to a smaller number,dq, using Haar wavelets. Similar to the structure

component, we recommenddq = 2 for optimal quality/time trade-off. The resulting

vector is then normalized to[0,1]dq space. We again choosew = 3.

107

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

Figure 6.1: Feature vectors for (a) protein structure, and (b) protein sequence.

6.2.3 Indexing feature vectors

So far we have discussed how to extract feature vectors for structure and sequence

components of the proteins separately. In this section, we will discuss how to build

an index structure on these feature vectors.

In order to search the protein database based on both sequence and structure,

we need to combine the feature vectors for these two components. Since the same

window size is used for both the components, every positioning of the window pro-

duces onedt-dimensional feature vector for its structure component and onedq-

dimensional feature vector for its sequence component. We append these two vec-

tors to obtain a single (dt+dq)-dimensional vector. The resulting vector is called the

combined feature vector. Since the entries of each of the feature vectors are normal-

ized to the[0,1] interval, the combined feature vector resides in a[0,1]dt+dq space

108

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

/* Let D be a dataset that contains proteins,
w be the window size,
V be the volume cutoff. */

Procedure CreateIndex(D, w, V)
for each proteinx ∈ D

for each positioning of window of lengthw
p := combined frequency vector for current window;
C := cell that containsp;
if C = ∅ then

B.Lower := p;
B.Higher := p;
InsertB into C;

else
B := argminB∈C{volume(B ∪ p)};
if volume(B ∪ p) ≤ V then

B := B ∪ p;
else

B.Lower := p;
B.Higher := p;
InsertB into C;

endif
endif

endfor
endfor

Figure 6.2: Algorithm for building the index structure.

(called thesearch space).

The index structure is built by first partitioning the search space intoη equal

pieces along each dimension. The resulting grid containsηdt+dq cells of length1/η

along each dimension. (We will discuss the choice ofη in Section 6.3.1.) Once the

space is partitioned, a window of lengthw is slid on each protein in the database.

For each positioning of the window, the combined feature vector is computed. Each

combined feature vector maps to a pointp in one of the cells of the grid. For each

such point, we check whether that cell is empty. If it is empty, we construct an MBR

109

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

se
qu

en
ce

0 1 2 3

7654

8 9 11

15141312

10

structure0 1

1

Figure 6.3: A layout of the MBRs and data points on the search space forη = 4 in
2-D.

that contains onlyp. Otherwise, we find the MBRB in that cell whose volume

becomes the smallest after extending it to containp. If the volume ofB, after its

expansion, is less than a pre-computed volume threshold,V , then we extendB and

insert p into B, otherwise we create a new MBR that covers onlyp. Figure 6.2

presents the algorithm that constructs the index structure. Figure 6.3 depicts a layout

of the search space and the MBRs built on the data points forη = 4 in 2-D. In this

example,dt = dq = 1.

As V decreases, the MBRs in the index structure becomes more compact. On

the other hand, space cost and running time of the index structure increases since the

number of MBRs increases. In our experiments, we observed the best performance

for V = (1/2η)dt+dq .

110

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

6.3 Query method

Given a query<Q, εq, εt, τ>, whereQ is a query protein,εq ∈ [0, 1] andεt ∈ [0, 1]

are the distance thresholds for sequence and structure, andτ is the boolean value

regarding the use of SSE information, our search algorithm runs in three phases: 1)

index search, 2) statistical significance computation, and 3) post-processing. In this

section, we will discuss each of these phases. We will assume that the index structure

is built using a user specified score matrix for sequence (e.g., PAM or BLOSUM),

andw for the window size.

6.3.1 Index search

Each residue of the query proteinQ consists of a sequence component and a struc-

ture component. We extract combined feature vectors fromQ by sliding a window

of lengthw on it. Each of these combined feature vectors defines a query point in the

search space. Figure 6.4 shows a sample query point in a 2-D search space, where

the horizontal axis is the structure dimension and the vertical axis is the sequence

dimension. In this figure, the search space is split into 16 cells numbered from 0

to 15. The query point falls into cell 10. We want to find the database points that

are within anεt distance along the structure dimensions andεq distance along the

sequence dimensions from the query point. In Figure 6.4, we are interested in the

points in the shaded region. Note that ifτ = true, then we only consider the database

points that have the same SSE type as the query point.

For each query point, we construct a query box by extending it byεt and byεq

111

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

se
qu

en
ce

ε q

ε q

ε tε t

0 1 2 3

7654

8 9 11

15141312

10

structure0 1

1

Figure 6.4: A sample query point and its query box forη = 4 in 2-D.

in both directions along the structure and the sequence dimensions respectively (see

Figure 6.4). Next, we find the cells in the search space that overlap the query box.

If a cell does not overlap the given query box, then it is guaranteed that it does not

contain any database points that are in the query box. A cell can overlap a query

box in two ways: 1) it is contained in the query box (e.g., cell 10 in Figure 6.4),

or 2) it partially overlaps the query box (e.g., cells 5, 6, 7, 9, 11, 13, 14, and 15 in

Figure 6.4).

1) If a cell is contained in the query box, all the points in that cell are guaranteed

to overlap the query box. Therefore, we increment the vote to the database proteins

that contains a data point in that cell for each such data point (ifτ = true, then the

vote is added only for the points that have the same SSE type as the query point).

112

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

2) If a cell partially overlaps the query box, then we check all the MBRs in that cell.

If an MBR is contained in the query box (e.g., the MBR in cell 10), each point in

that MBR contributes a vote. If an MBR partially overlaps the query box (e.g., the

MBR in cell 15), then we find the points in that MBR that are in the query box to

find the votes. If an MBR does not overlap the query box (e.g., the MBR in cell 6),

we ignore all the points in that MBR. This method is more precise than geometric

hashing [89], because for a given query point it inspects the neighboring cells as

well as the cell into which that query point falls.

The number of partitionsη in the search space affects the run time of the index

search. Asη decreases, each cell contains more MBRs. Therefore, if a query box

partially overlaps a cell, then more MBRs need to be tested for intersection with the

query box, thus increasing the search time. For example, ifη = 1, then there is only

one cell which is equal to the search space. So, all MBRs are tested for intersection

for all the query boxes. On the other hand, having too many partitions have two

disadvantages: 1) most of the cells will be sparse or empty incurring space cost.

2) the volume of the boxes will be very small since each cell will get smaller. This

increases the total number of MBRs, and hence the number of MBRs for intersection

test. In our experiments we recommendη = 10 for optimal results.

6.3.2 Statistical significance computation

Once the index structure is searched, we obtain a number of votes for each protein in

the database. The total number of votes for a proteinx shows the number of query

points that are close tox’s points. Assume that proteinsx andy have 80 and 200

113

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

points in the index structure respectively. For a given query, assume that bothx and

y have 100 votes. We would like to determine which of these proteins is more likely

to be a better match to the query. Intuitively, the answer isx since it has smaller

number of points, and thus it is less likely forx to have the same number of votes

asy. We define thep-valueof a match as theunexpectednessof that result. Smaller

p-values imply better matches.

Definition 1 Given a proteinx with n points in the index structure andv votes for

a given query, thep-valueof x for that query is defined as the probability of having

at leastv votes for a randomly generated protein withn points in the search space.

Next, we discuss the computation of p-values. Consider a protein in the database

that is represented in the search space usingn points (n = length of protein – win-

dow size + 1). Let the protein receivev votes for a given query. LetX be a random

variable representing the number of query boxes that overlap with a randomly se-

lected point in the search space. LetµX andσ2
X be the mean and the variance of

X. The total number of query boxes that overlap withn randomly selected points

can be computed asXn = X + X + · · · + X (exactlyn Xs). SinceXs are inde-

pendent and identically distributed random variables, using Central Limit Theorem,

one can show thatXn is normally distributed with meanµXn = n · µX and variance

σ2
Xn

= n · σ2
X . Thus, if µX andσ2

X are known, one can compute the distribution

of Xn using a normal distribution. Since the protein hasv votes, its p-value can be

computed asP (Xn ≥ v).

The computation of p-values requires the values ofµX andσ2
X . The distribution

of X depends on the distribution of query points, and the distance thresholdsεq and

114

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

εt. We compute the values ofµX andσ2
X by generating a large number of random

points in the search space and counting the number of query boxes that it overlaps.

In our experiments, we generate 10,000 random points for this estimation.

6.3.3 Post-processing

After the statistical significances of all the proteins are computed, topc proteins with

the highest significance are selected as candidates for post-processing, wherec is a

predefined cutoff. The purpose of post-processing is to find the optimal alignment

between the query protein and the most promising proteins. Letq be the query

protein. For every proteinx in the candidate set, post-processing runs in two steps:

Step 1:We build a|x| × |q| score matrix,Mstr, for structure component, where

|x| and|q| are the number of residues inx andq as follows: For each residue inx

andq, we construct a 2-D vector as its curvature and torsion. Each entry ofMstr is

then computed as the negative of the Euclidean distance between the<curvature,

torsion>-vector of the corresponding residues. This strategy is also used by CTSS

as described in Chapter 5. For the sequence component, we create another|x| ×
|q| score matrix,Mseq, such that∀i, j the entryMseq[i, j] is equal to the score of

aligning theith letter ofx with thej th letter ofq in the underlying score matrix (e.g.,

BLOSUM62). Later, a combined score matrixMcom = (1− εt) ·Mstr + (1− εq) ·Mseq

is computed. Here, the weights(1 − εt) and(1 − εq) represent the importance that

the user gives to each of the components. The optimal alignment betweenx andq is

then found by running the Smith-Waterman dynamic programming usingMcom.

Step 2:The alignment obtained in Step 1 defines a one-to-one mapping between

115

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

a subset of residues ofx andq, and is optimal with respect toMcom. Finally, we find

the 3-D rotation and translation ofx that gives the minimum RMSD toq by using a

least-squares fitting method [5].

