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Abstract

Efficient and Automated Analysis of
Protein Structures

by
Tolga Can

In recent years, computational complexity in structural bioinformatics attained a new
level with the vast increase in the amount of structural data available. The Protein
Data Bank (PDB), which is the single worldwide repository for 3-D macromolecular
structure data, contains more than 25k structures as of July 2004. However, exist-
ing methods for protein structure analysis are unable to cope with this increase in
the amount of available data. Therefore, this wealth of data requires computation-
ally efficient methods to be developed for the analysis of large numbers of protein
structures and their associated functions.

In this dissertation, we present methods for protein structure analysis that can
scale well with the amount of protein structure data available. Our work can be
described under three main categories: (1) visualization and surface modelling, (2)
structure comparison and similarity search, and (3) automated classification.

For efficiently visualizing protein structures using a scene-graph based graphics
API, we have developed methods to optimize the constructed scene-graph to enable
real-time visualization of very large protein complexes. Our method (FPV) achieves
up to 8 times interactive speed compared to existing methods. For generation of
molecular surfaces we recently developed a method based on a level set formulation
that can compute the surface and interior inaccessible cavities very efficiently (1.5
to 3.14 times faster on the average than compared methods).

For comparison and similarity search of protein structures we have developed a
method that utilizes local shape signatures based on the theory of differential geom-
etry. Our method (CTSS) is up to 30 times faster than CE, a widely used method for
structure comparison, while achieving the similar level of accuracy. We have also
developed an integrated sequence and structure analysis method (ProGreSS), which
enables biologists to perform joint sequence and structure similarity queries while
improving on the accuracy and efficiency of existing methods.

For an up-to-date view of the protein structure universe with the help of auto-
mated classification, we have developed an ensemble classifier based on decision

viii



trees rooted in machine learning. We show that higher classification accuracy can
be achieved using the joint hypothesis of the ensemble classifier.
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Chapter 1

Introduction

After the completion of the Human Genome Project [14], considerable effortis being
expended on structural genomics research with the aim of determining the structure
and function of as many gene products possible. The genomic data, combined with
the considerable amount of current structural data (26485 protein structures as of
July 27, 2004 at the Protein Data Bank [8]), will lead to the emergence of protein
structure analysis as a critical component in finding answers to some long-standing,
fundamental questions on how cells function, what the action pathways of certain
disease agents are, and what make human beings who we are.

Existing methods for protein structure analysis are developed usually without
consideration of the increasing amount of available data. As a result of this, many of
the methods fail to give satisfactory performance when efficiency and interactivity is
of concern. To give an example, most of the widely used structure similarity methods
cannot perform an online query, instead they report results that are computed off-
line or report the results through e-mail. It is clear that this wealth of data requires

computationally efficient methods to be developed for the analysis of large numbers
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of protein structures and their associated functions.

In this introductory chapter, we give the biological background necessary for
computer scientists to understand the material presented in the proceeding chap-
ters. We also give the overall picture of the area of computational protein structure
analysis and briefly describe the specific problems of protein structure comparison,

surface modeling, and protein classification.

1.1 Biological Background

In this section we first give an overview of the source of information in compu-
tational biology. Most of the problems in computational biology focus on three
primary sources of data: DNA or protein sequences, macromolecular structures and
the results of functional genomic experiments. Raw DNA sequences are strings
of the four base-letters (A, G, C, T) comprising genes, each typically 1,000 bases
long. The GenBank [7] repository for nucleic acid sequences hold approximately
28,507,990,166 bases in 22,318,883 sequence records as of January 2003. At the
next level are the protein sequences comprising strings of 20 amino-acid letters. At
present there are about 938,390 known protein sequences [12] as of September 2003,
with a typical bacterial protein containing approximately 300 amino acids. Macro-
molecular structural data represents a more complex form of information. There
are currently 26,485 entries in the Protein Data Bank (PDB) [8] as of July 2004,
containing atomic structures of proteins, DNA and RNA solved by x-ray crystallog-

raphy and NMR methods. A typical PDB file for a medium-sized protein contains
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the three-dimensional coordinates of approximately 2,000 atoms.

Analyzing new protein structures published in the Protein Data Bank may re-
veal many unexpected functional and evolution relationships that were hidden at the
sequence level. Also, the computation of a molecular surface is essential in deter-
mining the surface residues of a protein that is in contact with the outer environment
of the protein structure. In Chapters 3 and 4, we present methods for interactively an-
alyzing the three-dimensional protein structure and computing its solvent-accessible
and solvent-excluded surface.

An essential aspect of managing this large volume of biological data lies in devel-
oping methods for assessing similarities between different biomolecules and identi-
fying those that are related. The algorithms we present in Chapters 5, 6, and 7 of this
dissertation are mainly of this category: analyzing the structure data and inferring
relationship to a large database of structures either by finding a list of similar struc-
tures or classifying the input structure into a category of a hierarchical classification

of the whole database.

1.1.1 Introduction to Protein Structures

Proteins are not linear molecules as suggested when the protein sequence is de-
scribed as atring of amino acid letters, -Lys-Ala-Pro-Met-Gly- etc., for example.
Rather, thistringfolds into an intricate three-dimensional structure that is unique to
each protein. It is this three-dimensional structure that allows proteins to function.
Thus, in order to understand the details of protein function, one must understand

protein structure.
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In order to fully explore protein structure in detail a number of different types of
molecular models are used. Figure 1.1 shows four different commonly used models
for the same protein molecule, 1d9c. The details of these models are discussed in

the later chapters before the details of the methods that generate these models are

presented.

(c)

Figure 1.1: Theribbon model (a), thespacefillmodel (b), theC, trace (c), and the
solvent-excluded surfadd).
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Protein structure is broken down into four levels:

e Primary structure: refers to thdinear sequence of amino acids. Proteins are
large polypeptides of defined amino acid sequence. The sequence of amino
acids in each protein is determined by the gene that encodes it. The gene is
transcribed into a messenger RNA (mMRNA) and the mRNA is translated into
a protein by the ribosome. Primary structure is sometimes callecbtredent
structureof proteins because, with the exception of disulfide bonds, all of the
covalent bonding within proteins defines the primary structure. In contrast,
the higher orders of proteins structure (i.e. secondary, tertiary and quaternary)

involve mainly noncovalent interactions.

e Secondary structure: is local ordered structure brought about via hydrogen
bonding mainly within the peptide backbone. The most common secondary
structure elements in proteins are the alpha helix and the beta sheet (sometimes

called beta pleated sheet).

e Tertiary structure: is theglobalfolding of a single polypeptide chain. A ma-
jor driving force in determining the tertiary structure of globular proteins is the
hydrophobic effect. The polypeptide chain folds such that the side chains of
the nonpolar amino acids aheddenwithin the structure and the side chains
of the polar residues are exposed on the outer surface. Hydrogen bonding
involving groups from both the peptide backbone and the side chains are im-
portant in stabilizing tertiary structure. The tertiary structure of some proteins

is stabilized by disulfide bonds between cysteine residues.
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e Quaternary structure: involves the association of two or more polypeptide
chains into a multi-subunit structure. Quaternary structure is the stable associ-
ation of multiple polypeptide chains resulting in an active unit. Not all proteins
exhibit quaternary structure. Usually, each polypeptide within a multi-subunit
protein folds more-or-less independently into a stable tertiary structure and the

folded subunits then associate with each other to form the final structure.

1.2 Overview of Dissertation

In Chapter 2, we give the details of the scalability problems related to protein struc-
ture analysis. The methodologies we have developed to solve these scalability prob-
lems are presented in three parts. The first part, consisting of Chapters 3 and 4,
deals with computation of different structural representations of protein molecules.
In Chapter 3, we present methods for efficiently visualizing protein structures using
a scene-graph based graphics API. In Chapter 4 we propose an efficient level-set
based method for computing the solvent-accessible surface and interior inaccessi-
ble cavities of a protein structure. The second part, Chapters 5 and 6, considers the
problem of similarity searches in large protein databases. In Chapter 5 we explain
in detail the methods we have developed for extracting structural features of protein
molecules and aligning them by using geometric hashing techniques. In Chapter 6
we show how joint sequence and structural alignment can be performed by using
a novel index structure. The third part, Chapter 7, presents an ensemble classifier

framework for automated classification of protein structures. Finally, in Chapter 8,
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we conclude with a brief summary of the dissertation and future directions.



Chapter 2

Scalability Issues in Protein Structure
Analysis

Understanding a protein’s structure with the help of protein structure analysis tools
helps researchers to better determine how the protein works in its biological role.
Analysis of a protein structure also involves studying the interaction of that protein

with other protein structures, because proteins do not perform their functions in

isolation. Furthermore, a global view of the protein structure universe is important

to have a better understanding of this huge protein interaction network and also of
the relationships of proteins from different species.

The Protein Data Bank (PDB) [8] is the single worldwide repository for protein
structure data, and contains more than 25k structures as of July 2004. Currently,
about 100 new protein structures per week are published in the PDB (226 new struc-
tures between July 27, 2004 and August 10, 2004 updates). Furthermore, with the
advances in experimental structure determination technologies, the structural data of

large protein/DNA, protein/RNA, or protein/protein complexes can be determined
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accurately and made available at the Protein Data Bank. However, existing methods
for protein structure analysis are unable to cope with both the increase in the amount
of available data and the increase in the size of structural data to be analyzed.

In this chapter we discuss the scalability problems encountered in protein struc-
ture analysis related to both the growth in protein structure databases and the in-

crease in size of analyzed data.

2.1 Growth of Protein Structure Databases

Despite the tremendous cost and time required for experimental determination of
protein structures, protein structure databases grow at a considerably high rate. It
should be also noted that the ratio of protein structures with known macromolecular
structure to the total repertoire of protein sequences is very low: currently about
5%. This ratio also tells us that, if we knew the structure of every protein sequence
as produced by the genome sequencing projects, the structure databases would be
about 20 times larger than current size of the Protein Data Bank (as of July 2004).
This wealth of data raises significant questions about the ability of existing methods
in handling structure similarity search and classification in a reasonable amount of
time.

Most of the existing methods [80, 42, 60] for protein structure comparison are
designed for pairwise comparison. Therefore, in order to conduct a similarity search
of a protein structure against a database of protein structures, one needs to perform

an exhaustive search by pairwise comparing the query protein to all of the database
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proteins one by one. For example, if we use CE [80] for such a similarity query
against the current Protein Data Bank, this would take about 7 hours on an Intel
Pentium 4 Processor at 2.0GHz and 512MB of RAM, where a pairwise comparison
takes about 1 second. Furthermore, if one wants to perform an all-to-all comparison
of the Protein Data Bank for obtaining a global picture of the relationships among
proteins, this would take about 10 years on that same single processor machine.
Clearly, this is not a reasonable approach, and methods for conducting fast similarity
searches should be developed.

A global view of the protein structure universe is also established with the help of
structural classification databases [44, 68, 64]. These databases are used to define the
relationships—in terms of sequence, structure, and function—of proteins. Of these
classification schemes, SCOP [64] is created mainly by manual inspection. This is
perhaps the reason that it is accepted by many researchers as the most accurate clas-
sification scheme (or the ground truth). However, SCOP is updated every six months
since it is quite a labor intensive process to manually place a protein structure into
the correct category in a hierarchical classification of 25K protein structures. Fur-
thermore, a 100 protein per week growth rate means about 2600 protein structures
in six months. Therefore, if one requires a dynamic, up-to-date view of the protein
structure universe, accurate automated classification techniques should be developed

to aid in manual classification process.

10
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2.2 Increase in Size of the Analyzed Data

One of the long-term goals of the NIH Roadmaps Structural Biology initiative is to
provide structural information on large, macromolecular compfexésis goal does

not seem very far with the advances in experimental structure determination tech-
nologies. As a result growing number of the structural data of large protein/DNA,
protein/RNA, or protein/protein complexes will be determined accurately and made
available at the Protein Data Bank.

In order to understand how protein machines, i.e., complexes, work—and to
figure out how to fix them when they do not—researchers need to view the pro-
tein complexes in several different orientations and using several different models,
mimicking the way these assemblies twist and bend inside living cells. However,
current visualization methods are not able to cope with the growing size of data to
be analyzed. Large complexes such as virus capsids, ribosomes, and chromosomes
can contain as many as 40K—100K atoms in their structure data. The increasing
complexity of the protein structure model causes problems both in building a three-
dimensional model for the molecular complex and in interacting with the rendered
three-dimensional model. We show in the proceeding chapters that the space (mem-
ory) requirement of some of the methods are so large that they cannot even build
a three-dimensional model of some large molecular complexes. Furthermore, even
if they can build a three-dimensional model, the interactive rendering performance
drops drastically, i.e., less than 1 frames per second, as the size of the molecu-

lar complexes get larger. Therefore, development of efficient methods that scales

Lhttp://nihroadmap.nih.gov/structuralbiology/index.asp
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Chapter 2. Scalability Issues in Protein Structure Analysis

well with the size of molecular complexes is crucial. One of the existing methods,
Chimera [45], provides an extensiaihe Multiscale Extensigrto its base protein
analysis framework to cope with increasing size of molecular complexes. However,
as we demonstrate in the proceeding chapters, new methods should be developed

that can scale well with the size of molecular complexes.
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Chapter 3

Efficient Visualization of Large
Molecular Complexes

In this chapter we present the methods we have developed to optimize scene-graphs
for efficiently visualizing large protein structures [16]. The protein visualization sys-
tem presented here is based on Javd™DJava 3D provides compatibility among
different systems and enables applications to be run remotely through web browsers.
However, using Java 3D for visualization has some performance issues with it. The
primary concerns about molecular visualization tools based on Java 3D are in their
being slow in terms of interaction speed and in their inability to load large molecular
complexes. This behavior is especially apparent when the number of atoms to be
displayed is huge, or when several proteins are to be displayed simultaneously for
comparison. Large complexes such as virus capsids, ribosomes, and chromosomes
can contain as many as 40K—100K atoms in their structure data. This increasing
complexity of the protein structure model causes problems both in building a three-

dimensional model for the molecular complex and in interacting with the rendered
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three-dimensional model. In this chapter we present techniques for organizing a
Java 3D scene graph to tackle these problems. We demonstrate the effectiveness of
these techniques by comparing the visualization component of our system with two
other Java 3D based molecular visualization tools. In particular, for van der Waals
display mode, with the efficient organization of the scene graph, we could achieve
up to eight times improvement in rendering speed and could load molecules three

times as large as the previous systems could.

3.1 Introduction

Protein visualization has become an important research topic, especially in light of
the accomplishment of the Human Genome Project [14]. The ability to visualize the
3D structure of proteins is critical in many areas such as drug design and protein
modeling. This is because the 3D structure of protein determines its interaction with
other molecules, hence its function, and the relation of the protein to other known
proteins. For example, hemoglobin’s cup shape, which accommodates the oxygen-
binding heme group, suggests its ability to carry oxygen in the bloodstream. There
are many well established ways of visualizing the 3D protein structures. Each way
of visualization highlights a different aspect of the protein molecule, as mentioned
by Clay Shirky [82].

Growing number of new structure data in Protein Data Bank open new ways
for collaboration, thus emphasizes the need for visualization tools that are portable.

Moreover, studying the interaction between protein molecules may also require vi-
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Chapter 3. Efficient Visualization of Large Molecular Complexes

sualizing huge numbers of atoms, thus researchers also need tools that are capable

of loading and displaying this huge amount of data.

3.2 Related Work

Many tools have been developed to visualize a protein whose structure has been
determined. In this section we will talk about a subset of these tools, which are
closely related to our molecular visualization system. One of the earliest of those
tools is Roger Sayle’s RasMol [77]. RasMol is now being developed under the
name of Protein Explorer. Swiss-PdbViewer [37], which is tightly linked to the
automated protein modeling server Swiss-Model, provides a user-friendly interface
to analyze several proteins at the same time. MOLMOL [50] is another molecular
graphics program for the display, analysis, and manipulation of the 3D structures of
biological macromolecules, with special emphasis on nuclear magnetic resonance
(NMR) solution structures of proteins and nucleic acids. Most of these programs are
implemented using C language and OpenGL API and they have relatively large user
communities.

There are relatively few protein visualization tools which were developed using
Java and the Java 3D API. WebMol [88] is a protein structure viewing and analysis
program, which has more functionality, but limited 3D model types. These two
programs do not use the Java 3D API; instead they use their own graphics constructs

based on Java.
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JIMD Interactive Molecular Dynamics with Jayais being developed using
Java 3D, but their focus is on molecular dynamics and simulation. Tripos Java3D
Molecule Viewef, is a new tool currently under development. JMV and JMVS2
(two systems we used for performance comparison) are molecular visualization tools
and offer a variety of 3D representations and display options. JMV is developed by
the Theoretical Biophysics Group in the Beckman Institute for Advanced Science
and Technology at the University of Illinois at Urbana-Champaign with NIH sup-
port. These two tools have very similar functionality compared to our molecular
visualization system. One advantage of JIMV over JMVS2 is that it is being build as
a toolkit, so that other developers can use it as part of their systems.

Molecular Biology Toolkit is another general toolkit that includes visualization
components based on Java3D. However, it is still an ongoing work and right now
no visualization application using this toolkit is available for evaluation and testing

purposes.

3.3 Why do we need a new visualization tool?

Many tools have been developed to visualize protein structures. Tools that have been
based on Java 3D are compatible among different systems and they can be run
remotely through web browsers. However, using Java 3D for visualization has some

performance issues with it. The primary concerns about molecular visualization

Lhttp://www.gwdg.de/"ovormoo/jimd/
2ftp://ftp.tripos.com/pub/java3d
3http://mbt.sdsc.edu/
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tools based on Java 3D are in their being slow in terms of interaction speed and in
their inability to load large molecules. This behavior is especially apparent when
the number of atoms to be displayed is huge, or when several proteins are to be
displayed simultaneously for comparison.

There is growing trend in adopting the J&viechnology in the fields of bioinfor-
matics and computational biology [62]. The main advantages of Java are its compat-
ibility across different systems/platforms and having the ability to be run remotely
through web browsers. Using Java 3D as a graphics engine has also the additional
advantage of rapid application development, because Java 3D API incorporates a
high-level scene graph model that allows developers to focus on the objects and the
scene composition. Java 3D also promises high performance, because it is capa-
ble of taking advantage of the graphics hardware in a system. The speed observed
should depend on the quality of the graphics hardware on the machine. However,
a common complaint about visualization systems based on Java 3D is their being
slow in terms of interaction speed even with a good graphics hardware accelerator.
Also memory errors may be seen even with a small number of objects. The reason
for these anomalies may be the developer himself (constructing a bad scene graph)
or certain limitations of the Java 3D API, which is discussed below.

The Java 3D API implementations are layered on top of the existing lower-level
immediate-mode [28] 3D rendering APIs, such as OpenGL and Direct3D. Java 3D
is fundamentally a scene-graph-based API. Most of the constructs in the API are
biased toward retained mode and compiled-retained mode rendering [85]. Java 3D

itself also offers immediate-mode rendering if a developer wants more control and

17



Chapter 3. Efficient Visualization of Large Molecular Complexes

flexibility. The programmer can ignore the scene graph structure and send the graph-
ical constructs directly to the renderer. However, in immediate mode, Java 3D has
no high-level information concerning graphical objects or their composition. Be-
cause it has minimal global knowledge, Java 3D can only perform localized opti-
mizations on behalf of the programmer. Thus, using immediate-mode directly may
cause drastic performance drops. Using a scene-graph-based development scheme a
developer should expect better performance, but some molecular scenes (e.g. con-
taining too many atoms) may require too much memory or computation time. Thus,
performance drops occur because of an heavyweight scene graph. In this section we
explain the techniques to create efficient scene graph structures, which allow load-
ing large molecules (more than 4000 amino acids) and render them in an acceptable
interactive speed. We demonstrate the effectiveness of the developed techniques by
comparing the visualization component of our system with two other Java 3D based
molecular visualization tools. In particular, for van der Waals display mode, with
the efficient organization of the scene graph, we could achieve up to eight times im-
provement in rendering speed and could load molecules three times as large as the

previous systems could.

3.4 Protein Visualization

In this section, we briefly discuss how we create molecular scenes from the protein
data. We also present two accompanying textual views, which are helpful in brows-

ing the amino acid sequence and viewing the hierarchical organization of the protein
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data. The techniques for expediting rendering based on Java 3D will be discussed in

Section 3.5.

3.4.1 Data

PDB files are obtained from the Protein Data Bank (PDB) [8], which is an archive
of experimentally determined 3D structures of biological macromolecules. PDB
files contain 3D coordinates of each atom of the protein molecule. We use these
3D coordinates and atom types to calculate the bonding information and to estimate
the secondary structure. This information is needed for some of the 3D molecular

representations described below.

Figure 3.1: Thebondsmodel.
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3.4.2 3D Representations

Each representation of a protein molecule highlights a different aspect of the struc-
ture. They have advantages and disadvantages compared to each other. For example,
the space-fill model can be helpful in understanding the volume a protein molecule
occupies, but it lacks information about how amino acids are connected to each
other, i.e. how the chain is formed. We describe below different 3D models pro-
vided by our visualization system, and explain their use and the way they are built.
Bonds Model: Bonds model is created as a wire-frame model representing the bond-
ing information in the protein molecule. Figure 3.1 showsadsrepresentation of

the molecule Oxygen Binding (PDB ID: 2mhr).

#
o%o

% oao“fgs a.ad
¥, Sulr .
2%

7 TRHE Y 90 %
8 aaoo P ng 20
2 °°a?0 aemeeo ae
L Qa [ ) ("] 060 %
°m§ e ?&“’gae‘”
08 v 2L,
@® 0
%0509 goe:%, Q@ o° .
L2 @
@ 00
3 %%x
2

Figure 3.2: Thebackbonemodel.
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Backbone Model: The backbone model is created by using ahgha carbon, car-
bon, and nitrogen atoms in the molecule. The position of the atoms are used to
transform the spheres that represent them. The backbone bonds within each amino
acid and the peptide bonds (between amino acids) are also shown in the model. This
model is useful for understanding the protein molecule as a chain, and realizing
amino acids’ positions in this chain.

Figure 3.2 shows the backbone model of the molecule Oxygen Binding (PDB
ID: 2mhr). When we interact with the 3D model of the backbone of a molecule, we

can easily recognize how the amino acid sequence is formed in four parallel helices.

Figure 3.3: Theballs and sticksnodel.

Balls and Sticks Model: The balls-sticks model shown in Figure 3.3 represents
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all of the existing bonds in the molecule as sticks and all the atoms as equal sized

spheres.

Figure 3.4: Thespacefillmodel.

Space-fill (van der Waals) Model: The space-fill model is useful in visualizing

the volume a protein molecule occupies (see Figure 3.4. It gives an overall view of
the molecule and thus provides a good view of the tertiary structure. In this model
each atom is modeled using its van der Waals radius, so that the viewer gets an idea
of the relative sizes of the atoms making up the protein molecule. The atoms are
represented by concrete spheres centered at the corresponding atomic coordinates
read from the PDB file.

Ribbon Model: The ribbon model is used to display the secondary structures in the

protein molecule. The secondary structure is predicted from the atomic coordinates
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Figure 3.5: Theribbon model.

in the PDB file, by using the algorithm developed by Kabsch and Sander [48]. The
ribbon model is created using hermite curves. Our implementation is based on the
program called MolScript [51]. Figure 3.5 shows the ribbon model of the same

molecule 2mhr. Here, different colors for different secondary structures are used.

3.4.3 Textual Information Windows

Having a textual representation of the protein molecule has many benefits. First of
all it shows the linearity of the protein structure. The name of amino acids forming
the chain is provided in a sequence view. Furthermore, the underlying hierarchy of

the molecule can be captured when a tree view is used. We describe below the two
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accompanying information windows provided by our visualization component.
Molecule Information Window: The molecule information window contains infor-
mation about molecule’s name, number of amino acids it contains, the amino acid
chain, the secondary structure information, and information about currently selected
sub-structure. The amino acid chain is displayed using one-letter representations of
the amino acids. The molecule name info is read from the PDB file. Although it is
possible to gather secondary structure information also from the PDB file, because
of the fact that most of the PDB files available do not contain that information, the
secondary structure information is calculated by using the prediction algorithm de-
veloped by Kabsch and Sander [48]. The information about the secondary structure
is also displayed using one letter codes aligned with the amino acid codes (H:helix,
B:residue in isolated beta bridge, E:extended beta strand, G:310 helix, I:pi helix,
T:hydrogen bonded turn, S:bend).

When the user makes selections on the molecule during the interaction with a 3D
model, the corresponding part of the amino acid chain in the information window is
highlighted. If the selection is in the level of atoms, the selected atom information
is also displayed in thmformation window

Figure 3.6 shows the molecule information window during interaction with the
Antitumor Protein (PDB ID: 1D8V) protein. The currently selected amino acid is
Threonine whose one letter code 1§ and it is the 10th amino acid in the first (and
only) chain of the protein molecule. We see in the secondary structure information
that this amino acid is part of@oil, and currently selected atomatpha carbon

Tree View Window: Although a protein is a linear structure of amino acids, there’s
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Figure 3.6: Molecule information window.

a hierarchy in the primary structure of protein molecules. A proteoieculeis
composed of one or moahainsof amino acids. A chain may contain seveaatino
acids probably in the order of hundreds. Each amino acid has an eightlaidsn
and aside chaini.e. residue, which may be made up of 1 to 18 atoms. We provide

atree viewwindow that visualizes this hierarchical structure of a protein molecule.
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Figure 3.7: Tree-view window.
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Figure 3.7 shows the tree view window while browsing through the hierarchy.
In this snapshot the molecule has a very simple hierarchy, since it contains only one
chain. But it is still useful to understand how the protein molecule is built. We
provided a two-way interaction between the tree view and the 3D view. The user
can interact with the tree by selecting its nodes. The corresponding sub-structure is
highlighted in the 3D model. When the interaction is with the 3D model, and if a

selection is made on it, the corresponding tree node is highlighted accordingly.

3.5 Scene-graph optimization

In this section we describe the techniques we have used to speed up real time inter-
action and to be able to load very large molecules. The key issue here is the way the
scene graph structure is created from a protein structure file (PDB). A scene graph
consists of Java 3D objects, called nodes, arranged in a tree structure. The factors
that affect efficiency are theumberandtypesof nodes in the scene graph structure.

All the node objects in a scene graph are derived from the Node class. Java
3D refines the Node object class into two subclasses: Group and Leaf node objects.
Group node objects group together one or more child nodes. A group node can point
to zero or more children but can have only one parent. Leaf node objects contain the
actual definitions of shapes (geometry), lights, sounds, and so forth. A leaf node has
no children and only one parent.

Our method comprises two components:

(i) Converting TransformGroup nodes to Group nodes by applying the transforma-
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tion in the Geometry node level,

(i) Combining shapes that have the same appearance into a single Shape3D node.
The first component helps increasing the real time interaction speed while the sec-
ond component decreases the memory needed by the scene graph structure, thus
allowing loading larger molecules.

We explain these two techniques by giving an example of creating a space-fill
(van der Waals) model of a protein molecule. The space-fill model consists of
spheres of different sizes transformed to the their correct atomic locations according
to the 3D atomic coordinates read from the PDB file. The intuitive way to create
a space-fill model is to use the Sphere objects provided by the Java 3D API to cre-
ate spheres of desired size and add them to the TransformGroup objects to translate
them to their correct position. Figure 3.8 shows a scene graph structure created by
using this method. However, as the number of atoms in a molecule increases the
number of TransformGroup nodes increases since each atom has a unique position
in the molecule. This makes interaction with the scene very inefficient because at
each frame all the TransformGroup nodes need be processed to get the new position
of each atom. This process involves a 4x4 matrix multiplication for each Transfor-
mGroup object.

To improve on the situation, one observation we made is that the protein molecule
is static during interaction, i.e. individual atoms do not move freely. So, according to
the interaction’s naturene TransformGroup node is enough for representing protein
molecule’s rigid structure’s position. However, by using Java 3D’s Sphere nodes it

is not possible to implement this solution, because the Sphere class does not allow
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Figure 3.8: A fragment of an intuitive scene graph for tepacefillmodel.

creation of a sphere at an arbitrary position. Thus the only way to create a sphere at

a specific position is to put a TransformGroup node above it.

But, there’s a way to get around this restriction of Java3D. We have implemented

our own Sphere class, which allows a sphere to be built at a specific location. By

doing this, what we actually did was to propagate the transformation in the Transfor-

mGroup node to the geometry level, by creating geometry at a given static location.

This puts a little overhead to the scene building process, i.e. by applying transforma-

tions during scene graph creation, but as we show in the next section this overhead is

acceptable. The more important thing is that we have reduced the number of Trans-
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formGroup nodes in our scene graphawoe (the one for the whole molecule) by
getting rid ofall the TransformGroup nodes representing individual atoms. As will
be shown later, this modification improves the interactive rendering speed signifi-

cantly. Figure 3.9 shows the scene graph after this improvement.

Virtual Universe

TransformGroup Node O Protein Molecule

Group Node Q ........ O Chains

/N LN

Group NodeQ -------- O O ........ Q Amino Acids

v

________ A Shape3D objet! = e = - - ——
with appearance and
global coordinates of a sphere

Figure 3.9: The scene graph after applying the first technique.

As seen in Figure 3.9 each sphere is represented by a Shape3D object which
encloses itgeometryandappearance The scene graph contains as many Shape3D
objects as the number of atoms in the protein molecule. As the molecule size in-
creases these increasing number of Shape3D nodes may cause memory problems.

One way to overcome this is to put spheres with the same appearance under a sin-
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gle Shape3D node by combining their geometry information into a single geometry

array. The number of Shape3D objects we need is equal to the number of different
sphere appearances. For example, if we want to color each atom in a different color,
we only need 6 Shape3D nodes, since the protein molecules consist of 6 different
atoms (Carbon, Oxygen, Nitrogen, Hydrogen, Sulphur, and Phosphate). This way
we can get rid of many Shape3D objects and free up memory space. This technique
enables us load very large molecules, which contain as many as 4000 amino acids.

Figure 3.10 shows the scene graph after application of this second technique.

m Virtual Universe

Group Node O ________ Atoms with same
appearance
________ Shape3D Object
with one sphere appearance
and with many spheres' coordinates

Figure 3.10: The scene graph after applying the second technique.

What we have provided with these techniques is actually a hybrid method com-
bining both retained mode and immediate mode graphics. The immediate mode is
simulated by breaking the scene graph hierarchy and collapsing some nodes into a
single node to save up memory space and to increase real-time interaction speed. In
the next section we demonstrate the effectiveness of our methods by providing some

test results.
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3.6 Performance Tests and Results

We have compared our system (FPV) to two other molecular visualization tools ac-
cording to theirscene building@ndreal time interaction speeplerformances. These
tools chosen for the tests (JMV 0.85 and JMVS2) are among the few available
molecular visualization tools based on Java 3D. We have chosen JMV and JMVS2
because they are closer to our system in terms of purpose and functionality.

The tests were performed using JAVA2 JRE 1.4.1 and JAVA 3D 104.1Di-
rectX version) on a Microsoft Windows XP machine with Intel Pentium 4 Processor
at 2.0GHz and 512MB of RAM. We have dedicated 256MB of this as the maximum
size of memory allocation pool for Java Virtual Machine. The graphics accelera-
tor card used for the tests was 64MB DDR NVIDIA GeForce4 MX Graphics Card.
The data set comprised 22 protein structures in PDB format ranging in size from
29 amino acids (1bh0) to 8337 amino acids (1aon). Table 3.1 shows the protein
molecules and their sizes respectively (both in termsurhber of amino acidand
number of atoms

We have chosen three different types of visual representations to perform the
tests: the spacefill (or van der Waals) model, the bonds (or wireframe) model, and
the ribbon model. The ribbon model type did not exist in IMVS2 so that part of test
was performed on JMV and our system only. Thbemodel type of JIMV, which
was very close to our ribbon representation, was compared as the ribbon model. We
tried to make the visual representations as close as possible by adjusting the display

options of the compared systems, e.g. number of sphere divisions. Figures 3.11,
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Protein Size Size
(PDB ID) || (# of residues) (# of atoms)
1bh0 29 242
1ptq 50 402
1df4 68 463
lgcm 102 814
1k52 144 1122
2aid 198 1516
1d9c 242 1993
la4f 287 2250
3mds 406 3282
1syn 528 4300
1d3a 606 4602
1a05 716 5386
1duv 999 7648
1a0s 1239 9606
13pk 1660 12508
1f8r 1992 15291
1b25 2476 19144
1i1f 3030 23244
1dp0 4092 32500
1h6d 5196 35555
1gyt 6036 46152
laon 8337 58688

Table 3.1: Sizes of test proteins
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(a) JMV 0.85 (b) JMVS2 (c) FPV

Figure 3.11: Thespacefillmodel for the protein molecule 2mhr.

3.12, and 3.13 shows, for each system, the visual representations used for the tests.
The calculation of the timings and rendering speed measurements was possible
because source codes of both tools were available. We've measured the scene build-
ing times and real-time interaction speed. The scene building times become impor-
tant, when the user wants to switch between models during interaction. The latency
between switching from one representation to another can be intolerable if it is more
than a few seconds. One may consider building all the available models during start-
up to decrease model switching time during interaction, but this requires much more
memory compared to the memory required by a single model type. Therefore, the
size of the largest loadable protein molecule decreases drastically. All the programs
that we've compared use the suggested approach, which is building a specific model
type on demand. That’s why we've taken scene building times into consideration.

The importance of the real-time interaction speed is obvious. It is one of the main
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(a) JMV 0.85 (b) JMVS2 (c) FPV

Figure 3.12: Thebondsmodel for the protein molecule 2mhr.

quality metrics of interactive visualization tools.

Figures 3.14, 3.16, and 3.17 show results of the rendering speed tests. To mea-
sure rendering speed we've used a RotationInterpolator object to have the molecules
rotate around y-axis at a constant speed. We then calculated rendering speed by
looking at the difference in frame numbers at certain time intervals. Values of 25
and more are ideal in the graphs showing the results of rendering speed tests, be-
cause 25fps is the highest frequency the human eye can detect.

In the spacefill model rendering speed test, our system had better performance
compared to the other programs, while they performed close to each other. That's
because the new Sphere classes that we have implemented to get rid of the Transfor-
mGroup nodes and encapsulate many spheres under a single Shape3D node. Thus
our system had up to eight times better rendering speed performance (at protein

1duv) compared to the other programs. Furthermore, our system was able to load
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(a) JMV 0.85 (b) FPV

Figure 3.13: Theribbon model for the protein molecule 2mhr.

the largest molecule, which has 58688 atoms, while IMV and JMVS2 could at most
load proteins that have 35555 and 23244 atoms respectively. Figure 3.15 shows the
largest molecule of the test set displayed by our program, FPV. Furthermore, our
program could render this molecule at 4 frames per second.