6.4 Experimental evaluation

We used single domain chains in our experiments. We downloaded all the protein

chains in PDB (http://www.rcsb.org/pdb) that contain only one domain

according to VAST and SCOP [64] classifications. We only considered proteins

that are members of one of the following SCOP classes: allα, all β, α+β andα/β.

We identified the superfamilies (according to SCOP classification) that have at least

10 representatives in this dataset. There are 181 such superfamilies. We created

a databaseD of size 1810 proteins by including 10 proteins from each of these

superfamilies. We formed a query set,DQ, by choosing a random chain from each

of the 181 superfamilies inD. DQ is large enough to sampleD since it contains one

protein from each superfamily. We ran a number of experiments on these sets to test

the quality and the performance of ProGreSS. The tests were run on a computer with

two AMD Athlon MP 1600+ processors with 2 GB of RAM, running Linux 2.4.19.

In the rest of this section, we usew for the window size,c for the cutoff, εt

andεq for the structure and sequence distance thresholds,τ for the SSE type match

choice, andη for the number of partitions. We employ the BLOSUM62 score matrix

for sequences in all of our experiments. The number of dimensionsdq anddt for

sequence and structures are both set to 2.

116

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

6.4.1 Quality test

Our first experiment set inspects the effect of various indexing and search parameters

on the quality of our index search results. We classify a given query protein into one

of the superfamilies and classes using thec best seeds as follows. The logarithms

of the p-values of the matches in topc results in each superfamily are accumulated.

The query protein is classified into the superfamily that has the largest magnitude

of this sum. We use the same technique to classify the query protein to one of the

four SCOP classes: allα, all β, α+β andα/β. We do not report the classification

results for folds since they were similar to that for superfamilies. Since the queries

are selected from the database, in order to be fair, we do not take into account the

query protein itself if it is among the topc results. We will only report the results for

τ = true, since it usually produced slightly better results thanτ = false.

Figure 6.5 shows the percentage of query proteins correctly classified to classes

(CL) and superfamilies (SF) for different values ofc, whereεt = εq = 0.01 and 0.02,

andw = 3. In all these experiments, we obtained the best results forc = 2 and 3.

We achieved up to 96 % and 94 % correct classification for classes and superfamilies

respectively. Asc increases, our method starts retrieving proteins from other classes

and superfamilies. We setc = 3 for the rest of the experiments.

Figure 6.6 plots the percentage of correctly classified proteins for varying dis-

tance thresholds whenεt = εq and w = 3. The purpose of this experiment is to

understand what a good distance threshold should be when sequence and structure

have equal importance. The graph shows that the accuracy of ProGreSS increases

when distance threshold increases from 0.005 to 0.01. Atεt = εq = 0.01, ProGreSS

117

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

2 4 6 8 10 12 14 16 18 20
40

50

60

70

80

90

100

Cutoff (c)

%
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

ns

SF:ε
t
=ε

q
=0.010

SF:ε
t
=ε

q
=0.020

CL:ε
t
=ε

q
=0.010

CL:ε
t
=ε

q
=0.020

Figure 6.5: Percentage of query proteins correctly classified for different values of
c.

achieves 96 % and 94 % correct classification for classes and superfamilies. As the

distance threshold increases, the accuracy of ProGreSS drops. This is because it

starts retrieving distant proteins.

Figure 6.7 shows the percentage of correctly classified superfamilies for differ-

ent values ofεt whenεq is fixed and for different values ofεq whenεt is fixed, for

w = 3. The purpose of this experiment is to see the effect of distance threshold for

each of the structure and sequence components separately. Whenεq is fixed, asεt

decreases, the classification quality of ProGreSS increases. This implies that our

method can find better results when the distance threshold is small. The highest

accuracy obtained is 62 %. Forεq = 1.0 (i.e., when the sequence component is ig-

nored), ProGreSS performs the worst. This is an important result since it shows that

118

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100

Distance threshold (ε
t
=ε

q
)

%
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

ns

SF
CL

Figure 6.6: Percentage of query proteins correctly classified for different values of
distance threshold whenεt = εq.

searches based on structure alone would incur more false positives than the searches

based on both sequence and structure. Whenεt is fixed, asεq decreases, ProGreSS

classifies more proteins correctly. In this case, 94 % of the proteins are correctly

classified into their superfamilies. Our method performs the worst whenεt = 1.0.

This result leads to two important conclusions: 1) Searching by sequence informa-

tion alone is worse than searching based by sequence and structure simultaneously.

2) For purposes of classification, our extraction of feature vectors for sequence is

better than those for structure.

Figure 6.8 plots the effect of the window size on the classification quality of

ProGreSS. The best results are achieved atw = 3. At this window size, ProGreSS

can classify 100 % and 97 % of the classes and superfamilies correctly. ProGreSS

119

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

90

100

Distance threshold (ε
t
 or ε

q
)

%
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

ns

SF:ε
q
=0.05,ε

t
∈[0,1]

SF:ε
q
=1.00,ε

t
∈[0,1]

SF:ε
t
=0.05,ε

q
∈[0,1]

SF:ε
t
=1.00,ε

q
∈[0,1]

fixed structure,
varying sequence

fixed sequence,
varying structure

sequence
alone

structure
alone

Figure 6.7: Percentage of query proteins correctly classified for different values of
εt (εq) whenεq (εt) is fixed.

performs worse for smaller window sizes since correlations between the consecu-

tive residues are not reflected to the index structure. Asw becomes larger than 3,

ProGreSS starts to miss some of the good results since shorter local matches are not

preserved for largew.

Finally, Figure 6.9 compares the accuracy of our technique with CTSS. We show

the number of correct proteins (those from the same superfamily as the query pro-

tein) for different values ofc. CTSS finds 3 out of 10 correct proteins in the first 100

candidates. On the other hand, our method finds the same number of proteins within

the first 4 candidates.

120

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

0 5 10 15 20
10

20

30

40

50

60

70

80

90

100

Window size (w)

%
 o

f c
or

re
ct

 c
la

ss
ifi

ca
tio

ns

SF:ε
t
=0.05,ε

q
=0.01

CL:ε
t
=0.05,ε

q
=0.01

Figure 6.8: Percentage of query proteins correctly classified for different values of
w.

6.4.2 Performance test

In this experiment set we compare the performance of our method to CTSS. In order

to have fair results, as described in Chapter 5, we run CTSS in two phases: 1)

the topc candidates are found using the original CTSS code and each candidate is

aligned to the query by using SW based on its structure score matrix. 2) The optimal

sequence alignment of all the database proteins to the query are determined using

SW alignment. For CTSS and ProGreSS, we choosec = 100 and 4 respectively.

This is because the quality of their candidates are similar for these values ofc (see

Figure 6.9). We run queries for all of the 181 proteins and align only the candidate

proteins to each of the query proteins.

Figure 6.10 shows the average time spent by CTSS and our method. The run

121

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

0 50 100 150
1

2

3

4

5

6

7

Cutoff (c)

N
um

be
r

of
 P

D
B

s
fr

om
 th

e
sa

m
e

su
pe

r
fa

m
ily

ProGreSS
CTSS

Figure 6.9: Number of proteins found from the same superfamily as the query pro-
tein for ProGreSS and CTSS for different values ofc.

times for CTSS and SW are 38 and 18 seconds respectively. The graph for CTSS+SW

is flat since these methods are independent ofη. ProGreSS runs faster than CTSS+SW

for all values ofη. For η = 10, ProGreSS runs in only 1.5 seconds (i.e., 37 times

faster than CTSS+SW). Asη gets smaller, ProGreSS runs slower. This is because

when a query box partially overlaps a cell, more MBRs are tested for intersection.

As η becomes larger than 10, the performance of ProGreSS drops since the total

number of MBRs in the index structure increases.

122

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

 1

 10

 100

 0 2 4 6 8 10 12 14 16

T
im

e
[s

ec
]

Number of partitions

CTSS + SW
ProGreSS

Figure 6.10: Comparison of running times of ProGreSS and CTSS+SW.

6.5 Discussion

In this chapter, we considered the problem of joint similarity searches on protein

sequences and structures. We proposed a sliding-window–based method to extract

feature vectors on the sequence and structure components of the proteins. Each fea-

ture vector is mapped to a point in a multi-dimensional space. We developed a novel

index structure by partitioning the space with the help of a grid, and clustering these

points using Minimum Bounding Rectangles (MBRs). Our search method finds the

number of feature vectors that are similar to the feature vectors of a given query for

each database protein. We also proposed a new statistical method to compute the

significance of the results found at the index search phase. The results are sorted

according to their significance and the most promising results are aligned using the

Smith-Waterman (SW) method [84] and the least-squares method by Arunet al. [5]

123

Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

to find the optimal alignment.

According to the experimental results on a set of representative query proteins,

ProGreSS classified all of the classes and 97 % of the superfamilies correctly. ProGreSS

ran 37 times faster than CTSS, an efficient structure search technique described in

Chapter 5, combined with the SW technique for sequences.

Combined learning from multiple data sources is an important research problem

since each data provides a correlated yet different type of information about the

protein. ProGreSS provides the user a wide flexibility of search parameters to assign

weights on each of these data types. We believe that, the methods discussed in this

chapter are an important step in understanding the functions of proteins better, and

will be widely applicable in the area of proteomics.

124

Chapter 7

Automated Protein Classification
Using Consensus Decision

A global view of the protein structure universe can be established with the help of

structural classification databases [44, 68, 64]. Classification databases are used to

define the relationships—in terms of sequence, structure, and function—of proteins.

Of these classification schemes, SCOP [64] is created mainly by manual inspection.

This is perhaps the reason that it is accepted by many researchers as the most accu-

rate classification scheme (or the ground truth). However, SCOP is updated every six

months, since it is quite a labor intensive process to manually place a protein struc-

ture into the correct category in a hierarchical classification of about 25K protein

structures as of July 2004. Furthermore, the current 100 protein per week growth

rate means about 2600 protein structures in six months. Therefore, if one requires

a dynamic, up-to-date view of the protein structure universe in a timely manner,

accurate automated classification techniques should be developed to aid in manual

classification process.

125

Chapter 7. Automated Protein Classification Using Consensus Decision

In this chapter, we propose a novel technique for automatically generating the

SCOP classification of a protein structure with high accuracy. High accuracy is

achieved by combining the decisions of multiple methods using the consensus of a

committee (or an ensemble) classifier. Our technique is rooted in machine learning

which shows that by judicially employing component classifiers, an ensemble clas-

sifier can be constructed to outperform its components. We use two sequence- and

three structure-comparison tools as component classifiers. Given a protein struc-

ture, using the joint hypothesis, we first determine if the protein belongs to an ex-

isting category (family, superfamily, fold) in the SCOP hierarchy. For the proteins

that are predicted as members of the existing categories, we compute their family-,

superfamily-, and fold-level classifications using the consensus classifier. We show

that we can significantly improve the classification accuracy compared to the indi-

vidual component classifiers. In particular, we achieve error rates that are 3-12 times

less than the individual classifiers’ error rates at the family level, 1.5-4.5 times less

at the superfamily level, and 1.1-2.4 times less at the fold level.

7.1 Introduction

A global picture of the protein universe is necessary to gain a better understanding

of how proteins function. Numerous classification schemes have been developed for

defining the relationships—in terms of sequence, structure, and function—of pro-

teins. Protein classification schemes employ different heuristics, similarity metrics,

and different degrees of automation [44, 68, 64]. Of these classification schemes,

126

Chapter 7. Automated Protein Classification Using Consensus Decision

SCOP [64] is created mainly by manual inspection. This is perhaps the reason that

it is accepted by many researchers as the most accurate classification scheme (or the

ground truth).

With the exponential growth in the number of newly-discovered protein struc-

tures, the view of the protein universe is constantly changing. In order to under-

stand the functions of proteins and their relationship to each other, classifications of

proteins should be updated frequently. SCOP, being built by labor-intensive visual

inspection, is updated only every 6 months. On the other hand, automated classi-

fication schemes have the advantage that the view of the protein universe can be

updated frequently to include newly-discovered protein structures in a timely man-

ner. Hence, there have been efforts to infer the SCOP classification of a protein

structure by using the results of an automated method [32]. However, the validity of

such an approach is bound by the accuracy of the method employed.Our research

is hence geared toward providing timely and accurate SCOP classification results in

an automated manner.

Our approach is rooted in consensus building in machine learning, which shows

that an ensemble classifier with a better performance can be constructed as a commit-

tee of component classifiers [23, 61, 78]. A similar idea has been applied to the fold

recognition problem by Lundström et al. [59]. By using a neural-network-based con-

sensus predictor they were able to improve the prediction accuracy. However, their

goal in fold recognition was to predict thestructureof a protein sequence rather than

its SCOP classification. Furthermore, using only the sequence information is insuffi-

cient for ensuring accurate SCOP classifications, particularly for remote homologs.

127

Chapter 7. Automated Protein Classification Using Consensus Decision

The problem of automated generation of SCOP classification has been shown

to be a difficult one. In a recent study, Portugaly and Linial estimated the prob-

ability of a protein sequence to have a new fold [71]. Of the protein sequences

that they assigned a 90% probability to have a new fold, only half of them actually

had new folds. In another work, Lindahl and Elofsson compared several sequence-

comparison methods for classification of protein sequences at the family, superfam-

ily, and fold levels [56]. They observed that the best-attained accuracy dropped from

75% to 29% from the family to the superfamily level and down further to 15% for the

fold level. After analyzing the results of several methods, the authors concluded that

a combination of methods may improve the performance. However, they reported

such an improvement was not possible as they achieved only limited success.

Nonetheless, our goal is different: prediction of SCOP classification of a newly-

discovered protein structure. Both sequence and structure information are available

for this task, and we show in this chapter that an ensemble classifier can outperform

individual components if (1) a correct information-aggregation framework is used

and (2) the right component classifiers are employed. In particular, we show that it

can be beneficial in using a consensus decision framework, which is grounded in ma-

chine learning, with component classifiers that address both sequence and structure

information for predicting accurate SCOP classifications for proteins with known

structures. We employ adecision treeapproach to combine classification decisions

made by two sequence-based, and three structure-based classifiers. Given a recently-

solved protein structure, we are able to to predict its SCOP classification with high

accuracy, using a consensus decision made by these five classifiers.What is signif-

128

Chapter 7. Automated Protein Classification Using Consensus Decision

icant is that the boosted accuracy numbers are close to the theoretically maximum

performance achievable using such a consensus building framework.

The remainder of this chapter is organized as follows. In Section 6.2, we define

the problem and describe how a sequence/structure similarity search method can be

used as a classifier. In Section 6.3, we review the sequence- and structure-based

classifiers we have used in our framework, and compare their relative consistency In

Section 6.3.2 we analyze the classification performance of individual methods. We

show that it is possible to develop a better classifier with higher accuracy by com-

bining the decisions of individual methods. In Section 6.4, we propose a method

for building a consensus classifier based on the idea of decision trees from machine

learning. In Section 6.5, we evaluate the performance of our algorithm using differ-

ent versions of the SCOP. We conclude with a brief discussion.

7.2 Problem Definition

The main questions to be answered when classifying a novel protein structure are:

i. Does this protein belong to an existing category (family/superfamily/fold)

in SCOP hierarchy, or does it need a new category to be defined?

ii. If this protein belongs to an existing category, what is its classification (la-

bel)?

The SCOP database uses a four-level taxonomy: class, fold, superfamily, and

family. Eachdomainin a protein structure is assigned to one category in each of

129

Chapter 7. Automated Protein Classification Using Consensus Decision

these four levels. In this chapter, for the sake of uniformity, we have used single

domain proteins. Therefore, the wordprotein is used instead ofdomain. The top

level of SCOP,class, is defined by the number of secondary structures in the proteins

and their general layout. Since the class label can be assigned automatically and the

assignment does not present a significant challenge, we do not consider it in our

classifications.

At the family level, proteins are assigned to the same SCOP family if they have

a high sequence identity (≥30%), or they perform similar functions but have a rela-

tively lower sequence similarity (≥15%). So the main similarity measure at the fam-

ily level is sequence similarity. Thus, we would expect that sequence-comparison

tools are more appropriate than structure-comparison tools as component classifiers

for automated SCOP classification at the family level. At the superfamily level,

though, distant similarities are considered. Proteins in the same superfamily proba-

bly have evolutionary relationships that are inferred by structural similarities rather

than sequence similarities. Hence, we would expect structure-comparison tools to be

more successful than sequence-comparison tools at this level. The fold level is the

most blurry level of all. At this level, proteins are grouped together not because they

show significant similarity, but because they share similarity in the arrangement of

their secondary structures. Remote structure similarity is the major similarity met-

ric at the fold level. Thus, structure-comparison tools are expected to outperform

sequence-comparison tools at this level.

These three levels of classification are not independent of each other. We have

a hierarchical scheme where each protein is classified into a family which in turn

130

Chapter 7. Automated Protein Classification Using Consensus Decision

belongs to a superfamily that is a subclassification of the fold category. Assigning a

superfamily to a protein which possesses more than a 30% sequence identity to some

of the proteins in the database is a trivial task, since we can accurately assign a family

to that protein (based on sequence similarity). Superfamily and fold assignments are

inherent in this assigned family. In order to extract true performances at different

levels, we have to make a complete separation of different levels in the classification,

as in [56]. For example, at the superfamily level only the proteins without family-

level relationships are queried, and the family/superfamily-level relationships are

ignored when evaluating fold-level performance.

For a given query protein structure we proceed to find its SCOP classification in

a bottom-up manner. The ensemble classifier first tries to assign a family label to the

query protein. If it is successful, the classification process is complete. Otherwise,

the query protein needs a new family category to be defined in SCOP, and its super-

family category is sought instead. If a superfamily cannot be assigned, the ensemble

classifier proceeds to the fold level. The protein is predicted to have a new fold, if

the ensemble classifier is not able to assign a category in any of the three levels.

7.2.1 Building a component classifier using a comparison tool

Each component classifier is trained to answer the first question, i.e., whether a

query protein belongs to an existing category. We train the classifier using the pro-

cedure outlined below: For each query proteinp in the query setQS, we find the

closest protein, i.e., the nearest neighbor, in the database of proteins with known

classification, based on the similarity criteria defined by the comparison tool,T , that

131

Chapter 7. Automated Protein Classification Using Consensus Decision

the classifier uses. The similarity score assigned by the comparison tool provides a

measure of distance between the query protein and the whole database, e.g., a very

low score indicates that the query protein does not possess significant similarity to

any of the database proteins.

We sort the query proteins using these similarity scores. The goal of the classi-

fier is to partition the query set into two in such a way that one partition contains all

the query proteins that belong to existing categories, and the other partition contains

all the proteins that need a new family/superfamily/fold label. The partitioning is

achieved through a score cutoff. However, a perfect partitioning is usually not pos-

sible due to the blurry boundaries of categories. For each tool, we determine the best

score cutoff as the one thatmaximizesthe number of correct predictions. If the score

of the alignment for the query protein is greater than the cutoff, then the classifier

is construed to predict thatp belongs to an existing category; otherwise,p should

belong to a new category.

For the second problem of label assignment, we use the 1NN (first nearest neigh-

bor) classification method. In this method,T finds the nearest neighbor to the query

protein (most similar protein) in a database, and the classifier assigns the query pro-

tein the same label (family, superfamily, or fold) as that of its nearest neighbor.

7.3 Classifiers Used in Our Ensemble Scheme

We use two sequence classifiers. The first one is a model-based sequence compar-

ison tool, HMMER [24], for comparing a protein sequence against models of the

132

Chapter 7. Automated Protein Classification Using Consensus Decision

Figure 7.1: Comparison of HMM and Vast scores.

SUPERFAMILY database [36]. This database is a hidden Markov model (HMM)

library representing all proteins of known structures. It is manually curated to clas-

sify proteins at the SCOPsuperfamilylevel. HMMER assigns a similarity score to

the sequence according to its match with a model. In the rest of the chapter, we will

refer to this method as HMM.