In the Bonds Model test, the performances of our system and JMV were close
to each other, while IMVS2 had acceptable speeds for only small molecules. JMV
performed better than FPV for large molecules, but it should be noted that even
for those large molecules FPV could establish a rendering speed over 26 frames
per second. So the difference between JMV and our program was not noticeable
practically. Our scene graph structure for the bonds model consists of a single line
segments array for all of the bonds of the protein molecule, thus resulting in a very
simple scene graph structure. The JMV program uses a similar approach thus has

similar performance results. However, the scene graph used by JMVS2 tries to put
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Figure 3.14: Rendering speed for ttepacefillmodel.

every bond in a separate Shape3D object, thus resulting in a very poor performance.
The rendering speed comparison of the ribbon model was performed only with
the JMV program. Our program performed better than JMV as seen in Figure 3.17.
In ribbon model test, we could again load the largest molecule in our data set (1aon),
which was 8337 amino acids long, while the largest molecule loaded by JMV had
3030 amino acids (111f). Furthermore, FPV achieved up to 20 times better rendering
speed performance (at protein 1b25) compared to JMV.The main reason for this was
again our method of combining related primitives under a single scene graph node.
Figures 3.18, 3.19, and 3.20 show results of the Java 3D scene graph building

tests. By presenting these results we show that the scene graph manipulation tech-
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Figure 3.15: The spacefillmodel for the protein 1aon.

niques we've developed do not cause any overhead on molecular scene building.
For thespacefillmodel JIMV program performed worst among all three programs
compared. The time required to build the molecular scene grows very quickly with
the size of the protein. For the large molecules the time required for JMV to build
a molecular scene can grow up to hundreds of seconds, which is not acceptable.
JMVS2 and our program had reasonable scene building times in the scene graph

building tests for thespacefillmodel type.
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Figure 3.16: Rendering speed for tHeondsmodel.

For the bonds model, our program and JMV had similar results and the scene
building time was negligible (much less than 1 sec). This time JMVS2 performed
poorly compared to our system and JMV. In these results, it is seen that processing
some primitives together under a single Shape3D note has benefits rather than an
overhead.

Our program outperformed JMV on the scene graph building test for the ribbon
model. As mentioned before the ribbon model tests were not performed for IMVS2
because it didn’t have a ribbon type representation. It can be seen from Figure 3.20
that scene graph building times for FPV were less than 1 second for all the test

proteins. This means FPV has a very low latency when switching between model

38



Chapter 3. Efficient Visualization of Large Molecular Complexes

an

OJh 0.85
= FPY

=
=]
o
-

FPS (frames per second)
= [ [l £ (45 o = o0
= o o = o (=) o = =
N s e rrrrrrrrrrerersrssss)
PTQ \rrrrr s r s s r pr r 7 Fr r F pr F 7 F 77 I T 7T

10F4

= =
=M
Q9
- -

=
B
b
-

1FER

1825
1L1F
1H6D

W
=
=
-

1405
10UV

16GYT owrrrrrrrra |
1A0H zzzizzzizzz

Protein Molecules (PDB 1Ds)
Increasing size¢ ——»

Figure 3.17: Rendering speed for thédbbon model.

types during interaction with the molecule. The results for this test again shows that
processing related primitives together under a single group node has benefits instead

of an overhead during scene building.

3.7 Discussion

In this chapter, we have presented a high-performance protein visualization applica-
tion called FPV. We've proposed implementation techniques to increase the usabil-
ity of our application by improving the real-time rendering speed and increasing the

range of protein data that can be examined. These improvements are accomplished
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Figure 3.18: Scene building times for thepacefillmodel.

by modifying the scene graph structure used by the Java 3D API. We have showed
the effectiveness of our methods by comparing our system to two other molecular
visualization tools based on Java 3D.

In order to make our tool more attractive to researchers, we are looking for ways
to increase the functionality of our system. One way incorporating new functional-
ity is providing new 3D representation types for protein molecules, such as electron
density map and molecular surface representation. Since we've designed the visu-
alization system as a toolkit, it is easy to add new functionalities depending on an
application’s needs, such as adding superpositioning functionality to the Graphics

Module for comparison of protein structures. The design of our system also allows
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Figure 3.19: Scene building times for theondsmodel.

users to decouple and use components of the system, such as PDB Loader Module.
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Chapter 4

Methods for Fast Molecular Surface
Generation and Interior Cavity
Detection

Molecules interact through their surface residues. Calculation of the molecular sur-
face of a protein structure is thus an important step for a detailed functional anal-
ysis. One of the main considerations in comparing existing methods for molecular
surface computations is their speed. Most of the methods that produce satisfying
results for small molecules fail to do so for large complexes. Large complexes such
as virus capsids, ribosomes, and chromosomes can contain as many as 100K atoms
in their structure data. This increasing complexity of structural data poses a signifi-
cant problem for analytical molecular surface computation methods since they need
to search for all the possible solvent probe placements on the surface by examining
every pair, and triple of molecule atoms. In this chapter we present a grid-based
approach to compute and visualize a molecular surface at a desired resolution. Our

method is based on the emerging level set methods that are used for computing
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evolving boundaries in several application areas from fluid mechanics to computer
vision. Our method is able to calculate the surface and interior inaccessible cavi-
ties very efficiently even for very large molecular complexes. We have compared
our method to some of the most widely used molecular visualization tools (Swiss-
PDBViewer, PyMol, and Chimera) and our results show that we can calculate and
display a molecular surface 1.5 to 3.14 times faster on the average than all three of
the compared programs. Furthermore, we demonstrate that our method is able to de-
tect all of the interior inaccessible cavities that can accommodate one or more water

molecules.

4.1 Introduction

Interactions between molecules are usually induced by the properties of their sur-
face components. Sequences may diverge and secondary structure arrangements
may change topology with the evolutionary process, however surface properties that
are essential to protein function are usually conserved. Therefore, calculation and
analysis of molecular surfaces play an important role in discovering the functional
properties of a protein.

Three main molecular surface definitions exist in the literature[31]. Figure 4.1
shows an illustration of those definitions. Than der Waalssurface is the area
of the volume formed by placing van der Waals spheres at the center of each atom
in a molecule.Solvent-accessible surfaceformed by rolling a solvent, gorobe

sphere over the van der Waals surface. The trajectory ofehéerof the solvent
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sphere defines the solvent-accesible surface. Whereasltrent-excluded surface

is defined as the trajectory of thmundaryof the solvent sphere in contact with

the van der Waals surface. Solvent-excluded surface is usually referredtie as
molecular surface Molecular surface and solvent-accessible surface are the most
commonly used representations for both graphical visualizations and quantitative

calculations of the surface area[31].

. S~

O' $
......... 2 . van der Waals
T A Surface
. .
.

Solvent Accesible
',/' Surface (SAS)

Re-entrant Surface

+
Contact Surface
Molecular Surface
(Solvent Excluded Surface)

_____

________

Figure 4.1: A two-dimensional illustration of surface definitions.

Protein molecules are usually well packed. In fact, the packing efficiency of
atoms inside proteins is roughly as expected for the close packing of hard spheres[31].
However, Hubbard and Argos[47] analyzed internal packing defectsvties(both

empty and water-containing) within protein structures and defined 3 cavity classes:
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within domains, between domains, and between protein subunits. These cavities
may have several important functions. Takahal. show that buried water molecules

in internal cavities contribute to protein stability[86]. Water-filled cavities also play

the role of modulating pK values of acidic and basic residues surrounding the
cavities[55]. Therefore, in the absence of high-resolution structural data capable
of resolving all the water molecules inside protein cavities, it is extremely useful

to develop accurate and fast computational methods for quantitatively calculating
the shapes and sizes of these cavities. The proposed technique addresses both the

surface generation and cavity detection problems.

4.1.1 Related work

Numerous methods have been developed to compute molecular surfaces. Here, we
describe some of those methods. See [31] for a more thorough review of the area.
One of the earliest algorithms was proposed by Connolly [18, 19]. A molecular dot
surface is formed as a combination of convex, toroidal, or concave patches when a
probe sphere is tangent to one, two, or three atoms respectively.

A grid based algorithm was described by Nichadtsal[66] and used in the
programGRASKP65]. The method we propose in this chapter is similar to their
algorithm except for the detection of the interior cavities. They detect the cavities
by choosing a seed point at an extrema, that does not belong to a cavity. All points
associated with it, those which can be reached by travelling along triangle edges,
are deemed theoncavity surfaceAll others belong to cavities. Note that this will

give an incorrect assessment if there is more than one disconnected surface. Unlike
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GRASRour method can handle such topologies naturally without any e@RASP
is currently available only for SGI machines, therefore it is not among the programs
that we used for comparison.

Sanneret al[74] developed a method that relies on the reduced surfaces for
computing the molecular surfaces. The reduced surface corresponds to the alpha
shape[25] for that molecule with a probe radius An implementation of this
method (MSMS package) is used by the UCSF Chimera[45] molecular graphics
program, which is one of the programs that we compared our method to.

All of the described methods work very well for small molecules. However, one
may need to analyze large complexes as the interaction of proteins with DNA and
RNA is essential for many cellular functions. Therefore, development of a method
that is capable of interactively analyzing and visualizing the molecular surface rep-

resentations of these large complexes is extremely important.

4.1.2 An overview of our method

We use a grid based approach to compute the molecular surface of a protein with
known structure. Our method, which we name LSM8velSet method foiM olecular

Surface generation, proceeds in three stages:
1. Mark grid cells that are inside the solvent-accessible surface.
2. Mark grid cells that are outside the solvent-excluded surface.

3. Use the fast marching level set method to determine the outer surface and

interior cavities of the molecule.
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The volume and area calculations of the molecular surface as well as the internal
inaccessible cavities is then carried out very efficiently on the processed grid. For
visualizing the molecular surface, a triangular mesh is generated using the marching
cubes method[57].

We have evaluated LSMS for generating molecular surfaces of very large molec-
ular structures having 27375 (PDB id: 1a8r) to 97872 (PDB id: 1hto) atoms. We
compared our results to PyMol[21], Chimera[45], and Swiss-PDBViewer[37] and
our results show that LSMS is faster than all of those tools. We have also performed
experiments to evaluate the extent of LSMS’s interior cavity detection capabilities.
We compare the internal cavities found by LSMS to the cavities found by Swiss-
PDBViewer. Our results show that LSMS can find all the cavities that can accom-
modate one or more water molecules. Hence, our technique makes two significant
contributions: (1) time and memory efficient mechanisms for computing and visu-
alizing molecular surfaces and (2) accurate determination of interior cavities.

The rest of the chapter is organized as follows. We present the details of our
technique in Section 3.2. We present the experimental results of molecular surface
performance tests and interior cavity detection tests in Section 3.3. We conclude

with a brief discussion in Section 3.4.

4.2 Methods

The input to our method is the atomic coordinates of the molecular structures as

a PDBJ8] file. We ignore the hydrogen atoms during the surface computation and
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employ the commonly usadhited atomapproach[31]. In this approach, the size of
an atom is enlarged by accounting for its hydrogens. We use the same united atom
radii applied in Rasmol's[77] spacefill rendering

The molecular structure is then placed and centered on a three-dimensional or-
thogonal grid of a desired resolution. The size and the resolution of the grid is
the same along all of the three dimensions and constant during molecular surface
computations. The resolution of the grid with the size of the molecule defines a
guality measure that directly corresponds to the quality measure employed by Swiss-
PDBViewer[37], that is the number of grid cells per B4We resize the molecule
uniformly in all dimensions so that it fits completely inside the cubic grid. The qual-
ity is therefore given byN/L) x 1.4, whereN is the resolution and is the length
of the molecule (i) along the major axis.

A molecular surface for the input structure is computed in three stages. First, we
mark grid cells that are inside the solvent-accessible surface of the molecule. Then,
the grid cells that are outside the solvent-excluded surface is marked as outside.
However, at the end of the second stage the cavities inside the molecule are also
marked as outside cells. The surface surrounding those cavities is not distinguished
from the outside molecular surface that is accessible to solvent molecules. There-
fore, we use the level set method to distinguish the outer surface from the interior
cavities, by shrinking a boundary that initially encloses all of the molecule.

The volume and area calculations of the molecular surface as well as the inter-

nal inaccessible cavities is then carried out very efficiently on the final processed

Lhttp://www.umass.edu/microbio/rasmol/rasbonds.htm
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grid. For visualizing the molecular surface, we generate a triangular mesh using
the marching cubes method[57]. The details of the above steps are explained in the

following subsections.
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Figure 4.2: The grid cells whose centers fall inside the volume defined by the
solvent-accessible surface is markeside

4.2.1 Marking the volume inside the solvent-accessible surface

The first stage in the molecular surface computation consists of marking the grid
cells inside the volume defined by the solvent-accessible surface. We proceed as
follows. By default all the grid cells are considered outside of the surface. Then,

by traversing all of the atoms of the molecular structure we mark the cells, whose
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centers fall inside the volume defined by the solvent-accessible surface, as inside.
Figure 4.2 illustrates the process in two dimensions for one of the atoms of the
molecule. The extension to three dimensions involves spheres instead of circles.
There are a couple of points to consider in terms of the computational complexity
of the procedure described above. The marking of the grid cells that are inside takes
O(m - k) time, wherem is the number of atoms anidis the average number of
grid cells occupied by an atom. Note that this process may visit the same grid cell
more than once, since the enlarged van der Waals volume of the atoms may intersect.
Another approach to overcome this repetition may be traversing the grid cells in one
pass and checking if they are inside an atom or not. The brute force implementation
of this technique will takeD(N? - m) time in the worst case, where N is the grid
resolution along one dimension and each grid cell is checked for intersection with
every atom. We can optimize this by building an octree data structure over the atoms
of the molecule. This will reduce the time complexity@N?3 - log m). However,
our experiments on a 25&56x 256 grid showed that even with this optimization
the second approach is about 6 times slower than the first approach, thxthas)
time complexity. It takes 11.34 seconds to process the protein 1pma (45892 atoms),
on a 256<256x256 grid using the octree approach, however, it only takes 1.86

seconds when the molecule traversing approach is used.

4.2.2 Finding the solvent-excluded surface

After marking the grid cells inside the volume of the solvent-accessible surface,

the next step is to mark out the parts that fall inside the solvent molecule, hence the
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Figure 4.3: The grid cells whose centers fall inside the probe circles are marked
outside

name solvent-excluded surfac&his process is the most computationally expensive
stage of our method. Itinvolves finding all the probe spheres centered on the solvent-
accessible surface. Then, for each such probe, the grid cells that are inside the
probe sphere is marked as outside of the molecular surface. Figure 4.3 illustrates
this procedure in two dimensions. The grid cells that are marked as inside in the
previous stage are now marked outside by this procedure, if they fall inside a probe
circle. Again, the extension of this illustration to three dimensions involve probe
spheres instead of probe circles.

The time complexity of the second stage depends on the resolution of the grid

52



Chapter 4. Methods for Fast Molecular Surface Generation and Interior Cavity
Detection

as well as the complexity of the solvent-accessible surface. A protein surface which
contains a lot of pockets (outside cavities) will require a larger number of probes
compared to a surface that is smooth. Therefore, it would require more computation
time. The complexity of this stage 3(P - k), where P is the number of possi-
ble placements of the solvent (probe) molecule, and the number of grid cells

occupied by it.

4.2.3 Interior cavity detection using fast marching level set method

The result of the first two stages is a grid that represents the volume occupied by
solvent-excluded surface of the molecular structure. However, the interior inacces-
sible cavities is not distinguished from the surrounding space in this representation.
As a result, the volume occupied by them is excluded in the total molecular volume.
Furthermore, if one computes the molecular surface area using that grid, the result-
ing surface area will not be the area of the molecule in contact with its surrounding
environment, but it will also include the surface areas of the interior inaccessible
cavities. Therefore, we need to distinguish between the outer surface and the inte-
rior cavities. Figure 4.4 illustrates an inaccessible cavity in two dimensions. Note
that, in three dimensions the illustration should not be realized as a torus shape, but
instead as a small sphere inside a larger sphere, where the small one would be the
inaccessible cavity.

We propose a method based on the level set method to solve this problem. The
level set method[79, 69] provides a mathematical framework to compute evolving

boundaries. It is based on a continuous formulation usually by partial differential
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Outer Surface . .
Inaccesible Cavity

Figure 4.4: A two-dimensional illustration of an inaccessible cavity.

eqguations and allows one to deform an implicit surface, which is usually the zero iso-
contour of a scalar (level set) function. The topological changes, e.g., split, merge,
are handled naturally by the level set method. The level set formulation works in
any number of dimensions and the computation can easily be restricted to a narrow
band near the zero level set for efficiency.

The idea is to initialize a boundary that encloses the molecule, then shrink the
surface at a constant speed. The stopping criterion in the speed function is the en-
counter with a grid cell that is marked as inside. The evolution of the boundary stops
completely when all of the boundary points are stopped by an inside grid cell. The
key observation here is that during this shrinkage process, the boundary has a fixed
signed speed, i.e., a grid cell passed over by the boundary will not be visited again
by any part of the boundary.

With this observation we can apply the fast marching method, in which the clos-

est grid points to the boundary are considered first, and a grid cell that is processed
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is never processed again. In this procedure we maintain a narrow band of grid cells
that represents the current boundary, and update that narrow band as the boundary
evolves. At the end of this procedure the outer surface is detected, and the voids in-
side the molecular surface are detected as interior inaccessible cavities. We present

examples of interior cavities in the experimental results section.

4.3 Experimental Results

We have conducted two sets of experiments to evaluate the performance and utility
of our method. First, we evaluate the performance of LSMS for computing and visu-
alizing molecular surfaces of very large complexes. Then, we compare the cavity de-
tection accuracy by comparing our results to cavities reported by Swiss-PDBViewer.

We explain the experiments in detail in the following subsections.

4.3.1 Molecular surface generation and visualization performance

Computing and visualizing the solvent-excluded surface of a molecular structure is

a computationally challenging task. Most of the existing visualization tools achieve
similar performance for small molecules despite the difference of underlying meth-
ods used. However, not all of the methods can cope with the increasing size of the
molecules. Therefore, we have selected a challenging set of large molecular struc-
tures as a benchmark dataset. The dataset consists of 15 large complexes that contain
27375 to 97872 atoms in their structure data.

We have compared LSMS’s molecular surface generation performance to three
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surface generation time (sec.) surface quality
Protein size LSMS SPDBV PyMol Chimera LSMS SPDBV
1la8r 27375 1166 1496 51.34 16.36 1.03 1
1h2i 32802 15.66 17.33 40.78 40.04 1.29 1
1fka 34977 37.14 5156 85.14 77.25 1.34 1
1gtp 35060 15.81 19.75 50.17 67.04 1.28 1
lgav 43335 20.31 35.24 86.62 78.35 1.28 1
1g3i 45528 26.80 3751 6390 u 1.41 1
lpma 45892 40.78 u 51.10 u 1.67 1
1gt7 46180 1491 22.60 57.75 54.39 1.16 1
1fjg 51995 30.34 4844 8579 u 1.33 1
laon 58884 47.28 61.20 9584 u 1.41 1
1j0b 60948 18.28 44.97 100.14 u 1.18 1
1ffk 64281 69.83 72.07 135.80 196.65 1.27 1
lotz 68620 42.05 51.27 78.05 u 1.45 1
lir2 87087 21.09 u 120.52 93.87 1.23 1
lhto 97872 3895 89.68 u u 1.28 1

Table 4.1: Molecular surface generation times for LSMS compared to those of
Swiss-PDBViewer, PyMol, and Chimera.
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other programs that are widely used in the computational biology community and
are freely available. PyMOL[21] is an open source molecular graphics system
with an embedded Python[73] interpreter designed for real-time visualization and
rapid generation of high-quality molecular graphics images and animations. UCSF
Chimera[45] is another tool implemented in Python. The solvent-excluded molecu-
lar surfaces produced by Chimera are created with the help of the MSMS package[74].
Swiss-PDBViewer[37], or SPDBYV for short, is another molecular viewer with ex-
tended functionality. There is little amount of documentation about the molecular
surface component of SPDBV. Nevertheless, it can be understood from the docu-
mentation that the surface computation is carried out on an orthogonal grid as in
LSMS. The probe size is 14 as in other methods, however all the molecule atoms
have a fixed radius. The current version of SPDBYV does not allow changing of these
parameters. The only value that can be altered is the smoothness (quality) parame-
ter. By default it is 1, which means 1 grid point every R4This guality should be
enough for most purposes as also indicated by SPDBV’s devetopers

Table 4.3 shows the molecular surface generation times. All of the tests are
performed on a Microsoft Windows XP machine with Intel Pentium 4 Processor at
2.0GHz and 512MB of RAM. The results we report here use the programs’ default
parameter sets and do not include the time taken to load the molecule into memory.
The timings for Swiss-PDBViewer are acquired using a quality value of 1. We
also compute and report a quality measure for LSMS that directly corresponds to

SPDBV'’s quality measure, i.e., number of grid cells per A.4Protein sizes in

2http://us.expasy.org/spdbv/text/surface.htm
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the table are shown as number of atoms. The emiry the table means that the
program is not able to generate a molecular surface for that protein. We have used
a 256x256x256 resolution grid for timing LSMS. The quality of the surface is
affected by the size of the molecule as well as the resolution of the grid. We resize the
molecule uniformly in all dimensions so that it fits completely inside the cubic grid.
The quality is therefore given byV/L) x 1.4, whereN is the resolution and is

the length of the molecule along the major axis. Figure 4.5 shows the largest protein
in our dataset in 256256x 256 resolution and a quality of 1.28. The boundaries of
the 256<256x 256 resolution grid is also shown. LSMS can interactively render the
surface of 1hto with 9 frames per second display rate.

Table 4.3 shows that LSMS is up to 2.46 times faster than SPDBV (achieved at
protein 1j0b) and is 1.5 times faster on the average, while achieving a better quality
for every test protein. LSMS is also 3.14 times faster than both PyMol and Chimera
on the average. Also, it is important to note that for some of the test cases SPDBV,
PyMol, and Chimera are not even able to generate the molecular surface, whereas

LSMS successfully computes the surfaces for all of the test cases.

4.3.2 Interior cavity detection

The outer boundary of the solvent accessible surface is found by shrinking an initial

enclosing boundary at a constant speed with the fast marching level set method.
Figure 4.6 shows such an outer surface of the protein 2ptn computed and displayed
by LSMS. However, as we have stated earlier there may exist inaccessible cavities

inside the molecular surface that are not visible, i.e., occluded by the molecular
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# of cavities cavity volume&®)  molecule volume4?)
Protein LSMS SPDBV LSMS SPDBV LSMS SPDBYV
leca 1 1 31.46 134 16688.98 16824
2act 7 2 322.33 281 6842.76 6509
2cha 10 4 338.01 436 28728.13 2770%
2lyz 3 2 96.12 162 15778.44 15133
2ptn 6 3 394.41 380 27037.94 25897
5mbn 4 2 127.05 189 19796.24 19768
8tin 14 2 356.28 170 40280.45 38498

Table 4.2: Cavities computed using LSMS and comparison with results from Swiss-
PDBViewer.

surface. Nevertheless, analysis of these cavities may be required to study the buried
water molecules inside them which may contribute to protein folding stability.

Figure 4.7 shows the internal cavities of the same protein 2ptn that can accommo-
date one or more water molecules. Thet@ce is also shown along with the cavities
to provide visual clues of relative locations of the cavities inside the molecule.

We have analyzed internal cavities of a set of seven protein molecules. We com-
pared those results to the results reported by Swiss-PDBViewer. Table 4.3.1 shows
the results of the cavity detection experiment. We have examined the number of
separate cavities as well as the total cavity volume in cubic angstroms found by
LSMS and SPDBYV. The volume occupied by the molecular surface is also shown to
give an idea about the size of the proteins. The results show that LSMS can find all
the cavities found by SPDBV. We have also verified these results by further visual
inspection. LSMS usually finds more cavities compared to SPDBV. The disagree-

ments in number of cavities and total volume of cavities are probably caused by
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the employment of different van der Waals radii by the two methods, as there is no

unique established standard for those, as well as SPDBV'’s fixed atom radii strategy.

4.4 Discussion

In this chapter we have presented a method to calculate the solvent-excluded surface
as well as the interior inaccessible cavities of a molecular structure. Our method
is based on a fast marching level set method that efficiently formulates a constant
signed speed evolving boundary. We have shown that our method, LSMS, is able to
calculate the surface and the cavities very efficiently even for very large complexes.
The experimental comparison of LSMS to some of the most widely used molecular
visualization tools shows that we can calculate and display a molecular surface faster
than all three of the compared programs. LSMS can also detect all the cavities that
can accommodate one or more water molecules.

A future research direction based on our work described in this chapter is the
development of methods for computation of molecular surfaces dynamically as the
probe radius changes. Starting on the van der Waals volume and using distance-
transform one can generate a list of initial surface points (zero distance) and then
propagate from those points outward to a particular distan@tee maximum probe
radius). The solvent-accessible surface for a particular probe radiug is then
readily computed by this method. The solvent-excluded surface can also be deter-
mined dynamically by shrinking the accessible surface using another distance trans-

form (fixed-speed level set formulation). All the points that adistance from the
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initial surface will give the solvent-excluded surface. This two-step level set method
can be used to adjust the probe radius dynamically.

An application of molecular surface computations is the comparison of generated
surfaces. Molecular surface comparison is a more difficult computational challenge
compared to sequence or structure comparison methods. Finding surface similari-
ties among a family of proteins may help reveal the functional determinant of that
family, and the other dual problem of finding a complementary surface (the docking
problem) may help in drug discovery and development. Several surface properties
can be considered when comparing protein surfaces: electrostatic potential, surface

curvature, cavity size, molecular surface area, and molecular volume.
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Figure 4.5: The molecular surface of 1hto generated by LSMS.
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Figure 4.6: The molecular surface of 2ptn generated by LSMS.
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Figure 4.7: The inaccessible cavities inside 2ptn along with itstace.
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Chapter 5

A Robust and Efficient Algorithm for
Protein Structure Similarity Search

In this chapter we present a new method for conducting protein structure similar-
ity searches, which improves on tledficiency of some existing techniques. As
the number of known protein structures is increasing at a considerably high rate,
significant questions arise about the ability of existing methods in handling struc-
ture similarity search in a reasonable amount of time. Most of the existing meth-
ods [80, 42, 60] for protein structure comparison are designed for pairwise compari-
son. Therefore, in order to conduct a similarity search of a protein structure against a
database of protein structure, one needs to perform an exhaustive search by pairwise
comparing the query protein to all of the database proteins one by one. Clearly, this
is not a reasonable approach, and methods for conducting fast similarity searches
should be developed.

The method we propose in this chapter is grounded in the theory of differential

geometry on 3D space curve matching. We generate shape signatures for proteins
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that areinvariant, localized robust compact andbiologically meaningful The in-
variancy of the shape signatures allows us to improve similarity searching efficiency
by adopting a hierarchical coarse-to-fine strategy. We index the shape signatures us-
ing an efficient hashing-based technique. With the help of this technique we screen
out unlikely candidates and perform detailed pairwise alignments only for a small
number of candidates that survive the screening process. Contrary to other hash-
ing based techniques, our technique employs domain specific information (not just
geometric information) in constructing the hash key, and hence, is more tuned to
the domain of biology. Furthermore, the invariancy, localization, and compactness
of the shape signatures allow us to utilize a well-known local sequence alignment
algorithm for aligning two protein structures. One measure of the efficacy of the
proposed technique is that we were able to perform structure alignment queries 36
times faster (on the average) than a well-known method while keeping the quality of

the query results at an approximately similar level.

5.1 Introduction

The number of known protein structures is increasing rapidly, as more researchers
are joining the hunt for novel protein structures, more experimental apparatus are
deployed, and more theoretical frameworks and software tools are developed for
predicting protein structures. Protein structure comparison tools play an important
role in this enterprise. In predicting a protein structure from its sequence, researchers

usually form a new candidate structure. To avoid potential exponential explosion of

66



Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

structures, that new structure is compared with previously known structures for ver-
ification/tuning/correction. Discovering similar folds or similar substructures thus
provides restrictions on the conformational space and serves as a starting point for
producing useful models [11].

Structure comparison is an NP-Hard problem [53]. There are no fast structural
alignment algorithms that can guarantee optimality within any given similarity mea-
sure. Therefore, existing structure comparison methods employ heuristics. There are
different approaches for extracting structural features. Some methods use only the
coordinates of thé’, atoms [42, 80]. They infer the global structure by examining
the inter-atomic distances between residues. There are also quite a few methods that
use secondary structure elements (SSEs) to simplify the problem by finding initial
alignments of SSEs [33, 43, 58, 83, 91] to guide the match of amino acids.

Some methods rely on localized features. In Leibowitzl. [54], a feature
extraction method was proposed that examines the k-tuples of atoms in a spherical
shell neighborhood of a residue. For retrieving similar structures, geometric hashing
is used, which was first introduced in computer vision [52]. Geometric hashing is
also used by Nussinaet al. [67] and Penneet al. [70]. However, those techniques
are not localized as Leibowitt al. [54], and can be slow due to the large amount
of redundant information kept. It can take as much as 18 seconds to compare two
proteins [70]. Nevertheless, geometric hashing is the first approach that targets the
need of indexing for fast similarity searches in a large structure database. Another
advantage of geometric hashing is that it can also be used for multiple structural

alignment [54]. However, one complaint about the pure geometrical methods is
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that since they do not make use of domain specific knowledge, they may overlook
some biologically significant relationships such as secondary structure assignment
or residue properties, e.g., hydrophobicity.

Another difficulty in the structural comparison problem is the choice of a mea-
sure to quantify the similarity between compared structures [35]. One of the widely
used measures is the RMSD (root mean square distance) measure [26]. It is a mea-
sure of similarity based on the closeness of correspondingtoms of two protein
structures. However, a match may involve only a subset af' atitoms. l.e., there
may exist biologically significant local alignments (even when the molecules do not
share a global structural similarity). So the length of the alignment becomes an im-
portant measure. The information on the gaps in the alignment also gives hints on
the quality of the alignment [26]. Some methods also computeteue e-value
or z-valueto quantify the statistical significance of the match [33, 42, 80]. In this
chapter, we do not address the problem of finding a universal similarity measure,
instead we employ a measure used by Gerstein and Levitt [30], which involves the
RMSD and the length of an alignment.

The many variations of protein structure comparison algorithms briefly surveyed
above show us that the problem of structure comparison is indeed hard. Furthermore,
most of the algorithms are for pairwise comparison. l.e., they need to perform an
exhaustive sequential scan of a structure database to find similar structures to a target
guery protein. This approach may not be feasible as the structure databases, such as
the PDB [8], grow in size. Thus, fast and accurate methods for conducting structure

similarity searches are needed (there are some efforts in designing methods that
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utilize indexing to make similarity searches more efficient, e.g., indexing DALI’s
distance matrices [6]).

In this chapter, we present a new method for protein structure similarity search
and alignment. The main contribution is to improve on the efficiency of similar-
ity searches. The result is that our method is able to find, efficiently, meaningful
structural similarities in proteins about 30 times faster than CE [80], a widely used
method for conducting protein structure alignment. We were also able to find sim-
ilarities that were overlooked by other existing techniqu8slient features of our
method are that we construct signatures for structural matching thatvagant
(i.e., they are not affected by the translation and rotation of a protein structure in
space),localized(i.e., the signature at each residue location is completely deter-
mined by the local structure around that particular residwdst(i.e., small per-
turbations of atomic coordinates induce small changes in the associated signatures),
compact(i.e., the size of the signaturesd¥n), n: number of residues), artao-
logically meaningful(i.e., we incorporate secondary structure assignment into the
signature). These signatures are constructed and indexed off-line to improve query
efficiency. The on-line matching process is carried out in a coarse-to-fine hierarchi-
cal manner to enable fast protein structure similarity search and detailed pairwise
alignment that handles alignments with gaps. We have implemented our method as
an interactive tool that allows visual inspection of the alignment results and iterative
discovery of possible suboptimal alignments that may have biological importance.

In the following sections we describe in detail our method. In Section 4.4 we

present experimental results. And finally we conclude with future directions and
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discussions.

5.2 Methods

Our method is grounded in the theory of differential geometry on 3D space curve
matching. The idea of representing protein structures by using differential geometry
was first introduced by Rackovsky and Scheraga [72]. However, their work fo-
cuses on investigating local curvature and torsion differences between very similar
proteins and relating curvature and torsion values to secondary structure conforma-
tions, such as alpha helices and beta sheets. On the other hand, our work focuses
on finding large scale structural alignments between two protein structures by using
curvature and torsion values.

It is well established in differential geometry [22] that the necessary and suffi-
cient condition for structure isomorphism of two space curves is the correspondence
of their curvature and torsion values, expressed as a function of the intrinsic arc
length. Intrinsic arc lengtlis) satisfies the property thi(s)| = |dC(s)/ds| = 1,
whereC denotes the space curve. Such a parametrization is in general difficult to
obtain in real world applications. However, for protein structure matchingCthe
atoms along the backbone can be considered equally spaced because of the con-
sistency in chemical bond formation. Hence, we can use the polygonal arc length
betweenC,, atoms as a convenient parameterization without loss of generality. Note
that the fundamental theorem of differential geometry does not apglgpedsim-

ilarities. However, ungapped local isomorphism can still be detected and by using
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dynamic programming, the matching local substructures can be connected to allow
for a larger structural alignment with gaps.

Because of the limited resolution of the apparatus used and noise inherent in any
measurement process, the atom positions of a protein structure are imprecisely spec-
ified. In order to have robust and reliable shape signatures, smoothing of data points
is needed to cope with experimentation and resolution related errors. Approximation
splines are used to smooth data points [38, 49]. Furthermore, we use variable error
estimates for smoothing different type of secondary structures. This is biologically
meaningful, because certain secondary structurest(likes) are much more likely
to have errors in them.

After smoothing the”,, coordinates of a protein with a polynomial spline, we
compute its shape signature. The shape signature of a protein is a list of signature
triplets, one for each of its residues. A signature triplet of a residue consists of
its secondary structure assignment and curvature and torsion valueg'atatsi-
tion. Thus, we name our method as CTSS, which is the abbreviatid@uimature,
Torsion, andSecondaryStructure. These signatures are rotation and translation in-
variant. In other words if two different curves produce similar curvature and torsion
values, then it can be concluded that they are similar (modulo rotation and transla-
tion) [22]. Curvature and torsion at a point along the curve provide localized ge-
ometrical information. The smoothing process produces a stable signature that is
robust in the presence of measurement noise. Furthermore, our method is not purely
geometrical because we incorporate biological information such as the secondary

structure assignment into the shape signatures. Thus, we achieve stability and ro-
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bustness in the description at the expense of added computation of curve fitting and
data smoothing. However, this smoothing and fitting process is perfoofidide
with a lenient time constraint. Hence, the trade-off is reasonable and beneficial.

After extracting the signatures, we build a hash table to index the space of invari-
ant signatures. For a query protein structure, we compute its shape signatures using
the same feature extraction procedure described above. Then, in the screening phase,
we retrieve candidates of similar structures by using a voting mechanism based on
the similarity of the hash keys. This allows efficient pruning of unlikely matching
candidates, without expensive pairwise search of all proteins in the database.

For candidate proteins surviving the pruning process, we use a well-known dy-
namic programming algorithm (developed for sequence alignment [84]) to align
pairwise the signatures of two proteins structures. The alignment result is a set
of correspondences of structurally related residues. Those correspandatgms
are superimposed and an RMSD (root mean square distance) value is computed for
that subset. The length of the alignment and RMSD is used to compute a score [30]
approximately reflecting the quality of the alignment. We also present the results of
the alignment visually for further inspection. The main steps of our method can thus
be summarized as follows:

For each protein in the database (dfline process):

1. Calculate a spline fitting to best approximate the positions of thatoms.

2. Computefor each residugcurvature and torsion values at the position
along the spline. The secondary structure assignment of that residue is also

recorded in the signature.
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3. Compute a hash key based on the signature and store that in a hash table.
For a query protein (aon-lineprocess):

1. Repeat steps 1 to 2 above and use the shape signature to screen the candi-
dates from the hash table. Perform the following steps only for the candidates

surviving the screening process.

2. For two proteins (a candidate database protein and the query), construct the

normalized scoring matrix based on the distances between extracted features.

3. Run Smith-Waterman [84] local sequence alignment algorithm on the scoring

matrix.

4. Superimpose the corresponding residues using a fast least-squares solution [5,

87].
5. Report results in an interactive visual form.