The second sequence classifier we use is PSI-Blast [2]. PSI-Blast is an improved

version of Blast that works in iterations. In the first iteration, Blast is run and a

new scoring scheme is created based on the set of close neighbors. In the ensuing

iterations this new scoring scheme is used and updated as new close neighbors are

found.

We use three structure classifiers. The first one, CE [80], is a pairwise structural

alignment tool. It uses inter-atomic distances ofCα atoms to find small (8 residues),

geometrically-similar fragments from the pair of proteins. Then, CE combines these

133

Chapter 7. Automated Protein Classification Using Consensus Decision

fragments to form longer matches.

We also choose Dali [42], a structure-similarity comparison tool, as one of our

classifiers. Dali computes the distance matrices of two proteins and then finds the

alignment by a Monte Carlo algorithm. Dali has been used to create FSSP [44], an

automated protein classification database.

Figure 7.2: Comparison of HMM and PSI-Blast scores.

The final classifier we have chosen is Vast [60]. It is designed for identifying

remote homologies. It uses secondary structure elements to locate initial matches.

These properties distinguish it from other structure-comparison tools, since Vast

prefers small biologically meaningful matches over optimal global alignment.

7.3.1 Relationship between the classifiers

Each sequence- and structure-comparison tool described in the previous section as-

signs a score for a pair of proteins, that indicates the statistical significance of the

134

Chapter 7. Automated Protein Classification Using Consensus Decision

similarity between them. In particular, we have used the z-scores reported by CE

and DALI, p-values reported by VAST, and e-values (−log(e-value)) reported by

HMM and PSI-Blast as similarity scores. Below, we explore the correlation be-

tween the scores of different methods. Figure 7.1 shows the correlation between

the scores of HMM and Vast. Each data point in the 2D plot represents a pair of

proteins, and the point coordinates are the comparison scores from HMM and Vast,

respectively. A perfect correlation would consist of entries on a straight line. In this

case, we see quite a bit of disagreement. This is expected since we are comparing

the scores of a sequence-comparison method with those of a structure-comparison

method. However, Figures 7.2 and 7.3 depict that there is considerable disagreement

between two structure- or two sequence-comparison methods as well. In a similar

study, Shindyalov and Bourne [81] compared CE and Dali scores and showed that

there were many proteins that were found similar by CE and dissimilar by Dali, and

vice versa. Our solution to this dilemma is to reconcile the discrepancies between

the classification tools by combining them into a consensus decision framework.

7.3.2 Performance of component classifiers

We performed a number of experiments to understand the individual performance

(accuracy) of the tools when they are used as component classifiers. In these ex-

periments we assumed classifications of all the proteins in SCOP v1.59 (DS159)

are known. We then classify the new proteins introduced in SCOP v1.61 (QS161)

into families, superfamilies, and folds by using structure- and sequence-comparison

tools. As described in Section 6.2, to get the true performances of classifiers at dif-

135

Chapter 7. Automated Protein Classification Using Consensus Decision

ferent levels, we need to separate the query set based on levels of similarity. At

the family level all new proteins introduced, (QS161), are queried. At the super-

family level, only proteins, (QS161newFam), that do not have family-level similarities

are queried. And at the fold level, only proteins (QS161newSF) that do not have

family/superfamily-level similarities are queried.

Figure 7.3: Comparison of Vast and Dali scores.

Recognition of members of existing categories

The performance results for each tool are shown in Figure 7.4. At the family level,

we can clearly see that the sequence tools outperform the structure tools by achiev-

ing 94.5% and 92.6% accuracy. The success rate of the structure tools is only 89%.

Figure 7.4 also indicates that it is possible to manage higher success rates by com-

bining the tools. The sixth column of the figure shows the aggregate accuracy of

the tools. For 83% of the query proteins, all five tools make correct decisions (as

136

Chapter 7. Automated Protein Classification Using Consensus Decision

0

10

20

30

40

50

60

70

80

90

100
H

M
M C
E

V
as

t

D
al

i

P
S

I-
B

la
st

In
te

rs
ec

tio
n

H
M

M C
E

V
as

t

D
al

i

P
S

I-
B

la
st

In
te

rs
ec

tio
n

H
M

M C
E

V
as

t

D
al

i

P
S

I-
B

la
st

In
te

rs
ec

tio
n

Family Superfamily Fold

P
er

ce
n

t
o

f
co

rr
ec

t
cl

as
si

fi
ca

ti
o

n
s

Tools alone All of the tools 4 of the tools 3 of the tools
2 of the tools 1 of the tools None of the tools

Figure 7.4: Performance of individual classifiers on the membership problem for
the new proteins introduced in SCOP v1.61.

to whether the query protein belongs to a category), for 4.1% of the queries 4 tools,

for 1.9% of the queries 3 tools, for 6.9% of the queries 2 tools, and for 2.7% of the

queries only one tool makes the correct decision. An interesting point here is that for

98.2% of the proteins, at least one tool is successful. So, it is theoretically possible

to classify up to 98.2% of these proteins correctly by combining the results of the

individual tools.

At the superfamily level, the structure tools match or better the performance of

sequence tools, as expected. However, the overall performance of the tools drops

significantly from the family level. This is expected since classification at the family

level is the easiest. HMM has one of the best performances, and this is no surprise

137

Chapter 7. Automated Protein Classification Using Consensus Decision

considering that HMM was manually tuned for superfamily classifications. Among

the structure tools, Vast has the best performance with a 78.6% success rate. PSI-

Blast performs poorly with a success rate of only 66.1%. Only 44.7% of the queries

can be classified correctly by all five tools. For 4% of the queries, none of them is

successful.

Structure tools clearly outperform sequence tools at the fold level. Vast has the

best performance with a 85% success rate. PSI-Blast again has the worst perfor-

mance with a 60.7% success rate. For only 30.9% of the queries, all five tools are

successful. An interesting aspect is that all the query proteins are classified correctly

by at least one tool. This again raises the possibility of achieving better accuracy

through a combination of the results.

Classification assignment

Once a tool has marked a new protein as a member of an existing category, the clas-

sification of query protein is complete, i.e., the query protein is assigned to the same

category as its nearest neighbor. The next question is to judge the accuracy of this as-

signment, i.e., whether the assigned category is the correct one. The accuracy results

for the different tools are shown in Figure 7.5. The results are reported for the list

of query proteins that are known to be members of existing families, superfamilies,

and folds at each level respectively.

The accuracies of the tools are high at the family level. All except Dali have

success rates above 90%. HMM has the best performance with 94.8% accuracy and

is followed by Blast with 92.3% accuracy. For 76.5% of the queries, all five tools

138

Chapter 7. Automated Protein Classification Using Consensus Decision

0

10

20

30

40

50

60

70

80

90

100
H

M
M C
E

V
as

t

D
al

i

P
S

I-
B

la
st

In
te

rs
ec

tio
n

H
M

M C
E

V
as

t

D
al

i

P
S

I-
B

la
st

In
te

rs
ec

tio
n

H
M

M C
E

V
as

t

D
al

i

P
S

I-
B

la
st

In
te

rs
ec

tio
n

Family Superfamily Fold

P
er

ce
n

t
o

f
co

rr
ec

t
cl

as
si

fi
ca

ti
o

n
s

Tools alone All of the tools 4 of the tools 3 of the tools
2 of the tools 1 of the tools None of the tools

Figure 7.5: Performance of individual classifiers on category assignment problem
for the new proteins introduced in SCOP v1.61.

are able to assign the correct family label. For only 2.1% of the queries, none of

them is successful.

At the superfamily level, the structure tools perform better and achieve 80.4-

81.7% success rates. The poor performance of sequence tools is surprising since

sequence similarities still matter at this level. HMM, especially, is expected to per-

form well, since it is manually tuned for this level. For 6.1% of the queries, none of

tools is able to assign the correct superfamily label. This means one can potentially

achieve a theoretically maximum 93.9% success rate by combining the results of

these five tools. This is quite high compared to the performance of the best tool,

81.7%.

139

Chapter 7. Automated Protein Classification Using Consensus Decision

At the fold level, all tools seem to perform poorly. Note that the number of test

proteins decreases significantly at this level (37 proteins), because the proteins with

family/superfamily relationships are discarded. Therefore, wrong classification of

even a single protein has a strong effect (3%) on the accuracy results. At the fold

level, PSI-Blast is not able to make even one correct fold assignment whereas Vast

assigns correct folds to 54% of the queries. For 35.1% of the queries, none of the

tools is able to assign the correct fold label. This high failure rate suggests noise

from similar folds, and is investigated further.

7.4 Automated Classification Using Ensemble Classi-

fier

As evident from our initial experiments, an ensemble classifier can potentially ob-

tain higher classification accuracy than any single component classifier. There are

many studies in the area of machine learning and pattern recognition that address

the intelligent design of ensemble classifiers [23, 61, 78]. These include both com-

petitive models (e.g., bagging and arcing) and collaborative models (e.g., boosting).

Our method employs a hierarchical decision tree to answer the question whether

the query protein belongs to an existing category. If the answer is yes, we then use

Bayesian decision rules to assign the protein an appropriate label.

Since our goal is to classify protein structures at three levels of hierarchy in

SCOP, a hierarchical classification algorithm is appropriate. An overview of the

general algorithm is given in Figure 7.6. Here, parameterp is the protein whose

140

Chapter 7. Automated Protein Classification Using Consensus Decision

classification is sought andR is the set of classification rules found during training.

7.4.1 Normalization of similarity scores

In order to combine the results from different tools, we need to find a way to normal-

ize their results into a consistent scale. We achieve this throughbinning. A bin is a

tool-neutralaccuracy extent, e.g., 90%-100%, 80%-100%, instead of atool-specific

similarity score. The bins are manually crafted to obtain the best spatial resolution

and every classification tool produces its own set of bins. The procedure used is as

follows: We useDS159 as the database andQS161 as the query set (See Table 7.2).

For each protein inQS161, we record the top similarity score inDS159 (nearest

neighbor) using a particular comparison tool (or a component classifier). Perform-

ing this operation for all the proteins inQS161 results in a histogram indexed by

the similarity score used by the tool. We then sort the scores and scan, from high

score (or similarity) to low score, to decide on the bin boundaries. The bins partition

the score space of each tool into buckets, each containing roughly the same number

of proteins. Thekth such bin corresponding to tooli is calledEik (E stands for

Existing).

We also construct a dual set of bins for each tool from the lower end of the score

space, based on the tool’s accuracy of predicting that the protein is new (i.e., does

not belong to an existing category). Thekth such bin corresponding to tooli is

calledNik (N stands forNew). Note that the above bin construction is repeated at

each of the three levels: family, superfamily, and fold.

Given a query protein, the score computed by a classification tool can be used

141

Chapter 7. Automated Protein Classification Using Consensus Decision

to map it to a pair ofE andN bins, say(Ei, Nj). The classification tool assigns a

single confidence level,c, to this pair of bins using:

c =
|p : p ∈ Ei ∧ p ∈ Nj ∧ p is existing|

|p : p ∈ Ei ∧ p ∈ Nj| × 100 (7.1)

wherep represents the training proteins. This process is repeated for each tool,

resulting in a vector of confidence levels for the query protein. Next, we discuss how

the vector of values is combined together through decision tree rules and weighted

Bayesian rules.

Input: p is the query protein for classification,R is a set of
classification rules.
Algorithm FIND-CLASSIF(p,R)
If HAS-CLASSIF(p,R, family)

return ASSIGN-CLASSIF(p,R, family)
elseif HAS-CLASSIF(p,R, superfamily)

return ASSIGN-CLASSIF(p,R, superfamily)
elseif HAS-CLASSIF(p,R, fold)

return ASSIGN-CLASSIF(p,R, fold)
else returnNew-Fold

Figure 7.6: Overview of the classification algorithm.

7.4.2 Recognition of new categories using decision trees

The rule setR used in Figure 7.6 affects the performance of the classification algo-

rithm. Intuitively speaking, if rules inR can assume very general and complicated

forms, then one can expect an increased likelihood of finding a rule that generates

good classification results. However, complicated rules with many tunable param-

142

Chapter 7. Automated Protein Classification Using Consensus Decision

eters result in large pools of candidate rules, which increase training time and size

of the training samples needed. This general trade-off, often referred to as the bias-

variance trade-off [23], is well understood in the machine learning community. It

states that flexible, general rules provide better (small bias), but less predictable

(large variance), classification results. The danger of over-fitting is also much higher

with flexible rules.

In our framework, we have five component classifiers whose results can be com-

bined to form rules inR. The decision of each component classifier can be consid-

ered as an attribute of the query protein. Using the decision tree approach [23], the

final decision about a protein is made by consulting a set of attributes in a hierarchi-

cal manner.

However, even with only five component classifiers, the number of different de-

cision trees one can construct is huge. There are several parameters that affect the

decision tree creation process. The first one is the branching factor at each node of

the tree. That is, the decision consulted at each node maysplit the training data into

several subsets.

Fortunately, for the problem of SCOP classification by combining sequence/structure

comparison tools, a biologically sound decision can be made about the branching

factor at each node. That is, at each level by consulting the confidence levels, we

can split the training data intothree: one partition being query proteins that belong to

existing categories (because of strong evidence of similarity), another partition be-

ing query proteins that are new (because of strong evidence of dissimilarity), and the

other partition being query proteins that are in the twilight zone. This observation

143

Chapter 7. Automated Protein Classification Using Consensus Decision

Figure 7.7: The general structure of the decision trees suitable for protein classifi-
cation purposes.

limits the search space to decision trees having the structure shown in Figure 7.7,

whereCi is the combined confidence level of a number of tools,θi
j is the confidence

threshold used to assign labelLj to a query protein at leveli. L1 andL2 are the

labels for proteins that need new family/superfamily/fold categories, and that be-

long to existing family/superfamily/fold categories respectively. Note that, there is

a single threshold at the last level, i.e.,θn
1 = θn

2 .

We further restrict the tree structure to be at most three levels because of the

small number of component classifiers used and the desire to expedite the training

process. Even with this fixed decision-tree structure, there are two important sets

of parameters that should be determined,Cis andθi
js. These parameters are the

most crucial components of the decision tree since the classification accuracies vary

remarkably for different choices.

TermsCis can assume many different forms, and some popular ones are the sum,

144

Chapter 7. Automated Protein Classification Using Consensus Decision

product, max, and min rules, which compute the sum, product, max, and min of the

component scores, respectively. The search space is exceedingly huge without some

restriction on the form thatCis can assume. In our experiment, we consider only the

sum rules, i.e., the decision is based on the weighted sum of the confidence levels of

component classifiers. To further simplify the analysis, eachCi uses the confidence

levels of up to three components and always weighs the component scores equally.

Automated decision tree construction

We generated all possible trees withCis composed of confidence levels of at most

three tools. There are15, 625 such trees. The accuracy of each tree is determined

by examining the categories of the proteins at the leaf nodes. The best accuracy is

achieved if all the proteins that are labeled asL1 are actually new proteins, and all

the proteins labeled asL2 actually belong to existing categories. The erroneously

labeled proteins at leaf nodes decrease the accuracy. In other words, to achieve high

accuracies we want the leaf nodes to be as pure as possible, containing only proteins

sharing existing labels or needing new labels, both not both. In the machine learning

community, this is referred to as minimizing the impurity. Various impurity func-

tions can be used [23]. Most commonly used impurity measure,entropy impurityis

defined as:

i(N) = −
∑

j

P (wj) log2 P (wj), (7.2)

whereP (wj) is the fraction of patterns at nodeN that are in categorywj.1

1In our case, there are two categories: one corresponds to the proteins that can be assigned an
existing label and the other corresponds to the proteins that need a new label.

145

Chapter 7. Automated Protein Classification Using Consensus Decision

To search for the best values forθi
j for each tree, we can consider a global op-

timization by minimizing the overall impurity (summation of the impurities at each

leaf node). However, this is a five dimensional optimization problem (to determine

the five thresholds in Figure 7.7) for each of the15, 625 trees, which is not feasi-

ble. Instead, we can use a greedy approach that does not guarantee optimality but

provides efficiency.

In our approach, the best thresholds at a level are determined by examining only

the leaf nodes at that level. However, we need to design this strategy carefully,

because trying to minimize impurities using a local, greedy procedure usually pro-

duces trees with bad accuracy. The reason is that one simple way of achieving low

impurity at a certain level is to limit the decisions for a small portion of the training

data. E.g., if we pass all but two training samples (one sharing an existing label and

the other needing a new label) down the middle tree branch in Figure 7.7, and assign

the two samples to the appropriate left and right branches, we obtain zero impurity

at this level. However, this greedy strategy causes most of the decisions to be made

at the bottom of the tree where most of erroneous labeling occurs. To overcome

this problem, the cost function must be augmented to balance the impurity and the

number of samples classified at a particular level.

Using this greedy approach, we could generate very accurate ensemble classi-

fiers that perform much better on the training data than the component classifiers

used. However, when we tested these decision trees on the test data set, their perfor-

mance dropped drastically. The main reason, we suspect, is that the greedy approach

tends to over-fit the training data. We believe that this again can be attributed to the

146

Chapter 7. Automated Protein Classification Using Consensus Decision

Vast?

new

superfamily

<45%

existing

superfamily

>93%

HMM?

new

superfamily

existing

superfamily

<40%
 >75%

CE+Dali?

new

superfamily

existing

superfamily

<55%
 >=55%

else

else

Figure 7.8: The decision tree for recognition of proteins that belong to existing
superfamilies.

bias-variance tradeoff. I.e., a decision tree with many tunable parameters can per-

form well on training data, but not on validation data.

Manual decision tree construction

As a solution to the over-fitting problem, we tried to construct decision trees man-

ually based on lessons learned from Section 7.3 on the strength and applicability of

the component classifiers. First, theCis are determined by referring to Figure 7.4.

The tools with the highest performance are chosen to perform at the first level. Con-

sequently, for each following level the tool or tool combination that can best classify

the remaining proteins is chosen.

After the tool combinations that perform at each level are decided, the confidence

thresholds for decisions,θi
js, are chosen. The most important benefit of manual

decision tree construction surfaces in choosing these thresholds. We make use of

147

Chapter 7. Automated Protein Classification Using Consensus Decision

the knowledge of the performance of the tools that are used at each level, as we did

for determining theCis. This knowledge allows us to optimize the impurities of leaf

nodes at two levels simultaneously. We find the four thresholds such that:

min

θi
1 θi

2

θi+1
1 θi+1

2

∑
j=1,2

δ(Li
j) + δ(Li+1

j) (7.3)

Here,θi
1 andθi

2 are confidence level thresholds for leafsLi
1 andLi

2 at level i.

δ(Li
j) is a function proportional to the impurity of the leafLi

j and inversely propor-

tional to its population.

Therefore, local optima of two levels are computed simultaneously. This heuris-

tic is closer to the global optima than the one-level greedy approach. Equation 7.3 is

a 4 dimensional optimization problem where each dimensionθi
j can be optimized to

get the best impurities at the leaf nodes. However this leads to the over-fitting prob-

lem explained previously. So, we determine manual thresholds that are between the

score clusters as shown in Figure 7.9.A1 andA2 are the thresholds found by the au-

tomated greedy approach.M1 andM2 are the manual thresholds. It is evident from

the figure thatA1 andA2 over-fit the data, whereasM1 andM2 do not. Moreover,

the benefits of such procedure is twofold. First, the over-fitting of the training data is

avoided. Second, since the number such significant thresholds is limited, the search

space of Equation 7.3 is bounded by a discrete minimization problem.

The manually constructed decision trees vary with the taxonomy level. When

deciding if a protein is from an existing family, we give priority to the sequence tools.