For each query, the first step in the on-line process is an efficient hashing based
screening of the database of proteins, and the last four steps are for comparing two
protein structures pairwise (the query and a candidate). A normalized scoring ma-
trix is created on which the dynamic programming algorithm is run. A number of
local regions with the highest alignment scores are chosen as candidates of structural
similarity and passed to the final step of superimposition. For those highly similar
regions, we superimpogsg, coordinates of the associated residues and check the

RMSD of the alignment. We assign scores to them according to their lengths and
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RMSD values and return the best scoring alignment as the best structural alignment.

In the following sections we explain each step of our method in detail.

5.2.1 Spline approximation and error handling

The protein structure data are retrieved from the Protein Data Bank [8]. For each
residue of the protein we obtain the 3D coordinates offtsatoms from the PDB

file. As a result, each protein is represented by approximately equi-distant sampling
points in 3D space. To construct a smoothing spline best approximating those points,
we use thdava AppLilpackage (http://www.sscc.ru/matso/rozhenko/applib/), which
is an approximation library for Java.

We use the quintic spline approximation, which is for 1-D curves. For a space
curve, we use 3 independent smoothing splines parameterized with respect to the
polygonal arc length. The library package constructs the quintic smoothing spline,
C(t), to given datag(¢;), i = 0,...,n — 1, wheren is the size of the”, backbone,
providing as small second derivative as possible (i.e., minimizing curvature). The
method also ensures that the constructed spline does not deviate from the input data

more than a given threshold by satisfying the following equation:

n—1

Y owite) — o) < & (5.1)

=0
wherew; are positive weights, andis the maximum allowed deviation level. The
larger a weight used for a residue, the greater the deviation is allowed. For our
experiments we have usad= 0.2 for helices,w = 0.4 for strands, and» = 2.0 for

turns. Also notice that is a measure for the total deviation of the spline curve from
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the data points. We have used a more intuitive measyrelt is an average error
measure, not dependent on the length of the protein. We computeritieg. (5.1)

with the following equation:

e=\/ei-n (5.2)

Figure 5.1 shows an example of approximating 3D quintic spline for a small pro-
tein (1ei0:A), where individual spheres representdheatoms and the dark colored
3D curve passing through them is the constructed smoothing spline. The average er-
ror estimateg, is 0.6 A°. The curvature along the spline is minimized. In addition,
as seen in the figure, we allow more smoothing of the data where theteris(@he

top part connecting two helices) and less smoothing where thetealxa

5.2.2 Feature extraction

Curvature is defined as [22]:

k= |C| (5.3)

And torsion is defined as:

T = %[c' d (5.4)
KR

where the square brackets have the special meaning of:
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&ﬁnnu“m

Figure 5.1: Spline approximation fo€’, coordinates.

¢, ¢, C.
cccl=| ¢ ¢, ¢, (5.5)
C. Cy C-

In other words, the curvature of a point on the curve denotes how rapidly the
curve pulls away from the tangent at that point, or how non-colinear a curve is. Sim-
ilarly, the torsion of a point on the curve denotes how rapidly the curve pulls away
from the osculating plane at that point, or how non-planar a curve is [22]. We com-
pute the average curvature and torsion in a close neighborhood of a residue. Since

computation of torsion involves the third derivative of the spline polynomial, we
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have used quintic spline approximation, which guarantees the fourth order deriva-
tive continuity.

We also use the secondary structure assignment of a residue as a structural fea-
ture. Secondary structure assignment information is retrieved from the PDB web
site [8]. PDB uses the DSSP method [48] to determine the secondary structure
assignments of proteins. The signature value regarding the secondary structure as-
signment is one of thieelix, turn, or strand It should be noted that other biological
properties of a residue, such as hydrophobicity, can also be used as part of the sig-

nature - if discrimination based on those traits are desirable.

5.2.3 Hashing for fast retrieval of candidates

After the feature extraction phase, we perform a quantization and normalization
procedure on the curvature and torsion values. After that procedure each curvature
and torsion value resides in the interval [0,255].

Each signature feature represents one dimension in our hash table. Therefore, we
create a three dimensional hash table for curvature, torsion, and secondary structure
type. To ensure a robust and reliable retrieval of candidates, the resolution of the
hash table must be judicially chosen. The coarser the resolution, the smaller the size
of the hash table gets. However, coarser resolutions reduce the discriminating power
of the curvature-torsion descriptor and result in more false positive candidates sur-
viving the screening process. On the other hand, finer resolutions increase the size of
the hash table. The descriptor also becomes more susceptible to random error fluc-

tuation, resulting in true positives being screened out. After some experimentation,
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we have chosen the resolution of our hash table todbe 64 x 3.

For each signature tripletx, 7, ss), we compute a hash key, which is simply
(k/4,7/4, ss). By using that key as an index to the hash table, we store the signature
triplet into the hash table along with its host protein chain identifier and its residue
number. This process is executtlinefor each protein in the database.

For a query proteiry, we extract its shape signatures as described in subsections
4.2.1 and 4.2.2. We perform similar quantization and normalization of the curvature
and torsion values. For each residue of the query protein, we compute a hash key
using its signature triplets, /4, 7,/4, ss,). We retrieve the hash table entry indexed
by that key. We accumulate a vote for each database protein stored in that entry.
We repeat this process for each residue of the query protein. At the end, we assign
a significance scoreg-score to each of the database proteins. We compute the
a-scoreof a database protein by normalizing its accumulated votes by its length
(number of residues). Proteins with highescores are promising candidates that
may have structural similarity to the query protein. We sort the proteins according
to theira-scores and we select the tay queries. We use a cutoff value instead of
a threshold, becausescoreis not universal like a statistical significance score, i.e.,
it also depends on the length of thaeryprotein. Finding a better scoring scheme
is among our future work. For our experiments we have chdéém be200, which
means we screen out approximately 90% of the database after the pruning phase.

By using the voting mechanism described above, we efficiently retrieve candi-

dates of similar structures. Hence, we avoid exhaustive scan of the entire database.
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5.2.4 Pairwise comparison

We perform pairwise comparison only for the candidates surviving the screening
process. For two proteins under consideration, we first construct a normalized scor-
ing matrix and then use a modified version of Smith-Waterman [84] dynamic pro-
gramming algorithm on that distance matrix. The best scoring local alignment de-
fines a set of correspondences of residues, which is then superimposed by a fast

closed-form solution. The details of pairwise comparison are explained below.

Distance matrices

The distance matrices we compute should not be confused with the inter-atomic
distance matrices of the DALI method [42]. The distance matrices we compute are
the signature distance matrices between two proteins. Thedgﬁrgf the distance

matrix denotes the distance between the quantized and normalized signature values
of the i"" residue of proteimd and the;j*" residue of protein3, and it is defined by

the following equations:

a8 = (st — KDY+ (7 — 7P)2 + 517 (5.6)

c, if SS TZA £ SS(rB

5 _ (ri%) (ry") 5.7)
—c, it SS(rf) = SS(rP).

whereSS(r#') denotes the secondary structure assignment aof'tlresidue of pro-

tein A. This measure is basically the Euclidian distance between the curvature and
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torsion tuples(x;*, 7;*) and (x?, 77), regulated by the secondary structure assign-
ment agreement. Agreement on secondary structure assignment decreases the dis-
tance by a constamrt and disagreement increases the distance by the same constant.
We have used = 20 in our experiments. Our choice of incorporatimgB into

the signature as an offset instead of a multiplication factor is because the secondary
structure assignments are not 100% correct, and may mislead the alignment if they
are the dominant factor in the distance equation. Figure 5.2 shows an example dis-
tance matrix for the shape signature relationships between the proteins 1faz:A and

1ytf:D. Darker regions indicate higher similarity of signatures.

1m

= JFAZ:A =

122

Figure 5.2: The distance matrix.

We convert those distance values to normalized score values in the intewal |
high] to be used by the local alignment in the dynamic programming phase. This is

done by using the following equation:
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—dAP + (256v2 + ¢)
2561/2 + 2c
We have chosen the low score to-b&0.0 and the high score to [#8.0, because

scoref}B = low +

- (high — low) (5.8)

they define a range similar to that of the PAM matrix [20]. The score of the alignment

makes sense this way by comparing it to the sequence alignment scores.

Local alignment by dynamic programming

The shape signatures can be thought of as protein sequence data with the alphabet,
Y=all possible triplets oCurvature, Torsion, andSecondaryStructure assignment.

We define a similarity score between two signature values, Eq. (5.8), which is anal-
ogous to the entries of scoring matrices such as PAM [20] and BLOSUM [40] that
define similarity scores between residue types. However, we do not compute a static
scoring matrix, instead a distance matrix for each pair of proteins is created as ex-
plained in Section 4.2.4.

We then run the dynamic programming algorithm for sequence alignment by
Smith and Waterman [84] using the dynamically computed and normalized scoring
matrix. As in local sequence alignment we use an affine gap cost model, in which
opening and extending gaps have different costs. For our experiments, we have used
an opening gap penalty @t and an extending gap penalty uf.

The complexity of alignment by using this methodlignn), wherem andn are
the numbers of residues in the compared proteins respectively. Figure 5.3 shows the
best local alignment of 1faz:A and 1ytf:D on the distance matrix and the detection

of a Helix-Turn-Helix (HTH) motif shared between those structures (3D result seen

81



Chapter 5. A Robust and Efficient Algorithm for Protein Structure Similarity Search

in Figure 5.4). The diagonal light colored line shows the associated residues of two

proteins.
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Figure 5.3: Local alignment with best score.

However, the best local alignment returned by the algorithm is not guaranteed to
be the best structural alignment. Because of gaps in the alignment, the sub-structures
represented by the alignment may actually have a high RMSD (e.g., those gaps may
be regions of twists and turns affecting the overall alignment). Thus, we superim-
pose the query protein on the database protein and check the RMSD values of a

number of best local alignments to obtain the best local alignment.

Superimposition

We use a fast least-squares solution to superimpose an ordered corresponding set of
points in 3D space. Given a minimum of three pairs of point correspondences, the

best rotation and translatioR and T, can be computed efficiently i@(n) time,
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wheren is the number of corresponding points. A non-iterative least-squares so-
lution based on the singular value decomposition (SVD) was suggested byeArun
al. [5] to find a closed-form solution. Umeyama [87] provided modifications to Arun
et al.[5] to ensure that a correct rotation matrix, instead of a reflection, is computed
when the data are noisy.

With the help of the superimposition, we compute the minimum RMSD values
of the top local alignments. We assign a score to each alignment by using a similarity

measure based on normalized RMSD [30] as defined by the following equation:

length of alignment + 135

E =
SCOR 225« RMSD of alignment

(5.9)

Figure 5.4: Superimposed local alignment result.

We return the best scoring alignment as the best structural alignment between the
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compared protein structures. Figure 5.4 shows the superimposed result of the best
local alignment found for 1faz:A and 1ytf:D. That alignment reveals a Helix-Turn-
Helix motif shared between those protein structures. The Helix-Turn-Helix motif
is usually found in DNA-binding proteins, and consists of a recognition helix and a

stabilizing helix separated by a short loop.

5.3 Interactive Visualization of the Results

We use Java 3D graphics libranp visualize the results. The main advantage is that

we do not have to generate visualization scripts and invoke external visualization
tools like RASMOL in order to visualize the alignment results. Furthermore, our
tool is platform independent and can be run within a web browser. Both the aligned
3D structures and the shape signature distance matrices are presented to the user.
The result of the alignment is also shown to the user on the distance matrix. The
user can select other suboptimal alignments and inspect their biological significance.

Figure 5.5 shows the user interface with the shared motif between 2c2wrp:R.

5.4 Experiments

We have conducted two sets of experiments to evaluate the quality of the pairwise
alignments produced by CTSS and to evaluate the sensitivity and running time per-

formance of similarity search queries. We have chosen a widely used structural

thttp://java.sun.com/products/java-media/3D/
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£ CT88: Protein Structure Alinment

ﬁﬂﬁ&@‘ Curvature-Torsion Distance Matrix

Set Smoothing Factor

Hide First Molecule

Hide Second Molecule
Hide CA Atoms

Hidle Spline Approximation
Quit

Figure 5.5: The user interface for CTSS.

alignment method, CE [80], to compare our results.

We present our experiment results in three subsections. In the first subsection,
we present the results of pairwise alignment tests. In the second subsection, we
assess the sensitivity of similarity search queries method by using the SCOP [64]
structural classification and compare the run-times of the queries against CE’s run-
times. In the last subsection we present two example queries in detail for which
we demonstrate visually the shared motifs we have discovered between the query

proteins and a number of database proteins.

5.4.1 Evaluation of Pairwise Alignment Quality

There is no universally accepted measure to quantify the quality of a structural align-

ment [26]. However, we can use an approximate measure [30] that involves the
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RMSD and the length of the aligned substructure. For this test we have selected the
ASTRAL SCOP 1.63 database [13] that contains protein structures with less than
40% sequence identity to each other. Low sequence identity presents challenges to
structure alignment algorithms, as it is not possible to use sequence similarity to
predict structure similarity.

There are 5226 protein domains in the ASTRAL 40% database. 5187 of them
are domains that span single chains. Out of these 5187 protein chains, 2952 chains
contain single domains and we selected those as our test database. We selected
single domain chains because this way we can uniquely assign a SCOP superfam-
ily to a whole chain. We could not find structures (from Protein Data Bank) for
13 protein chains in this list, because they were either replaced by another pro-
tein chain in the PDB or they contained some errors that failed our structure parser.
This leaves us with 2939 protein chains as our protein structure database. There are
4,314,453 (29382937/2) possible pairwise alignments that we can perform using
this database. However, the purpose of this test is to evaluate our method’s ability
to align well the structures with known similarity (i.e., from same SCOP superfam-
ily). A similar test was performed by Gerstein and Levitt [30] to evaluate different
methods on an earlier version of the SCOP database. Out of 4,314,453 pairs 16,300
of them are from the same SCOP family. Thus, we have conducted 16,300 pairwise
alignments by both CTSS and CE.

For each pairwise alignment we have recorded the RMSD and length of the
alignment. Figure 5.6 shows the RMSD/length plot for all the pairwise alignments

conducted by CTSS and CE.
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RMSD (&%)

Figure 5.6: Pairwise alignment results, (a) CTSS (b) CE.

Method Name| # of good| # of bad| avg. length of good avg. RMSD of good
CTSS 15103 1197 36.160 1.083
CE 12981 3319 155.063 3.099

Table 5.1: Pairwise alignment results

By using a demarcation line (the dark diagonal life)/ .S = 4(N-+135) /225 [30],
it is possible to approximately separate the successful matches from unsuccessful
matches. The points below the demarcation line are qualifiegbad alignments
and the points above the line drad alignmentsTable 5.4.1 shows the number of
good alignmentand bad alignmentsas well as the average length and RMSD of
good alignments

It can be seen from the table that CTSS has more alignments that are quali-
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fied asgood alignmentsThis table also shows that the alignments found by CTSS

is smaller than the ones found by CE. However, the average RMSD is also much
smaller for those smaller alignments. In other words, we can say that on the average
CTSS performs well for finding small shared substructures (motifs) accurately, i.e.

with low RMSD.

5.4.2 Evaluation of Sensitivity and Runtime Performance of Sim-

ilarity Search Queries

To evaluate the sensitivity of our method for performing similarity searches, we have
used a benchmark similar to the one used by Fisehat. [27] Our test database

of 2939 protein chains comprises 867 different superfamily classes. 443 of these
classes have more than one representative protein chain, i.e., 424 superfamilies have
single members in the ASTRAL 40% database. We have selected a representative
protein chain from each of the 443 superfamilies as the first alphabetic protein chain
identifier (PDB ID) of that superfamily. This gives us 443 query (probe) protein
chains to evaluate sensitivity. However, because of time constraints we have selected
the first alphabetic 100 out of 443 protein chains. When we use CE to perform 100
gueries on a database of 2939 proteins, it takes 293,900 pairwise alignments to finish
(approximately 18 days on a single machine). Table 5.4.2 show the query proteins
selected as benchmarks sorted by the number of member protein chains in their
superfamilies.

The list of query proteins we have is a good representative of the SCOP database,
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chain ID | sfID | # of sf members chain ID | sfID | # of sf members
la7j 52540 69 lauia 56300 6
1a8 53474 45 la2pa 53933 5
la34a 49611 38 la8ra 55620 5
lajsa 53383 33 laf8 47336 5
lalva 47473 33 lagre 48097 5
laoy 46785 32 laoha 49384 5
la7s 50494 28 latza 53300 5
lagOa 51445 28 lauk 53649 5
labm 46458 26 1la59 48256 4
lalw 47266 26 la6bb 57756 4
la06 56112 25 lagi 54076 4
laba 52833 25 laka 56219 4
lac6a 48726 25 lamx 49401 4
lagg 57059 24 lapxa 48113 4
la8e 53850 22 lath 57567 4
la3k 49899 21 12asa 55681 3
lagh 50814 21 la32 47060 3
lacw 57095 20 la3aa 55804 3
lavpa 54001 19 lad4l 56349 3
lavga 52980 19 la44 49777 3
lakha 46689 18 ladya 52047 3
lawj 50044 18 la73a 54060 3
lagca 50729 17 la9na 52058 3
19hca 48695 15 lact 55770 3
la3c 53271 14 ladla 51717 3
laac 49503 14 lad2 56808 3
last 55486 14 lahsa 49818 3
lafra 47240 13 lam2 51294 3
lalw 47986 12 lamua 56801 3
la53 51366 12 lass 52029 3
1agga 57501 12 lat3a 50789 3
laZ28a 48508 11 lavac 50386 3
latx 57392 11 lawla 51351 3
153L 53955 10 laxn 47874 3
1a0t 56935 9 16pk 53748 2
lal?r 48452 9 lal2a 50985 2
lafj_ 55008 9 lalx 50904 2
lak7. 55753 8 la2za 53182 2
laoea 53597 8 la48 56104 2
lapq 57196 8 la6f 54211 2
lawchb 48403 8 lab4 56719 2
la0aa 47459 7 lacz 49452 2
ladma 51556 8 lae 47857 2
ladsa 53720 7 lah7 48537 2
laly 49842 7 laiw_ 51055 2
laOca 51658 6 lajj- 57424 2
la6s 47836 6 lak4c 47943 2
la7ta 56281 6 lakp 49319 2
la8i 53756 6 lap8 55418 2
ladr 47413 6 lauz 52091 2

Table 5.2: List of query proteins
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Class Name # of query proteins
all alpha () 22
all beta (3) 21
alpha/betad/f3) 24
alpha+betad + () 21
other (small, membrane, multi-domain) 12

Table 5.3: Class distribution of the query proteins

because thelassdistribution of the query set is roughly equal to ttassdistribu-
tion of the whole SCOP database. Table 5.4.2 shows the class distribution of the
query list.