So, we first assign a family label based on HMM and PSI-Blast. For our training set,

148

Chapter 7. Automated Protein Classification Using Consensus Decision

Figure 7.9: An example histogram of the confidence levels for the training data.

these two tools together are able to assign 90% of the queries confidently. For the

remaining proteins, we use the structure tools. An interesting point here is that if

sequence tools are unable to find a significant match for a protein, but structure tools

find a significant match, then the protein likely belongs to a new family.

At the superfamily level, Vast and HMM perform the best, as seen from Fig-

ure 7.4. So, they have the top priorities. We first use Vast, and then use HMM on

the proteins that Vast cannot predict with confidence. Finally, on the twilight zone

of these two tools, we apply Dali and CE. At the fold level, structure tools perform

better. So, we use the structure tools in the order of Vast, CE, and Dali. The com-

plete set of decision tree rules, for family, superfamily, and fold levels from top to

bottom rows, is shown in Table 7.1. At each level (column), a combination of tools

is run and the probability of being a member of an existing category is assigned to

each protein. The proteins that have probabilities higher than the indicated range are

assigned to the predicted category, the ones within the range are passed to the next

149

Chapter 7. Automated Protein Classification Using Consensus Decision

Level 1 Range Level 2 Range Level 3 Threshold

HMM+Blast (60%:95%) CE+Vast+Dali (70%:85%) HMM+Blast 85%

Vast (45%:93%) HMM (40%:75%) CE+Dali 55%

Vast (50%:85%) CE (80%:90%) Dali 60%

Table 7.1: Heuristic decision tree rules for the category membership problem.

step, and those below the range are deemed new. For the last level, only a single

threshold exists.

7.4.3 Classification assignment for members of existing categories

After deciding that a protein is a member of one of the existing categories, we assign

its classification. The assignment is done by using a weighted Bayesian rule, in

which the weights for the components classifiers are determined according to their

training accuracies. Each tool assigns the query protein to a category with a certain

confidence. These categories are compared and the query protein is assigned to

the category that gets the highest probability. We consider the reliability of each

tool to weigh its contribution to the consensus decision. Figure 7.5 provides us this

information. When assigning family labels, sequence tools are more reliable than

structure tools, and when assigning superfamilies and folds, structure tools are more

important than sequence tools.

150

Chapter 7. Automated Protein Classification Using Consensus Decision

7.5 Experimental Evaluation

To validate that consensus decision indeed improves classification performance, we

apply the standard validation technique in pattern recognition [23]. Two data sets

are used: a training set and a test set. In each case, we need a set of database pro-

teins (proteins of known classification) and query proteins (proteins to be assigned

an existing fold/superfamily/family label or a new label). We choose three versions

of the SCOP database [64] in our experiments, thus also reflecting the expansion

of the protein structure universe. SCOP version 1.59 (DS159, May 2002) and ver-

sion 1.61 (December 2002) are used to generate the training set. The training query

set is generated by extracting the protein chains from version 1.61 that were in-

troduced after version 1.59,QS161. After training our method usingDS159 and

QS161, we apply the same strategy to SCOP versions 1.61 and 1.63 (May 2003)

to evaluate the performance of our algorithm. Table 7.2 shows the number of pro-

tein chains used for training and validation. As seen in the table, the distributions

of introduced superfamilies and folds changed dramatically between versions 1.61

and 1.63. This change poses a challenge to our ensemble classifier, since the gen-

erated classification rules depend on the training set. However, as the results of our

experiments show below, our algorithm performs well in this real-life setting and

the difference between the classification accuracy of training and classification ac-

curacy of evaluation tests is in agreement with the difference between training error

and generalization error observed in other pattern recognition contexts [23].

151

Chapter 7. Automated Protein Classification Using Consensus Decision

7.5.1 Training Procedure

Figure 7.10: Performance of individual classifiers compared to the ensemble on
category membership problem for the new proteins introduced in SCOP v1.61.

The ensemble classifier is trained in a similar hierarchical manner described in Sec-

tion 6.3. The first case is to recognize if a new protein has an existing classification.

We train the ensemble classifier, i.e., produce the decision tree rules, to perform

best on the databaseDS159, proteins in SCOP v1.59, with the queries introduced

in v1.61,QS161. Figure 7.10 depicts the comparison of the ensemble with the five

component classifiers. At the family level, the best performance among the tools is

achieved by HMM with a 5.5% error rate. The ensemble is able to reduce this error

rate to 3.7%. Figure 7.4 shows that for 1.2 % of the queries none of the tools find the

correct classification. So, one cannot reduce this error rate below 1.2%, which can

152

Chapter 7. Automated Protein Classification Using Consensus Decision

be accepted as the theoretical limit. The ensemble manages to outperform HMM 1.5

times, PSI-Blast 2 times, and the structure tools more than 3 times. The ensemble is

successful for 96.3% of the proteins.

At the superfamily level, the ensemble classifier is not as close to the theoreti-

cal limit as it was for the family level. Yet, it still improves the performance of the

individual tools. Performance improvements are between 1.4-2.9 times. the ensem-

ble is successful for 86.1% of the queries. In Figure 7.4, the overlap between the

correctly-identified proteins by the tools is minimum at the fold level. Figure 7.10

shows that the ensemble classifier outperforms individual tools 1.1-1.4 times by be-

ing successful for 89% of the queries.

Figure 7.11: Performance of individual classifiers compared to the ensemble classi-
fier on category assignment problem for the new proteins introduced in SCOP v1.61.

153

Chapter 7. Automated Protein Classification Using Consensus Decision

Training Evaluation
Database DS159 (20449) DS161 (22724)

Query QS161 (2241) QS163 (2825)
newFam 248 618
newSF 84 424
newFold 47 339

Table 7.2: Database and query data sets and their sizes.

The second part of training is the assignment of an existing class label to the

new protein. Figure 7.10 shows that the ensemble classifier outperforms all the

component tools. At the family level, none of the tools is successful for 2.1% of

the queries, as can be seen in Figure 7.5. The ensemble classifier performs at this

theoretical limit (97.9% of the proteins). The improvement at the family level is

between 2.4-5.6 times. At the superfamily level, the ensemble classifier performs

almost at the theoretical limit. It has an error rate of 6.7% whereas the theoretical

limit is 6.1%. As a result, the performance of the tools has been improved 2.7-13

times. At the fold level, the ensemble has an error rate of 35% which is the same as

the theoretical limit. Performance of the individual tools has been improved 1.3-2.8

times, and 65% of the proteins are assigned to the correct folds.

7.5.2 Validation Procedure

When we test our algorithm by using queries fromQS163 on the databaseDS161,

we see that the ensemble improves the performance as in Figure 7.10. None of

the tools is able to perform better than ensemble on all levels. Although HMM

154

Chapter 7. Automated Protein Classification Using Consensus Decision

Figure 7.12: Performance of individual classifiers compared to the ensemble on
category membership problem for the new proteins introduced in SCOP v1.63.

performs close to the ensemble classifier at the family level, it fails to compete at

the superfamily and the fold levels. The ensemble outperforms HMM by 1.3 times

at the family and superfamily levels. At the fold level the ensemble outperforms

the best tool, Vast, by 1.4 times. The ensemble also manages high accuracies at all

levels; 96.5% for family, 83.8% for superfamily, and 86% for fold levels.

After training the ensemble on theDS159 andQS161, we test it with the trained

parameters onDS161 andQS163. By comparing Figure 7.11 and Figure 7.13, we

can see the effect of improvement. We trained the ensemble classifier to perform

close to the theoretical limit. When we tested it, it performs slightly worse than the

theoretical limit, but significantly better than the individual tools. The improvement

155

Chapter 7. Automated Protein Classification Using Consensus Decision

Figure 7.13: Performance of individual classifiers compared to the ensemble on
category assignment problem for the new proteins introduced in SCOP v1.63.

at the family level is 3-12 times, at the superfamily level 1.5-4.5 times, and at the

fold level 1.1-2.4 times. The ensemble classifier assigns 97.9% of proteins to correct

families, and 83% of the proteins to the correct superfamilies, and 61.2% of the

queries to the correct folds.

7.5.3 Error analysis

We have analyzed the query proteins where the ensemble fails to find the correct

classifications. Most of these errors are due to factors that depend on human judge-

ment rather than on computational results using sequence and structural similarity.

Below, we present a few of such cases.

156

Chapter 7. Automated Protein Classification Using Consensus Decision

The protein structure 1kuu-A, anα+β class protein, is predicted by the ensemble

to be a member of an existing superfamilyN-terminal nucleophile aminohydrolases.

It is very similar to the members of its predicted superfamily, according to both

sequence and structure classifiers. But, it is actually a member of theHypothetical

protein MTH1020superfamily. The only difference between these two superfamilies

is that the latter lacks the N-terminal nucleophile. Clearly SCOP authors decided to

create a new superfamily based on information that cannot be inferred by automated

classifiers. The false hits between these two superfamilies contribute to significant

portion of the mistakes of the ensemble classifier for superfamily assignments.

For proteins in the5-bladed beta-propellerfold, classifiers get false hits from

other structurally similar folds. CE and Dali assign proteins from this fold to the

6-bladed beta-propellerfold, and Vast assigns them to the4-bladed beta-propeller

fold. Since these folds have a similar layout, their members are prone to get short

but high scoring alignments across classes. This is an example of the Russian Doll

effect [68].

7.6 Discussion

The most trusted protein classification databases are the manually-curated ones.

However, as new protein structures are continuously being discovered, there is a

need to automatically update protein classification databasestimelyandaccurately

to account for the new structures. In this chapter, we explored the applicability of

automated classification, and proposed a novel method that uses the consensus deci-

157

Chapter 7. Automated Protein Classification Using Consensus Decision

sion principle to obtain higher quality classifications of manually curated databases

using automated techniques. Our technique significantly outperforms the individ-

ual component classifiers by achieving error rates that are 3-12 times less than the

individual classifiers’ error rates at the family level, 1.5-4.5 times less at the super-

family level, and 1.1-2.4 times less at the fold level. We envision that our technique

can help researchers classify proteins in a completely automated manner. Even for

manual classification, it can provide strong clues that will reduce the workload.