Given a query (probe) protein chain, the goal of similarity search is to retrieve
proteins with similar structure from a database of protein structures. Another prop-
erty of similarity search is that the retrieved results are sorted according to a sim-
ilarity measure defined by the query method. A method with good sensitivity is
expected to return members of its superfamily at the top ranks of the query results.

CE computes a statistical significance score ztiseore for the structural align-
ment of two protein chains. We have used thecore of the results to sort the
database proteins. CTSS uses a similarity measure defined by Equation 5.9. When
executing these queries we ran CE for all the database proteins for pairwise compar-
ison to the query protein. On the other hand, our method, CTSS, executes queries in
two phases: the screening phase, and the pairwise comparison phase. It is important
to note that in the screening phase we do not perform any detailed pairwise align-
ment. We use our hash index structure to find candidates of similarity by computing

the a-scores for all the database proteins (refer to Section 4.2.3 for explanation of
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Method Name| atrank 1| atrank< 5 | at rank< 10 | overall score
CTSS 55 73 82 0.646
CE 88 90 92 0.895

Table 5.4: The sensitivity assessment

thea-scorg.

For each of the 100 queries performed we registered the ranks at which a member
from the same superfamily could be found. Table 5.4.2 shows the results of the
similarity search queries. We counted the number of queries at which a member
at rank 1, below rank 5, and below rank 10 could be found (excluding the query
protein itself). In addition we computed the overall performance of the methods by
the same equation defined by Fisckeal.[27], > 1/r;/|L|, wherer; denotes the
rank of the correct superfamily achieved by query proteind|L| is the number of
guery proteins in the benchmark: 100. For 92 of the queries, CE found a database
protein that is in the same superfamily with the query protein in the first 10 results.
CTSS accomplished this for 82 of the queries. The reason for CTSS performing
worse than CE is that, CTSS is more focused on finding small structural motifs
that may be detected in proteins from different superfamilies. Superfamily members
usually share structural similarity in the larger scale and this can be detected better
by CE. However, the performance of our method is still acceptable and as we show
in the following paragraphs CTSS performed queries much faster than CE.

To evaluate the efficiency of CTSS, we have measured query execution times.
The tests were run on a computer with dual AMD Athlon MP 1600+ processors

with 2 GB of RAM, running Linux 2.4.19. We have used 1GB as the maximum size
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of memory allocation pool for the Java Virtual Machine executing the query pro-
grams. The source code of CE is available publicly. To rule out disk 1/O in timings,
we have modified CE’s reading of the protein structures. l.e., when performing an
exhaustive search on a database of protein chains we load all proteins in the database
into memory and do not consider the loading time when measuring the timings for
CE.

Figure 5.7 shows the timing results. The timing for CTSS shows the total running
time of pruning and pairwise comparison phases. Notice that the y-axis is plotted
in log-scale. The average running time for CE is 11,877.42 seconds. The average
running time for CTSS is 323.17 seconds. On the average our method is 36.8 times
faster than the CE method. This is mainly because CE method need to do an exhaus-
tive search by aligning all 2939 proteins to the query protein pairwise, whereas our
method screens out 80% of the proteins very fast and performs pairwise queries for

only 20% of the database that survive the screening process.

5.4.3 Detailed Example Query Results

Other than the alignment quality, and query sensitivity and performance tests, we
have also performed more challenging queries for the protein chains 1faz:A and
1b16:A by using another data set that includes protein chains with less sequence
identity. The data set consists of a representative set of proteins selected using the
PDBSELECT method [41]. The PDBSELECT database is a subset of the structures
in the PDB that does not contain homologue sequences, i.e., no two proteins have

more than 25% sequence identity. As mentioned before, low sequence homologues
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Figure 5.7: Timing results for the query dataset.

present challenges to structure alignment algorithms, as it is not possible to use
sequence similarity to predict structure similarity. There are 1949 protein chains in
that representative database (December 2002 vefsiBajow, we present detailed
results from those queries.

For the protein chains 1faz:A and 1ytf:D, we have found that they share a Helix-
Turn-Helix motif, with length 42, and with RMSD 2.8°. Those structures share
only 1.9% sequence identity globally. The structural alignment program CE can find
this alignment with length 52, but with much higher RMSD of 44 The result of
that alignment is depicted graphically in Figure 5.4. This figure and the subsequent
alignment figures show only the aligned parts of the protein chains. The unaligned
(non-similar) parts are not shown for a more clear presentation of the aligned parts.

We have also discovered some motifs not detected by other alignment tools, such

2http://homepages.fh-giessen.de/"hg12640/pdbselect/
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(a) IFAZ:A

(b) 1DJIT:A

(c) HTH Motif

Figure 5.8: Helix-turn-helix match between 1faz:A and 1dj7:A.

as CE [80] or DALI [42]. For example, we have found the Helix-Turn-Helix motif
between 1faz:A and 1dj7:A, with length 38 and RMSD 348 and with 2 gaps in
1dj7:A. Figure 5.8 shows the two proteins separately and the shared motif between
them.

Another motif that was not detected by others and discovered by our program
was between 1b16:A and 1h05:A. The length of that Helix-Strand-Helix motif is 35
with RMSD 3.26A4°. Figure 5.9 shows that motif.

We have conducted a comparison between 1b16:A and_1g€they share a
Helix-Strand-Helix-Strand (HEHE) motif and the length of the alignment was 46,
with RMSD 3.34A°. Those protein chains have 8.5% sequence identity. That shared
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Figure 5.9: Shared motif between 1b16:A and 1h05:A.

motif can be seen in Figure 5.10.

Our program does not only find small motifs between protein structures. In
our test cases we have also found longer structural alignments. 1b16:A and loaa:
alignment has length 209 with RMSD 445.

Figure 5.11 shows the Strand-Helix-Strand motif discovered between 1b16:A
and 1gp8:A. We have found a substructure match of length 35, with RMSDAE,58
and with two gaps of length one. Those proteins share 8.1% sequence identity.

Finally, we have also conducted a detailed pairwise comparison test between the
protein structures 2croand 2wrp:R. Those structures were previously compared
by Pennec and Ayache [70]. We have found a longer motif between those structures

compared to what they reported and moreover our program can detect that shared
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Figure 5.10: The helix-strand-helix-strand motif between 1b16:A and 1gci:

substructure in just a fraction of a second (compared to 18 seconds reported in Pen-

nec and Ayache [70]). The alignment result can be seen in Figure 5.5.

5.5 Discussion

In this chapter, we have presented a new method for protein structure alignment.
Our method comprises a novel technique for extracting compact and localized shape
signatures for protein structures, an indexing component based on hashing to avoid
an exhaustive scan of the entire structure database, and a pairwise alignment method
for accurately aligning shape signatures even in the presence of small gaps.

The novelty of the proposed technique lies in the methods of feature design, ex-

traction, and smoothing. Together, these methods ensure the success of the ensuing
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Figure 5.11: The strand-helix-strand motif between 1b16:A and 1qp8:A.

phases of protein structure screening and pairwise alignment. Extracting localized
features and embedding both geometric and biological information in the signature
are the major difference compared to other structural alignment methods. We have
also employed an efficient screening phase based on hashing followed by an accu-
rate pairwise alignment phase that can handle gapped alignments efficiently. Our
experiments showed that our technique is able to execute protein structure similar-
ity searches efficiently and discover biologically meaningful motifs shared between
protein structures that were overlooked by other methods.

However, one question that comes to mind is how descriptive these localized
signaturegO(n)) are in representing the structure of a protein? It is a fair question,

especially when one considers that other existing algorithms generate signatures in
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the order ofO(n?) or O(n?) to capture the structure of a protein of lengthHere,
we have the support of the theory of differential geometry, which states that space
curves generating the same curvature and torsion values are isomorphic. It is true
that the existence of gaps along the alignment of curves fails that theory. However, as
the computation of curvature and torsion is a localized process, local isomorphism
can still be detected based on such localized signatures. CTSS does not address
the problem of finding alignments consisting of multiple structural fragments that
are separated by large gaps. Obviously, that problem, which is tried to be solved
by other methods, requires more computation (NP-hard). However, we present an
approximation to that problem and this helps us identify small structural motifs very
quickly and accurately. Our initial experiment results proved that our technique is a
promising one. We have been able to find shared motifs between protein structures
efficiently.

We are currently investigating indexing methods other than hashing for faster and
more accurate screening of candidates of structural similarity.at$more defined
to assess the significance of a match (in the pruning phase), has room for improve-
ment. We will work on finding methods to incorporate 8tatisticalsignificance of
the accumulated votes to thescore

The analogy between sequence and structure comparison introduced by our method
promises other benefits. Existing sequence comparison algorithms like BLAST [1],
which can conduct very efficient sequence similarity searches, can be tailored to
conduct structure similarity searches (or multiple structural alignments) with the use

of our localized shape signatures that is a one to one mapping to the sequence (i.e.,
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each residue has one localized signature value).
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Chapter 6

Simultaneous Protein Sequence and
Structure Similarity Search

The most profitable research in bioinformatics often results from integrating mul-
tiple sources of data [29]. For instance, the 3D coordinates of a protein are more
useful if combined with data about the protein’s function, occurrence in different
genomes, and interactions with other molecules. In this way, individual pieces of
information are put in context with respect to other data.

In this chapter, we consider the problem of similarity searches on protein databases
based on both sequence and structure information simultaneously [10]. As the num-
ber of known protein structures increases conducting similarity searches in a reason-
able amount of time becomes more important. Current techniques used for similarity
searches usually involves a sequence similarity query followed by a structure sim-
ilarity query for the top results of the sequence query results. However, we claim
that if a simultaneous query that incorporates both the sequence and structure infor-

mation is more efficient and less error prone than a sequence query followed by a
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structure query.

Our technique presented in this chapter extracts feature vectors from both the
sequence and structure components of the proteins. These feature vectors are then
combined and indexed using a novel multi-dimensional index structure. For a given
qguery, we employ this index structure to find candidate matches from the database.
We develop a new method for computing the statistical significance of these candi-
dates. The candidates with high significance are then aligned to the query protein
using the Smith-Waterman technique to find the optimal alignment. The experimen-
tal results show that our method can classify up to 97 % of the superfamilies and up
to 100 % of the classes correctly according to the SCOP classification. Our method
is up to 37 times faster than CTSS (that was detailed in Chapter 5), combined with

Smith-Waterman technique for sequences.

6.1 Introduction

The industrialization of molecular biology research has resulted in an explosion of
bioinformatics data (DNA and protein sequences, protein structures, gene expression
data and genome pathways). Each of these data present a different type of informa-
tion about the functions of the genes and the interactions between them. Most of the
earlier work focuses on only one type of data since each type of data has a differ-
ent representation and the means of similarity varies for each data type. Combined
learning from multiple types of data will help biologists achieve more precise results

for several reasons: a) The probability of having false positive results due to errors
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in data generation decreases since it is less likely for the same error to appear in
all the datasets. b) More than one aspect of the biological objects can be captured
simultaneously.

As an example, for proteins, functionally similar homologs can be found by the
sequence similarity of the proteins. On the other hand, distant homologs that have
similar functionality can be revealed by the 3-D structure similarity of the proteins.

A combined search based on both sequence and structure can find the entire func-
tionally related set of proteins for a given query protein. Such a search would reveal
more precise information about the function and the classification of a new protein.
Moreover, new insights on the relationship between sequence and structure can be

gained with the help of combined searches.

6.1.1 Problem definition

In this chapter, we consider the problem of joint similarity searches on protein se-
guences and structures. A protein is represented as an ordered list of amino acids,
where each amino acid has a sequence and a structure component (the terms amino
acid and residue are used interchangeably). The sequence component of an amino
acid is its residue name indicated by a one letter code from a 20 letter alphabet. The
structure component consists of the Secondary Structure Element (SSE) type of that
residue {-helix, 5-sheet, or turn), and a 3-D vector which shows the position of its
carbon-alphac,) atom.

A query is specified by a four-tuple), ¢,, ¢;, 7>, where(Q) is a query protein,

e, € [0,1] ande; € [0,1] are the distance thresholds forgeence andtsucture
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components, and is the boolean value regarding the use of SSE information. A
sample query may be as follows:

“Find the protein chains in PDB that have sub-patterns whose sequence differs
by at most 20 % and structure differs by at most 5% from that of 1f53-A, and the
matching residues are of the same type of SSEs as that of 1f53-A"

In this example, the query tuple is@Q = 1f53-Aj¢, = 0.2 ¢, = 0.057 =
true>. The values fok, ande;, 0 < ¢, ¢, < 1, denote the importance of the se-
guence and structure information to the user respectively. Smaller values for these
parameters results in closer matches. Similarky,true means that the types of the

SSEs should match and= falseignores the SSE types.

6.1.2 Related work

It has been one of the most important goals in molecular biology to elucidate the re-
lationship among sequence, structure, and function of proteins [90, 39, 76]. A hand-
ful of algorithms and tools have been developed to analyze sequence and structure
similarities between the protein molecules. These methods are usually focused on
either the sequence (Smith-Waterman (SW) [84], BLASTP [1, 34], PSI-BLAST [3])
or the structure information (VAST [60], DALI [42], CE [80], PSI [15], CTSS [17])
for finding similarities between different proteins.

On the other hand, a few tools have been developed for providing integrated en-
vironments for analyzing the sequence and structure information together. Protein
Analyst [75], 3DinSight [4], and the integrated tools by Huat@l.[46] are among

those tools. They provide a combination of separate (but cooperating) programs for
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integration of sequence and structure analysis under a single working environment.
The components of these systems are usually run one after another, with one’s re-
sults being the input to the other. Unlike these tools, JOY [63] executes a single
alignment program (sequence or structure), and it also provides additional informa-
tion (e.g., structural features such as SSE type) on the resulting alignments in terms
of annotations.
Although these tools provide integration of multiple types of data, they perform

search on only one type of data at a time. We believe that integration of multiple
data sources at indexing and search level would provide more precise and efficient

tools.

6.1.3 An overview of our method

We extract feature vectors on sequence and structure components of proteins by
sliding a window on each protein in the database. Each feature vector maps to a point
in a multi-dimensional space. This multi-dimensional space consists of orthogonal
dimensions for sequence and structure. Later, we partition the space with the help
of a grid and index these points using Minimum Bounding Rectangles (MBRS).
Given a query, our search method runs in three phases:
Phase 1 (index searchlFeature vectors (i.e., points) are extracted from the query
protein. For each of these query points, all the database points that are«yiinic
¢; distance along the sequence and the structure dimensions are found using the in-
dex structure. Each such point casts a vote for the protein to which it belongs as in

geometric hashing [89].
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Phase 2 (statistical significanceffor each database protein, a statistical signifi-
cance value is computed based on the votes it obtained in Phase 1 and its length.

Phase 3 (post-processing)fhe topc proteins of highest significance are se-
lected, where: is a predefined cutoff. The optimal pairwise alignment of these
proteins to the query protein are then computed using the SW technique. Finally,
the C,, atom of the matching residues are super-positioned using the least-squares
method by Aruret al. [5] to find the optimal RMSD (Root Mean Square Distance).

We name our method @roGreSS(Protein Grep by Sequence an@ructure)
since it enables queries based on sequence and structure simultaneously.

The contributions of this work can be summarized as follows:

1. A new query model that incorporates both sequence and structure is defined.

2. A new method that maps protein sequences into a multi-dimensional space,
using a sliding window, based on a given score matrix is developed.

3. A novel index structure that stores synopsis for sequence and structure of
proteins simultaneously is proposed.

4. A new method that computes the statistical significance of the matches in the

index structure is developed.

6.2 Feature vectors and index construction

In this section, we develop new methods to extract features for protein structures and
sequences. Feature vectors for structures are computed as the curvature and torsion

values of the residues in a sliding window. Curvature and torsion values provide
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a necessary and sufficient condition for the isomorphism of two space curves [17].
Feature vectors for sequences are computed using a sliding window and a score
matrix that defines the similarity between all the amino acids. We also propose a

novel index structure to provide efficient access to these features.

6.2.1 Feature vectors for structure

We slide a window of a pre-specified size, on the proteins (i.e., each positioning

of the window containgv consecutive residues). We will discuss the choicevof
later. Figure 6.1(a) depicts two positionings of the window. For a given window,
the curvature and torsion values for each residue in that window is computed. The
resulting vector containsu2 values since two values are stored per residue in the
window. This vector maps to a point in avzlimensional space. Having a large
number of dimensions increases the cost for computing the similarity [9] and the
cost for storing the vectors. Therefore, we reduce the number of dimensions to a
smaller numberg;, using the Haar wavelet transformation, at the cost of reduced
precision. We usé; = 2 in our experiments. The transformed vector is normalized
to [0,1% space. Along with each feature vector, we also store the SSE types of the
residues.

As w increases, the feature vector contains information about the correlation
between larger number of residues. Thus the similarity between two feature vectors
implies longer matches. On the other hand, very large values foay cause false
dismissals since shorter matches may be discarded due to their neighboring residues.

We setw = 3 for our experiments.
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6.2.2 Feature vectors for sequence

The similarity between two amino acids of protein sequences is usually defined us-
ing score matrices (e.g., PAM and BLOSUM). A score matrix consists of 20 rows
and columns; one for each amino acid. The entries of a score matrix denote the score
for aligning a pair of residues. If two amino acids are similar (e.g., having similar
chemical properties or being close in mutation cycle), then the score for that pair is
large, otherwise it is small.

Given a score matriX/, we call each row of\/ the score vectonof the amino
acid corresponding to that row. Thus, each entry of this vector shows the similarity
of that amino acid to one of the 20 possible amino acids. We define the distance
between two amino acids as the Euclidean distance between their score vectors.
This is justified, because if the score of aligning two amino acidsdy is high
in a score matrix, then they are similar. Therefore; i€ similar (or dissimilar) to
another amino acid, theny is also similar (or dissimilar) te.

Similar to protein structures, we extract feature vectors for protein sequences by
sliding a window of lengthow (see Figure 6.1(b) fow = 3.). Each positioning of the
window containgv amino acids. We append the score vectors of these amino acids
in the same order as they appear in the window to obtain a vector of sizel2{s
vector maps to a point in 2Bdimensional space. Since the number of dimensions
is too large for efficient indexing even for small valuesugfwe reduce the number
of dimensions to a smaller numbey, using Haar wavelets. Similar to the structure
component, we recommef] = 2 for optimal quality/time trade-off. The resulting

vector is then normalized 10,19 space. We again choose= 3.
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Figure 6.1: Feature vectors for (a) protein structure, and (b) protein sequence.

6.2.3 Indexing feature vectors

So far we have discussed how to extract feature vectors for structure and sequence
components of the proteins separately. In this section, we will discuss how to build
an index structure on these feature vectors.

In order to search the protein database based on both sequence and structure,
we need to combine the feature vectors for these two components. Since the same
window size is used for both the components, every positioning of the window pro-
duces onel;-dimensional feature vector for its structure component anddgne
dimensional feature vector for its sequence component. We append these two vec-
tors to obtain a singled(+d,)-dimensional vector. The resulting vector is called the
combined feature vecto&ince the entries of each of the feature vectors are normal-

ized to the[0,1] interval, the combined feature vector resides ii0,d%*% space
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/* Let D be a dataset that contains proteins,
w be the window size,
V' be the volume cutoff. */
Procedure CreatelndeXD, w, V)
for each proteinc € D
for each positioning of window of lengtt
p := combined frequency vector for current windaw;
C := cell that contain®;
if C' = (then
B.Lower := p;
B.Higher:= p;
InsertB into C;
else
B := argming . {volumgB U p)};
if volumg B U p) < V then
B:=BUp;
else
B.Lower := p;
B.Higher:= p;
InsertB into C;
endif
endif
endfor
endfor

Figure 6.2: Algorithm for building the index structure.

(called thesearch space

The index structure is built by first partitioning the search spacejjnégual
pieces along each dimension. The resulting grid contgins« cells of lengtht /5
along each dimension. (We will discuss the choice of Section 6.3.1.) Once the
space is partitioned, a window of lengihis slid on each protein in the database.
For each positioning of the window, the combined feature vector is computed. Each
combined feature vector maps to a pgirin one of the cells of the grid. For each

such point, we check whether that cell is empty. If it is empty, we construct an MBR
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Figure 6.3: A layout of the MBRs and data points on the search space fo4 in
2-D.

that contains only. Otherwise, we find the MBRB in that cell whose volume
becomes the smallest after extending it to congairf the volume of B, after its
expansion, is less than a pre-computed volume threshglthen we extend3 and
insertp into B, otherwise we create a new MBR that covers oplyFigure 6.2
presents the algorithm that constructs the index structure. Figure 6.3 depicts a layout
of the search space and the MBRs built on the data pointsg fod in 2-D. In this
exampled, = d, = 1.

As V decreases, the MBRs in the index structure becomes more compact. On
the other hand, space cost and running time of the index structure increases since the
number of MBRs increases. In our experiments, we observed the best performance

for V = (1/2n)%+da,
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6.3 Query method

Given a query<Q, ¢, ¢, 7>, where( is a query proteing, € [0, 1] ande; € [0, 1]

are the distance thresholds for sequence and structure; enthe boolean value
regarding the use of SSE information, our search algorithm runs in three phases: 1)
index search, 2) statistical significance computation, and 3) post-processing. In this
section, we will discuss each of these phases. We will assume that the index structure
is built using a user specified score matrix for sequence (e.g., PAM or BLOSUM),

andw for the window size.

6.3.1 Index search

Each residue of the query protgihconsists of a sequence component and a struc-
ture component. We extract combined feature vectors fbhy sliding a window

of lengthw on it. Each of these combined feature vectors defines a query point in the
search space. Figure 6.4 shows a sample query point in a 2-D search space, where
the horizontal axis is the structure dimension and the vertical axis is the sequence
dimension. In this figure, the search space is split into 16 cells numbered from O
to 15. The query point falls into cell 10. We want to find the database points that
are within ane, distance along the structure dimensions ahdistance along the
sequence dimensions from the query point. In Figure 6.4, we are interested in the
points in the shaded region. Note that if true, then we only consider the database
points that have the same SSE type as the query point.

For each query point, we construct a query box by extending & layd bye,
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Figure 6.4: A sample query point and its query box fpe 4 in 2-D.

in both directions along the structure and the sequence dimensions respectively (see
Figure 6.4). Next, we find the cells in the search space that overlap the query box.
If a cell does not overlap the given query box, then it is guaranteed that it does not
contain any database points that are in the query box. A cell can overlap a query
box in two ways: 1) it is contained in the query box (e.g., cell 10 in Figure 6.4),

or 2) it partially overlaps the query box (e.g., cells 5, 6, 7, 9, 11, 13, 14, and 15 in
Figure 6.4).

1) If a cell is contained in the query box, all the points in that cell are guaranteed
to overlap the query box. Therefore, we increment the vote to the database proteins
that contains a data point in that cell for each such data point£itrue, then the

vote is added only for the points that have the same SSE type as the query point).
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2) If a cell partially overlaps the query box, then we check all the MBRs in that cell.
If an MBR is contained in the query box (e.g., the MBR in cell 10), each point in
that MBR contributes a vote. If an MBR partially overlaps the query box (e.g., the
MBR in cell 15), then we find the points in that MBR that are in the query box to
find the votes. If an MBR does not overlap the query box (e.g., the MBR in cell 6),
we ignore all the points in that MBR. This method is more precise than geometric
hashing [89], because for a given query point it inspects the neighboring cells as
well as the cell into which that query point falls.

The number of partitiong in the search space affects the run time of the index
search. Ag) decreases, each cell contains more MBRs. Therefore, if a query box
partially overlaps a cell, then more MBRs need to be tested for intersection with the
guery box, thus increasing the search time. For examplesit, then there is only
one cell which is equal to the search space. So, all MBRs are tested for intersection
for all the query boxes. On the other hand, having too many partitions have two
disadvantages: 1) most of the cells will be sparse or empty incurring space cost.
2) the volume of the boxes will be very small since each cell will get smaller. This
increases the total number of MBRs, and hence the number of MBRs for intersection

test. In our experiments we recommensd 10 for optimal results.

6.3.2 Statistical significance computation

Once the index structure is searched, we obtain a number of votes for each protein in
the database. The total number of votes for a proteshows the number of query

points that are close to’'s points. Assume that proteinsandy have 80 and 200
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points in the index structure respectively. For a given query, assume that bath

y have 100 votes. We would like to determine which of these proteins is more likely
to be a better match to the query. Intuitively, the answer snce it has smaller
number of points, and thus it is less likely forto have the same number of votes
asy. We define thg-valueof a match as thanexpectedness that result. Smaller

p-values imply better matches.

Definition 1 Given a proteinz with n points in the index structure andvotes for
a given query, th@-valueof x for that query is defined as the probability of having

at leastv votes for a randomly generated protein witlpoints in the search space.

Next, we discuss the computation of p-values. Consider a protein in the database
that is represented in the search space usipgints (. = length of protein — win-
dow size + 1). Let the protein receiwevotes for a given query. LeX be a random
variable representing the number of query boxes that overlap with a randomly se-
lected point in the search space. Let ando?3 be the mean and the variance of
X. The total number of query boxes that overlap withandomly selected points
can be computed a§,, = X + X + --- + X (exactlyn X's). SinceXs are inde-
pendent and identically distributed random variables, using Central Limit Theorem,
one can show thaX,, is normally distributed with meany, = n - ux and variance
0% = n-o%. Thus, ifux ando% are known, one can compute the distribution
of X,, using a normal distribution. Since the protein hagtes, its p-value can be
computed as(X,, > v).

The computation of p-values requires the valueg pfando3,. The distribution

of X depends on the distribution of query points, and the distance threshcldd
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;. We compute the values gfy ando?3. by generating a large number of random
points in the search space and counting the number of query boxes that it overlaps.

In our experiments, we generate 10,000 random points for this estimation.

6.3.3 Post-processing

After the statistical significances of all the proteins are computed; popteins with

the highest significance are selected as candidates for post-processingg vereere

predefined cutoff. The purpose of post-processing is to find the optimal alignment

between the query protein and the most promising proteins. ¢ et the query

protein. For every protein in the candidate set, post-processing runs in two steps:
Step 1:We build a|z| x |¢| score matrix,Ms, for structure component, where

|z| and|q| are the number of residuesinandq as follows: For each residue in

andq, we construct a 2-D vector as its curvature and torsion. Each enthjpfs

then computed as the negative of the Euclidean distance betweerctineature,

torsior>-vector of the corresponding residues. This strategy is also used by CTSS

as described in Chapter 5. For the sequence component, we create another

lq| score matrix,Mseq such thatvi, j the entryMsei, j] is equal to the score of

aligning thei™ letter of z with the ;™ letter ofg in the underlying score matrix (e.g.,

BLOSUMG62). Later, a combined score matfi%om = (1 —€;) - Msy + (1 — €;) - Mseq

is computed. Here, the weights — ¢;) and(1 — ¢,) represent the importance that

the user gives to each of the components. The optimal alignment beivaeelhy is

then found by running the Smith-Waterman dynamic programming ukig.

Step 2:The alignment obtained in Step 1 defines a one-to-one mapping between
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a subset of residues ofandq, and is optimal with respect t&/.,n,. Finally, we find
the 3-D rotation and translation efthat gives the minimum RMSD t@by using a

least-squares fitting method [5].

6.4 Experimental evaluation

We used single domain chains in our experiments. We downloaded all the protein
chains in PDB lgttp://www.rcsb.org/pdb ) that contain only one domain
according to VAST and SCOP [64] classifications. We only considered proteins
that are members of one of the following SCOP classesy,all 5, a+5 anda/g.
We identified the superfamilies (according to SCOP classification) that have at least
10 representatives in this dataset. There are 181 such superfamilies. We created
a databaseé) of size 1810 proteins by including 10 proteins from each of these
superfamilies. We formed a query sél,, by choosing a random chain from each
of the 181 superfamilies il. D, is large enough to sample since it contains one
protein from each superfamily. We ran a number of experiments on these sets to test
the quality and the performance of ProGreSS. The tests were run on a computer with
two AMD Athlon MP 1600+ processors with 2 GB of RAM, running Linux 2.4.19.

In the rest of this section, we use for the window sizec for the cutoff, ¢,
ande, for the structure and sequence distance thresholfis,the SSE type match
choice, and, for the number of partitions. We employ the BLOSUM®62 score matrix
for sequences in all of our experiments. The number of dimensipasdd, for

sequence and structures are both set to 2.
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6.4.1 Quality test

Our first experiment set inspects the effect of various indexing and search parameters
on the quality of our index search results. We classify a given query protein into one
of the superfamilies and classes using ¢hzest seeds as follows. The logarithms

of the p-values of the matches in topesults in each superfamily are accumulated.
The query protein is classified into the superfamily that has the largest magnitude
of this sum. We use the same technique to classify the query protein to one of the
four SCOP classes: all, all 3, a+3 anda/3. We do not report the classification
results for folds since they were similar to that for superfamilies. Since the queries
are selected from the database, in order to be fair, we do not take into account the
guery protein itself if it is among the tapresults. We will only report the results for

T =true, since it usually produced slightly better results thanfalse

Figure 6.5 shows the percentage of query proteins correctly classified to classes
(CL) and superfamilies (SF) for different valuesfvheree, = ¢, = 0.01 and 0.02,
andw = 3. In all these experiments, we obtained the best results fo2 and 3.

We achieved up to 96 % and 94 % correct classification for classes and superfamilies
respectively. As: increases, our method starts retrieving proteins from other classes
and superfamilies. We set= 3 for the rest of the experiments.

Figure 6.6 plots the percentage of correctly classified proteins for varying dis-
tance thresholds whefy = ¢, andw = 3. The purpose of this experiment is to
understand what a good distance threshold should be when sequence and structure
have equal importance. The graph shows that the accuracy of ProGreSS increases

when distance threshold increases from 0.005 to 0.0k, At, = 0.01, ProGreSS
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Figure 6.5: Percentage of query proteins correctly classified for different values of
C.

achieves 96 % and 94 % correct classification for classes and superfamilies. As the
distance threshold increases, the accuracy of ProGreSS drops. This is because it
starts retrieving distant proteins.

Figure 6.7 shows the percentage of correctly classified superfamilies for differ-
ent values o, whene, is fixed and for different values ef, whene, is fixed, for
w = 3. The purpose of this experiment is to see the effect of distance threshold for
each of the structure and sequence components separately. eMsdixed, ase;
decreases, the classification quality of ProGreSS increases. This implies that our
method can find better results when the distance threshold is small. The highest
accuracy obtained is 62 %. Fey= 1.0 (i.e., when the sequence component is ig-

nored), ProGreSS performs the worst. This is an important result since it shows that
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Figure 6.6: Percentage of query proteins correctly classified for different values of
distance threshold when = ¢,.

searches based on structure alone would incur more false positives than the searches
based on both sequence and structure. Whesnfixed, asc, decreases, ProGreSS
classifies more proteins correctly. In this case, 94 % of the proteins are correctly
classified into their superfamilies. Our method performs the worst whenl.0.
This result leads to two important conclusions: 1) Searching by sequence informa-
tion alone is worse than searching based by sequence and structure simultaneously.
2) For purposes of classification, our extraction of feature vectors for sequence is
better than those for structure.

Figure 6.8 plots the effect of the window size on the classification quality of
ProGreSS. The best results are achieved at3. At this window size, ProGreSS

can classify 100 % and 97 % of the classes and superfamilies correctly. ProGreSS
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Figure 6.7: Percentage of query proteins correctly classified for different values of
e (€4) Whene, (¢) is fixed.

performs worse for smaller window sizes since correlations between the consecu-
tive residues are not reflected to the index structure wAsecomes larger than 3,
ProGreSS starts to miss some of the good results since shorter local matches are not
preserved for large.

Finally, Figure 6.9 compares the accuracy of our technique with CTSS. We show
the number of correct proteins (those from the same superfamily as the query pro-
tein) for different values of. CTSS finds 3 out of 10 correct proteins in the first 100
candidates. On the other hand, our method finds the same number of proteins within

the first 4 candidates.
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6.4.2 Performance test

In this experiment set we compare the performance of our method to CTSS. In order
to have fair results, as described in Chapter 5, we run CTSS in two phases: 1)
the topc candidates are found using the original CTSS code and each candidate is
aligned to the query by using SW based on its structure score matrix. 2) The optimal
sequence alignment of all the database proteins to the query are determined using
SW alignment. For CTSS and ProGreSS, we chaosel00 and 4 respectively.

This is because the quality of their candidates are similar for these valugsed

Figure 6.9). We run queries for all of the 181 proteins and align only the candidate
proteins to each of the query proteins.

Figure 6.10 shows the average time spent by CTSS and our method. The run

121



Chapter 6. Simultaneous Protein Sequence and Structure Similarity Search

=)
T

4
T

w
T

Number of PDBs from the same super family
N I

—— ProGreSS
—— CTSS

0 50 100 150
Cutoff (c)

Figure 6.9: Number of proteins found from the same superfamily as the query pro-
tein for ProGreSS and CTSS for different valueg.of

times for CTSS and SW are 38 and 18 seconds respectively. The graph for CTSS+SW
is flat since these methods are independent &roGreSS runs faster than CTSS+SW

for all values ofn. Forn = 10, ProGreSS runs in only 1.5 seconds (i.e., 37 times
faster than CTSS+SW). Ag gets smaller, ProGreSS runs slower. This is because
when a query box partially overlaps a cell, more MBRs are tested for intersection.
As 1 becomes larger than 10, the performance of ProGreSS drops since the total

number of MBRSs in the index structure increases.
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Figure 6.10: Comparison of running times of ProGreSS and CTSS+SW.

6.5 Discussion

In this chapter, we considered the problem of joint similarity searches on protein
sequences and structures. We proposed a sliding-window—based method to extract
feature vectors on the sequence and structure components of the proteins. Each fea-
ture vector is mapped to a point in a multi-dimensional space. We developed a novel
index structure by partitioning the space with the help of a grid, and clustering these
points using Minimum Bounding Rectangles (MBRs). Our search method finds the
number of feature vectors that are similar to the feature vectors of a given query for
each database protein. We also proposed a new statistical method to compute the
significance of the results found at the index search phase. The results are sorted
according to their significance and the most promising results are aligned using the

Smith-Waterman (SW) method [84] and the least-squares method byeAalr{5]
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to find the optimal alignment.

According to the experimental results on a set of representative query proteins,
ProGreSS classified all of the classes and 97 % of the superfamilies correctly. ProGreSS
ran 37 times faster than CTSS, an efficient structure search technique described in
Chapter 5, combined with the SW technique for sequences.