158

Chapter 8

Conclusions and Future Work

In this dissertation, we have presented methods that we have developed that can

scale well with the increase in the amount of available structure data and help bi-

ologists analyze large numbers of protein structure data more efficiently. Our con-

tribution can be described in three main categories: (1) visualization and surface

modelling, (2) structure comparison and similarity search, and (3) automated classi-

fication.

1. For efficiently visualizing protein structures using a scene-graph based graph-

ics API, we have presented methods to optimize the constructed scene-graph

to enable real-time visualization of very large protein complexes. Our method

(FPV) achieves up to 8 times interactive speed compared to existing methods.

For molecular surfaces we have presented a method based on a level set for-

mulation that can compute the surface and interior inaccessible cavities very

efficiently (1.5 to 3.14 times faster on the average than compared methods).

159

Chapter 8. Conclusions and Future Work

2. For comparison and similarity search of protein structures we have presented

a method that utilizes local shape signatures based on the theory of differential

geometry. Our method (CTSS) is up to 30 times faster than CE in conduct-

ing protein structure similarity search in a large database of protein structures,

while achieving the similar level of accuracy. We have also presented an in-

tegrated sequence and structure analysis method (ProGreSS), which enables

biologists to perform joint sequence and structure similarity queries while im-

proving on the accuracy and efficiency of existing methods.

3. For classification of protein structures automatically, we have presented an en-

semble classifier framework based on decision trees rooted in machine learn-

ing. We have demonstrated that higher classification accuracy can be achieved

using the joint hypothesis of the ensemble classifier.

The methods developed in this dissertation can be extended in the following

ways:

1. For our solution for the molecular surface computation, the next step is to

find the molecular surface dynamically as the probe radius changes. Using

distance-transform one can generate a list of initial surface points (zero dis-

tance) and then propagate from those points outward to a particular distance,

k (the maximum probe radius). The solvent-accessible surface for a particular

probe radiusr < k is then readily computed by this method. The solvent-

excluded surface can also be determined dynamically by shrinking the acces-

sible surface using another distance transform (fixed-speed level set formula-

160

Chapter 8. Conclusions and Future Work

tion). All the points that arer distance from the initial surface will give the

solvent-excluded surface.

2. Molecular surface comparison is a more difficult computational challenge

compared to sequence or structure comparison methods. Finding surface sim-

ilarities among a family of proteins may help reveal the functional determinant

of that family, and the other dual problem of finding a complementary surface

(the docking problem) may help in drug discovery and development. Several

surface properties can be considered when comparing protein surfaces: elec-

trostatic potential, surface curvature, cavity size, molecular surface area, and

molecular volume.

3. In Chapter 4, we have developed a method for performing structural similarity

queries using a geometric hashing based index structure. The index structure

is also suitable for performing multiple structural alignments. Given a family

of proteins as input, we can use the index to detect the most conserved lo-

cal regions, as they will be accumulated into the same or close-by hash bins.

The remaining task is to build the alignment as a consistent chain of local

fragments.

161

Bibliography

[1] S. Altschul, W. Gish, W. Miller, E. W. Meyers, and D. J. Lipman. Basic local

alignment search tool.Journal of Molecular Biology, 215(3):403–410, 1990.

[2] S. F. Altschul and E. V. Koonin. Iterated profile searches with PSI-BLAST–a

tool for discovery in protein databases.Trends Biochem Sci., 23(11):444–7,

1998.

[3] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, W. Miller, and D. J.

Lipman. Gapped blast and psi-blast: a new generation of protein database

search programs.Nucleic Acids Research, 25(17):3389–3402, 1997.

[4] J. An, T. Nakama, Y. Kubota, H. Wako, and A. Sarai. Construction of an

integrated environment for sequence, structure, property and function analysis

of proteins.Genome Informatics, 10:229–230, 1999.

[5] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares fitting of two 3-D

point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 9(5):698–700, 1987.

162

Bibliography

[6] Z. Aung, W. Fu, and K. L. Tan. An efficient index-based protein structure

database searching method. InProceedings of the 8th International Conference

on Database Systems for Advanced Applications (DASFAA), pages 311–318,

Kyoto, Japan, 2003.

[7] D. A. Benson, I. Karsch-Mizrachi, D. J. Lipman, B. A. Rapp, and D. L.

Wheeler. Genbank.Nucleic Acids Research, 28:15–18, 2000.

[8] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,

I. N. Shindyalov, and P. E. Bourne. The protein data bank.Nucleic Acids

Research, 28(1):235–242, 2000.

[9] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is ”nearest

neighbor” meaningful? InProceedings of 7th International Conference on

Database Theory (ICDT), pages 217–235, Jerusalem, Israel, 1999.

[10] A. Bhattacharya, T. Can, T. Kahveci, A. K. Singh, and Y. F. Wang. Progress:

Simultaneous searching of protein databases by sequence and structure. InPro-

ceedings of the 9th Pacific Symposium on Biocomputing (PSB), page Accepted,

Big Island, HI, January 2004.

[11] T. L. Blundell and M. S. Johnson. Catching a common fold.Protein Science,

2(6):877–883, 1993.

[12] B. Boeckmann, A. Bairoch, R. Apweiler, M. C. Blatter, A. Estreicher,

E. Gasteiger, M. J. Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout,

163

Bibliography

and M. Schneider. The SWISS–PROT protein knowledgebase and its supple-

ment TrEMBL in 2003.Nucleic Acids Research, 31:365–370, 2003.

[13] S. E. Brenner, P. Koehl, and M. Levitt. The astral compendium for sequence

and structure analysis.Nucleic Acids Research, 28:254–256, 2000.

[14] S. K. Burley, S. C. Almo, J. B. Bonanno, M. Capel, M. R. Chance, T. Gaaster-

land, D. W. Lin, A. Sali, F. W. Studier, and S. Swaminathan. Structural ge-

nomics: beyond the human genome project.Nature Genetics, 23:151–157,

1999.

[15] O. Camoglu, T. Kahveci, and A. K. Singh. Towards index-based similarity

search for protein structure databases. InProceedings of Computational Sys-

tems Bioinformatics (CSB), pages 148–158, Stanford, CA, Aug 2003.

[16] T. Can, Y. Wang, Y. F. Wang, and J. Su. FPV: Fast protein visualization using

java 3d.Bioinformatics, 19(8):913–922, 2003.

[17] T. Can and Y. F. Wang. CTSS: A robust and efficient method for protein struc-

ture alignment based on local geometrical and biological features. InProceed-

ings of Computational Systems Bioinformatics (CSB), pages 169–179, Stan-

ford, CA, Aug 2003.

[18] M. L. Connolly. Analytical molecular surface calculation.Journal of Applied

Crystallography, 16:548–558, 1983.

[19] M. L. Connolly. Solvent-accessible surfaces of proteins and nucleic acids.

Science, 221:709–713, 1983.

164

Bibliography

[20] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolutionary

change in proteins.Atlas of Protein Sequence and Structure, 5(3):345–352,

1978.

[21] W. L. DeLano.The PyMOL Molecular Graphics System User’s Manual. De-

Lano Scientific, San Carlos, CA, USA, 2002.

[22] M. P. do Carmo.Differential geometry of curve and surfaces. Prentice-Hall,

New Jersey, 1976.

[23] R. O. Duda, P. E. Hart, and D. G. Stork.Pattern Classification. Wiley-

Interscience, second edition, 2001.

[24] S. R. Eddy. Profile hidden markov models.Bioinformatics, 14:755–763, 1998.

[25] H. Edelsbrunner and E. P. Mucke. Three-dimensional alpha shapes.ACM

Transactions on Graphics, 13(1):43–72, 1994.

[26] I. Eidhammer, I. Jonassen, and W. R. Taylor. Structure comparison and struc-

ture patterns.Journal of COmputational Biology, 7(5):685–716, 2000.

[27] D. Fischer, A. Elofsson, D. Rice, and D. Eisenberg. Assessing the perfor-

mance of fold recognition methods by means of a comprehensive benchmark.

In Proceedings of the 1st Pacific Symposium on Biocomputing (PSB’96), pages

300–318, Hawaii, 1996.

[28] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes.Computer Graphics

Principles and Practice. Addison-Wesley, second edition, 1990. Reading.

165

Bibliography

[29] M. Gerstein. Integrative database analysis in structural genomics.Nat. Struct.

Biol., Suppl:960–3, 2000.

[30] M. Gerstein and M. Levitt. Comprehensive assessment of automatic structural

alignment against a manual standard, the scop classification of proteins.Pro-

tein Science, 7:445–456, 1998.

[31] M. Gerstein, F. M. Richards, M. S. Chapman, and M. L. Connolly.Protein

surfaces and volumes: measurement and use, volume F ofInternational Tables

for Crystallography. Crystallography of Biological Molecules, chapter 22.1,

pages 531–545. Kluwer Academic Publishers, Dortrecht, Netherlands, 2001.

[32] G. Getz, M. Vendruscolo, D. Sachs, and E. Domany. Automated assignment of

SCOP and CATH protein structure classifications from FSSP scores.Proteins,

46:405–415, 2002.

[33] J. F. Gibrat, T. Madej, and S. H. Bryant. Surprising similarities in structure

comparison.Current Opinion in Structural Biology, 6(3):377–385, 1996.

[34] W. Gish and D. J. States. Identification of protein coding regions by database

similarity search.Nature Genetics, 3(3):266–272, 1993.

[35] A. Godzik. The structural alignment between two proteins: Is there a unique

answer?Protein Science, 5(7):1325–1338, 1996.

[36] J. Gough. The SUPERFAMILY database in structural genomics.Acta Cryst.,

D58:1897–1900, 2002.

166

Bibliography

[37] N. Guex and M. C. Peitsch. SWISS–MODEL and the Swiss–PdbViewer: An

environment for comparative protein modeling.Electrophoresis, 18:2714–

2723, 1997.

[38] A. Guéziec and N. Ayache. Smoothing and matching of 3-d space curves.

International Journal of Computer Vision, 12(1):79–104, 1994.

[39] H. Hegyi and M. Gerstein. The relationship between protein structure and func-

tion: a comprehensive survey with application to the yeast genome.Journal of

Molecular Biology, 288(1):147–164, 1999.

[40] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from protein

blocks.Proc. National Academia Science, 89:10915–10919, 1992.

[41] U. Hobohm, M. Scharf, R. Schneider, and C. Sander. Selection of a represen-

tative protein data sets.Protein Science, 1(3):409–417, 1992.

[42] L. Holm and C. Sander. Protein structure comparison by alignment of distance

matrices.Journal of Molecular Biology, 233(1):123–138, 1993.

[43] L. Holm and C. Sander. 3-D lookup: Fast protein structure database searches

at 90% reliability. InProceedings of the 3rd International Conference on In-

telligent Systems for Molecular Biology (ISMB), pages 179–187, Cambridge,

UK, 1995.

[44] L. Holm and C. Sander. Mapping the protein universe.Science, 273:595–602,

1996.

167

Bibliography

[45] C. C. Huang, G. S. Couch, E. F. Pettersen, and T. E. Ferrin. Chimera: an exten-

sible molecular modeling application constructed using standard components.

In Proceedings of the Pacific Symposium on Biocomputing (PSB), volume 1,

page 724, 1996.

[46] C. C. Huang, W. R. Novak, P. C. Babbitt, A. I. Jewett, T. E. Ferrin, and T. E.

Klein. Integrated tools for structural and sequence alignment and analysis.

In Proceedings of Pasific Symposium in Biocomputing (PSB), pages 227–238,

2000.

[47] S. J. Hubbard and P. Argos. Cavities and packing at protein interfaces.Protein

Science, Vol 3(12):2194–2206, December 1994.

[48] W. Kabsch and C. Sander. Dictionary of protein secondary structure: Pat-

tern recognition of hydrogen-bonded and geometrical features.Biopolymers,

22:2577–2637, 1983.

[49] E. Kishon, T. Hastie, and H. Wolfson. 3-D curve matching using splines.Jour-

nal of Robotic Systems, 8(6):723–743, 1991.

[50] R. Koradi, M. Billeter, and K. Ẅuthrich. MOLMOL: a program for display

and analysis of macromolecular structures.Journal of Molecular Graphics,

14:51–55, 1996.

[51] P. J. Kraulis. MOLSCRIPT: A program to produce both detailed and schematic

plots of protein structures.Journal of Applied Crystallography, 24:946–950,

1991.

168

Bibliography

[52] Y. Lamdan and H. J. Wolfson. Geometric hashing: a general and efficient

model-based recognition scheme. InProceedings of the 2nd International Con-

ference on Computer Vision (ICCV), pages 238–249, Florida, US, 1988.

[53] R. H. Lathrop. The protein threading problem with sequence amino acid in-

teraction preferences is np-complete.Protein Engineering, 7(9):1059–1068,

1994.

[54] N. Leibowitz, Z. Y. Fligelman, R. Nussinov, and H. J. Wolfson. Multiple struc-

tural alignment and core detection by geometric hashing. InProceedings of

the 7th International Conference on Intelligent Systems for Molecular Biology

(ISMB), pages 169–177, Heidelberg, Germany, 1999.

[55] J. Liang, H. Edelsbrunner, P. Fu, P. V. Sudhakar, and S. Subramaniam. Analyti-

cal shape computation of macromolecules: II. inaccessible cavities in proteins.

Proteins: Structure, Function, and Genetics, 33(1):18–29, October 1998.

[56] E. Lindahl and A. Eloffson. Identification of related proteins on family, super-

family and fold level.J. Mol. Biol, 295:613–625, 2000.

[57] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface

construction algorithm.Computer Graphics, 21(4):163–169, July 1987.

[58] G. Lu. Top: a new method for protein structure comparison and similarity

searches.Journal of Applied Crystallography, 33(1):176–183, 2000.

[59] J. Lundstrom, L. Rychlewski, J. Bujnicki, and A. Elofsson. Pcons: A neural-

169

Bibliography

network-based consensus predictor that improves fold recognition.Prot. Sci,

10:2354–2362, 2001.

[60] T. Madej, J. F. Gibrat, and S. H. Bryant. Threading a database of protein cores.

Proteins, 23:356–369, 1995.

[61] R. Meir and G. Ratsch.Advanced Lectures on Machine Learning, chapter An

introduction to boosting and leveraging. Springer Verlag, 2003.

[62] S. Meloan. Exploring the new frontier: Java technology powers the post-

genomic era.Feature Stories, java.sun.com, September 2001.

[63] K. Mizuguchi, C. M. Deane, T. L. Blundell, M. S. Johnson, and J. P. Overing-

ton. Joy: protein sequence-structure representation and analysis.Bioinformat-

ics, 14:617–623, 1998.

[64] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. SCOP: a struc-

tural classification of proteins database for the investigation of sequences and

structures.Journal of Molecular Biology, 247:536–540, 1995.

[65] A. Nicholls. GRASP: graphical representation and analysis of surface proper-

ties. Columbia University, New York, 1992.

[66] A. Nicholls, K. Sharp, and B. Honig. Protein folding and association: insights

from the interfacial and thermodynamic properties of hydrocarbons.Proteins,

11(4):281–296, 1991.

170

Bibliography

[67] R. Nussinov and H. J. Wolfson. Efficient detection of three-dimensional struc-

tural motifs in biological macromolecules by computer vision techniques.Pro-

ceedings of the National Academy of Sciences of the United States of America

(PNAS), 88(23):10495–10499, 1991.

[68] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M.

Thorton. CATH–a hierarchic classification of protein domain structures.Struc-

ture, 5(8):1093–1108, 1997.

[69] S. Osher and R. Fedkiw.Level set methods and dynamic implicit surfaces,

volume 153 ofApplied Mathematical Sciences. Springer-Verlag, 2003.

[70] X. Pennec and N. Ayache. A geometric algorithm to find small but highly

similar 3d substructures in proteins.Bioinformatics, 14(6):516–522, 1998.

[71] E. Portugaly and M. Linial. Estimating the probability for a protein to

have a new fold: A statistical computational model.Proc. Natl. Acad. Sci.,

97(10):5161–5166, May 2000.

[72] S. Rackovsky and H. A. Scheraga. Differential geometry and polymer confor-

mation. 1. comparison of protein conformations.Macromolecules, 11:1168–

1174, 1978.

[73] M. F. Sanner. Python: a programming language for software integration and

development. Journal of Molecular Graphics and Modelling, 17(1):57–61,

February 1999.

171

Bibliography

[74] M. F. Sanner, A. J. Olson, and J. C. Spehner. Reduced surface: an efficient way

to compute molecular surfaces.Biopolymers, 38(3):305–320, 1996.

[75] M. A. S. Saqi, D. L. Wild, and M. J. Hartshorn. Protein analyst - a distributed

object environment for protein sequence and structure analysis.Bioinformat-

ics, 15:521–522, 1999.

[76] J. M. Sauder, J. W. Arthur, and R. L. D. Jr. Large-scale comparison of protein

sequence alignment algorithms with structure alignments.Proteins: Structure,

Function, and Genetics, 40(1):6–22, 2000.

[77] R. Sayle and E. J. Milner-White. RasMol: Biomolecular graphics for all.

Trends in Biochemical Sciences (TIBS), 20(9):374–376, September 1995.

[78] R. E. Schapire and Y. Singer. Improved boosting algorithms using confidence-

rated predictions.Machine Learning, 37(3):297–336, 1999.

[79] J. A. Sethian.Level set methods and fast marching methods: evolving inter-

faces in computational geometry, fluid mechanics, computer vision and mate-

rials science. Cambridge University Press, 2nd edition, August 1999.

[80] I. N. Shindyalov and P. E. Bourne. Protein structure alignment by incremen-

tal combinatorial extension (ce) of the optimal path.Protein Engineering,

11(9):739–747, 1998.

[81] I. N. Shindyalov and P. E. Bourne. An alternative view of the protein fold

space.Proteins, 38:247–260, 2000.

172

Bibliography

[82] C. Shirky. Seven ways of looking at a protein.FEED Magazine, page After

Darwin Column, October 2000.

[83] A. P. Singh and D. L. Brutlag. Hierarchical protein structure superposition

using both secondary structure and atomic representations. InProceedings of

the 5th International Conference on Intelligent Systems for Molecular Biology

(ISMB), pages 284–293, Halkidiki, Greece, 1997.

[84] T. F. Smith and M. S. Waterman. Identification of common molecular subse-

quences.Journal of Molecular Biology, 147(1):195–197, 1981.

[85] H. Sowizral, K. Rushforth, and M. Deering.Java 3D API Specification (Ver-

sion 1.1.2), June 1999.

[86] K. Takano, Y. Yamagata, and K. Yutani. Buried water molecules contribute

to the conformational stability of a protein.Protein Engineering, 16(1):5–9,

January 2003.

[87] S. Umeyama. Least-squares estimation of transformation parameters between

two point patterns.IEEE Transactions on Pattern Analysis and Machine Vision

(PAMI), 13(4):376–380, 1991.

[88] D. Walther. WebMol - a java based PDB viewer.Trends in Biochemical Sci-

ences, 22:274–275, July 1997.

[89] H. J. Wolfson and I. Rigoutsos. Geometric hashing: An introduction.IEEE

Computational Science & Engineering, 4(4):10–21, 1997.

173

Bibliography

[90] T. C. Wood and W. R. Pearson. Evolution of protein sequences and structures.

Journal of Molecular Biology, 291(4):977–995, 1999.

[91] M. M. Young, A. G. Skillman, and I. D. Kuntz. A rapid method for exploring

the protein structure universe.Proteins: Structure, Function, and Genetics,

34(3):317–332, 1999.

174