Combined learning from multiple data sources is an important research problem
since each data provides a correlated yet different type of information about the
protein. ProGreSS provides the user a wide flexibility of search parameters to assign
weights on each of these data types. We believe that, the methods discussed in this
chapter are an important step in understanding the functions of proteins better, and

will be widely applicable in the area of proteomics.
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Chapter 7

Automated Protein Classification
Using Consensus Decision

A global view of the protein structure universe can be established with the help of
structural classification databases [44, 68, 64]. Classification databases are used to
define the relationships—in terms of sequence, structure, and function—of proteins.
Of these classification schemes, SCOP [64] is created mainly by manual inspection.
This is perhaps the reason that it is accepted by many researchers as the most accu-
rate classification scheme (or the ground truth). However, SCOP is updated every six
months, since it is quite a labor intensive process to manually place a protein struc-
ture into the correct category in a hierarchical classification of about 25K protein
structures as of July 2004. Furthermore, the current 100 protein per week growth
rate means about 2600 protein structures in six months. Therefore, if one requires
a dynamic, up-to-date view of the protein structure universe in a timely manner,
accurate automated classification techniques should be developed to aid in manual

classification process.

125



Chapter 7. Automated Protein Classification Using Consensus Decision

In this chapter, we propose a novel technique for automatically generating the
SCOP classification of a protein structure with high accuracy. High accuracy is
achieved by combining the decisions of multiple methods using the consensus of a
committee (or an ensemble) classifier. Our technique is rooted in machine learning
which shows that by judicially employing component classifiers, an ensemble clas-
sifier can be constructed to outperform its components. We use two sequence- and
three structure-comparison tools as component classifiers. Given a protein struc-
ture, using the joint hypothesis, we first determine if the protein belongs to an ex-
isting category (family, superfamily, fold) in the SCOP hierarchy. For the proteins
that are predicted as members of the existing categories, we compute their family-,
superfamily-, and fold-level classifications using the consensus classifier. We show
that we can significantly improve the classification accuracy compared to the indi-
vidual component classifiers. In particular, we achieve error rates that are 3-12 times
less than the individual classifiers’ error rates at the family level, 1.5-4.5 times less

at the superfamily level, and 1.1-2.4 times less at the fold level.

7.1 Introduction

A global picture of the protein universe is necessary to gain a better understanding
of how proteins function. Numerous classification schemes have been developed for
defining the relationships—in terms of sequence, structure, and function—of pro-
teins. Protein classification schemes employ different heuristics, similarity metrics,

and different degrees of automation [44, 68, 64]. Of these classification schemes,
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SCOP [64] is created mainly by manual inspection. This is perhaps the reason that
it is accepted by many researchers as the most accurate classification scheme (or the
ground truth).

With the exponential growth in the number of newly-discovered protein struc-
tures, the view of the protein universe is constantly changing. In order to under-
stand the functions of proteins and their relationship to each other, classifications of
proteins should be updated frequently. SCOP, being built by labor-intensive visual
inspection, is updated only every 6 months. On the other hand, automated classi-
fication schemes have the advantage that the view of the protein universe can be
updated frequently to include newly-discovered protein structures in a timely man-
ner. Hence, there have been efforts to infer the SCOP classification of a protein
structure by using the results of an automated method [32]. However, the validity of
such an approach is bound by the accuracy of the method emplOyegdesearch
is hence geared toward providing timely and accurate SCOP classification results in
an automated manner.

Our approach is rooted in consensus building in machine learning, which shows
that an ensemble classifier with a better performance can be constructed as a commit-
tee of component classifiers [23, 61, 78]. A similar idea has been applied to the fold
recognition problem by Lundgim et al. [59]. By using a neural-network-based con-
sensus predictor they were able to improve the prediction accuracy. However, their
goal in fold recognition was to predict tis¢ructureof a protein sequence rather than
its SCOP classification. Furthermore, using only the sequence information is insuffi-

cient for ensuring accurate SCOP classifications, particularly for remote homologs.
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The problem of automated generation of SCOP classification has been shown
to be a difficult one. In a recent study, Portugaly and Linial estimated the prob-
ability of a protein sequence to have a new fold [71]. Of the protein sequences
that they assigned a 90% probability to have a new fold, only half of them actually
had new folds. In another work, Lindahl and Elofsson compared several sequence-
comparison methods for classification of protein sequences at the family, superfam-
ily, and fold levels [56]. They observed that the best-attained accuracy dropped from
75% to 29% from the family to the superfamily level and down further to 15% for the
fold level. After analyzing the results of several methods, the authors concluded that
a combination of methods may improve the performance. However, they reported
such an improvement was not possible as they achieved only limited success.

Nonetheless, our goal is different: prediction of SCOP classification of a newly-
discovered protein structure. Both sequence and structure information are available
for this task, and we show in this chapter that an ensemble classifier can outperform
individual components if (1) a correct information-aggregation framework is used
and (2) the right component classifiers are employed. In particular, we show that it
can be beneficial in using a consensus decision framework, which is grounded in ma-
chine learning, with component classifiers that address both sequence and structure
information for predicting accurate SCOP classifications for proteins with known
structures. We employ @ecision treeapproach to combine classification decisions
made by two sequence-based, and three structure-based classifiers. Given a recently-
solved protein structure, we are able to to predict its SCOP classification with high

accuracy, using a consensus decision made by these five clasitteasis signif-
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icant is that the boosted accuracy numbers are close to the theoretically maximum
performance achievable using such a consensus building framework.

The remainder of this chapter is organized as follows. In Section 6.2, we define
the problem and describe how a sequence/structure similarity search method can be
used as a classifier. In Section 6.3, we review the sequence- and structure-based
classifiers we have used in our framework, and compare their relative consistency In
Section 6.3.2 we analyze the classification performance of individual methods. We
show that it is possible to develop a better classifier with higher accuracy by com-
bining the decisions of individual methods. In Section 6.4, we propose a method
for building a consensus classifier based on the idea of decision trees from machine
learning. In Section 6.5, we evaluate the performance of our algorithm using differ-

ent versions of the SCOP. We conclude with a brief discussion.

7.2 Problem Definition

The main questions to be answered when classifying a novel protein structure are:
i. Does this protein belong to an existing category (family/superfamily/fold)
in SCOP hierarchy, or does it need a new category to be defined?
il. If this protein belongs to an existing category, what is its classification (la-

bel)?

The SCOP database uses a four-level taxonomy: class, fold, superfamily, and

family. Eachdomainin a protein structure is assigned to one category in each of
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these four levels. In this chapter, for the sake of uniformity, we have used single
domain proteins. Therefore, the wopdoteinis used instead alomain The top
level of SCOPglass is defined by the number of secondary structures in the proteins
and their general layout. Since the class label can be assigned automatically and the
assignment does not present a significant challenge, we do not consider it in our
classifications.

At the family level, proteins are assigned to the same SCOP family if they have
a high sequence identity>30%), or they perform similar functions but have a rela-
tively lower sequence similarity{15%). So the main similarity measure at the fam-
ily level is sequence similarity. Thus, we would expect that sequence-comparison
tools are more appropriate than structure-comparison tools as component classifiers
for automated SCOP classification at the family level. At the superfamily level,
though, distant similarities are considered. Proteins in the same superfamily proba-
bly have evolutionary relationships that are inferred by structural similarities rather
than sequence similarities. Hence, we would expect structure-comparison tools to be
more successful than sequence-comparison tools at this level. The fold level is the
most blurry level of all. At this level, proteins are grouped together not because they
show significant similarity, but because they share similarity in the arrangement of
their secondary structures. Remote structure similarity is the major similarity met-
ric at the fold level. Thus, structure-comparison tools are expected to outperform
sequence-comparison tools at this level.

These three levels of classification are not independent of each other. We have

a hierarchical scheme where each protein is classified into a family which in turn
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belongs to a superfamily that is a subclassification of the fold category. Assigning a
superfamily to a protein which possesses more than a 30% sequence identity to some
of the proteins in the database is a trivial task, since we can accurately assign a family
to that protein (based on sequence similarity). Superfamily and fold assignments are
inherent in this assigned family. In order to extract true performances at different
levels, we have to make a complete separation of different levels in the classification,
as in [56]. For example, at the superfamily level only the proteins without family-
level relationships are queried, and the family/superfamily-level relationships are
ignored when evaluating fold-level performance.

For a given query protein structure we proceed to find its SCOP classification in
a bottom-up manner. The ensemble classifier first tries to assign a family label to the
query protein. If it is successful, the classification process is complete. Otherwise,
the query protein needs a new family category to be defined in SCOP, and its super-
family category is sought instead. If a superfamily cannot be assigned, the ensemble
classifier proceeds to the fold level. The protein is predicted to have a new fold, if

the ensemble classifier is not able to assign a category in any of the three levels.

7.2.1 Building a component classifier using a comparison tool

Each component classifier is trained to answer the first question, i.e., whether a
query protein belongs to an existing category. We train the classifier using the pro-
cedure outlined below: For each query protgim the query set)S, we find the

closest protein, i.e., the nearest neighbor, in the database of proteins with known

classification, based on the similarity criteria defined by the comparisoritptiiat
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the classifier uses. The similarity score assigned by the comparison tool provides a
measure of distance between the query protein and the whole database, e.g., a very
low score indicates that the query protein does not possess significant similarity to
any of the database proteins.

We sort the query proteins using these similarity scores. The goal of the classi-
fier is to partition the query set into two in such a way that one partition contains all
the query proteins that belong to existing categories, and the other partition contains
all the proteins that need a new family/superfamily/fold label. The partitioning is
achieved through a score cutoff. However, a perfect partitioning is usually not pos-
sible due to the blurry boundaries of categories. For each tool, we determine the best
score cutoff as the one thaiaximizeshe number of correct predictions. If the score
of the alignment for the query protein is greater than the cutoff, then the classifier
is construed to predict thatbelongs to an existing category; otherwigeshould
belong to a new category.

For the second problem of label assignment, we use the 1NN (first nearest neigh-
bor) classification method. In this methddfinds the nearest neighbor to the query
protein (most similar protein) in a database, and the classifier assigns the query pro-

tein the same label (family, superfamily, or fold) as that of its nearest neighbor.

7.3 Classifiers Used in Our Ensemble Scheme

We use two sequence classifiers. The first one is a model-based sequence compar-

ison tool, HMMER [24], for comparing a protein sequence against models of the
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Figure 7.1: Comparison of HMM and Vast scores.

SUPERFAMILY database [36]. This database is a hidden Markov model (HMM)
library representing all proteins of known structures. It is manually curated to clas-
sify proteins at the SCOBuperfamilylevel. HMMER assigns a similarity score to

the sequence according to its match with a model. In the rest of the chapter, we will
refer to this method as HMM.

The second sequence classifier we use is PSI-Blast [2]. PSI-Blast is an improved
version of Blast that works in iterations. In the first iteration, Blast is run and a
new scoring scheme is created based on the set of close neighbors. In the ensuing
iterations this new scoring scheme is used and updated as new close neighbors are
found.

We use three structure classifiers. The first one, CE [80], is a pairwise structural
alignment tool. It uses inter-atomic distanceggfatoms to find small (8 residues),

geometrically-similar fragments from the pair of proteins. Then, CE combines these
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fragments to form longer matches.
We also choose Dali [42], a structure-similarity comparison tool, as one of our
classifiers. Dali computes the distance matrices of two proteins and then finds the

alignment by a Monte Carlo algorithm. Dali has been used to create FSSP [44], an

automated protein classification database.
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Figure 7.2: Comparison of HMM and PSI-Blast scores.
The final classifier we have chosen is Vast [60]. It is designed for identifying
remote homologies. It uses secondary structure elements to locate initial matches.

These properties distinguish it from other structure-comparison tools, since Vast

prefers small biologically meaningful matches over optimal global alignment.

7.3.1 Relationship between the classifiers

Each sequence- and structure-comparison tool described in the previous section as-

signs a score for a pair of proteins, that indicates the statistical significance of the
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similarity between them. In particular, we have used the z-scores reported by CE
and DALI, p-values reported by VAST, and e-valuesdg(e-valug) reported by

HMM and PSI-Blast as similarity scores. Below, we explore the correlation be-
tween the scores of different methods. Figure 7.1 shows the correlation between
the scores of HMM and Vast. Each data point in the 2D plot represents a pair of
proteins, and the point coordinates are the comparison scores from HMM and Vast,
respectively. A perfect correlation would consist of entries on a straight line. In this
case, we see quite a bit of disagreement. This is expected since we are comparing
the scores of a sequence-comparison method with those of a structure-comparison
method. However, Figures 7.2 and 7.3 depict that there is considerable disagreement
between two structure- or two sequence-comparison methods as well. In a similar
study, Shindyalov and Bourne [81] compared CE and Dali scores and showed that
there were many proteins that were found similar by CE and dissimilar by Dali, and
vice versa. Our solution to this dilemma is to reconcile the discrepancies between

the classification tools by combining them into a consensus decision framework.

7.3.2 Performance of component classifiers

We performed a number of experiments to understand the individual performance
(accuracy) of the tools when they are used as component classifiers. In these ex-
periments we assumed classifications of all the proteins in SCOP vD.5950)
are known. We then classify the new proteins introduced in SCOP v2616(1)
into families, superfamilies, and folds by using structure- and sequence-comparison

tools. As described in Section 6.2, to get the true performances of classifiers at dif-
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ferent levels, we need to separate the query set based on levels of similarity. At
the family level all new proteins introducedy£161), are queried. At the super-
family level, only proteins, @ S161newrFan, that do not have family-level similarities
are queried. And at the fold level, only protein@{161,ewsp that do not have

family/superfamily-level similarities are queried.

1007

DALI Score

g0 -
VAST Score

Figure 7.3: Comparison of Vast and Dali scores.

Recognition of members of existing categories

The performance results for each tool are shown in Figure 7.4. At the family level,
we can clearly see that the sequence tools outperform the structure tools by achiev-
ing 94.5% and 92.6% accuracy. The success rate of the structure tools is only 89%.
Figure 7.4 also indicates that it is possible to manage higher success rates by com-
bining the tools. The sixth column of the figure shows the aggregate accuracy of

the tools. For 83% of the query proteins, all five tools make correct decisions (as
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Figure 7.4: Performance of individual classifiers on the membership problem for
the new proteins introduced in SCOP v1.61.

to whether the query protein belongs to a category), for 4.1% of the queries 4 tools,
for 1.9% of the queries 3 tools, for 6.9% of the queries 2 tools, and for 2.7% of the
gueries only one tool makes the correct decision. An interesting point here is that for
98.2% of the proteins, at least one tool is successful. So, it is theoretically possible
to classify up to 98.2% of these proteins correctly by combining the results of the
individual tools.

At the superfamily level, the structure tools match or better the performance of
sequence tools, as expected. However, the overall performance of the tools drops
significantly from the family level. This is expected since classification at the family

level is the easiest. HMM has one of the best performances, and this is no surprise
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considering that HMM was manually tuned for superfamily classifications. Among
the structure tools, Vast has the best performance with a 78.6% success rate. PSI-
Blast performs poorly with a success rate of only 66.1%. Only 44.7% of the queries
can be classified correctly by all five tools. For 4% of the queries, none of them is
successful.

Structure tools clearly outperform sequence tools at the fold level. Vast has the
best performance with a 85% success rate. PSI-Blast again has the worst perfor-
mance with a 60.7% success rate. For only 30.9% of the queries, all five tools are
successful. An interesting aspect is that all the query proteins are classified correctly
by at least one tool. This again raises the possibility of achieving better accuracy

through a combination of the results.

Classification assignment

Once atool has marked a new protein as a member of an existing category, the clas-
sification of query protein is complete, i.e., the query protein is assigned to the same
category as its nearest neighbor. The next question is to judge the accuracy of this as-
signment, i.e., whether the assigned category is the correct one. The accuracy results
for the different tools are shown in Figure 7.5. The results are reported for the list
of query proteins that are known to be members of existing families, superfamilies,
and folds at each level respectively.

The accuracies of the tools are high at the family level. All except Dali have
success rates above 90%. HMM has the best performance with 94.8% accuracy and

is followed by Blast with 92.3% accuracy. For 76.5% of the queries, all five tools
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Figure 7.5: Performance of individual classifiers on category assignment problem
for the new proteins introduced in SCOP v1.61.

are able to assign the correct family label. For only 2.1% of the queries, none of
them is successful.

At the superfamily level, the structure tools perform better and achieve 80.4-
81.7% success rates. The poor performance of sequence tools is surprising since
sequence similarities still matter at this level. HMM, especially, is expected to per-
form well, since it is manually tuned for this level. For 6.1% of the queries, none of
tools is able to assign the correct superfamily label. This means one can potentially
achieve a theoretically maximum 93.9% success rate by combining the results of
these five tools. This is quite high compared to the performance of the best tool,

81.7%.
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At the fold level, all tools seem to perform poorly. Note that the number of test
proteins decreases significantly at this level (37 proteins), because the proteins with
family/superfamily relationships are discarded. Therefore, wrong classification of
even a single protein has a strong effect (3%) on the accuracy results. At the fold
level, PSI-Blast is not able to make even one correct fold assignment whereas Vast
assigns correct folds to 54% of the queries. For 35.1% of the queries, none of the
tools is able to assign the correct fold label. This high failure rate suggests noise

from similar folds, and is investigated further.

7.4 Automated Classification Using Ensemble Classi-
fier

As evident from our initial experiments, an ensemble classifier can potentially ob-
tain higher classification accuracy than any single component classifier. There are
many studies in the area of machine learning and pattern recognition that address
the intelligent design of ensemble classifiers [23, 61, 78]. These include both com-
petitive models (e.g., bagging and arcing) and collaborative models (e.g., boosting).
Our method employs a hierarchical decision tree to answer the question whether
the query protein belongs to an existing category. If the answer is yes, we then use
Bayesian decision rules to assign the protein an appropriate label.

Since our goal is to classify protein structures at three levels of hierarchy in
SCOP, a hierarchical classification algorithm is appropriate. An overview of the

general algorithm is given in Figure 7.6. Here, paramgtes the protein whose
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classification is sought anil is the set of classification rules found during training.

7.4.1 Normalization of similarity scores

In order to combine the results from different tools, we need to find a way to normal-
ize their results into a consistent scale. We achieve this thrbirghing A bin is a
tool-neutralaccuracy extent, e.g., 90%-100%, 80%-100%, insteadadlaspecific
similarity score. The bins are manually crafted to obtain the best spatial resolution
and every classification tool produces its own set of bins. The procedure used is as
follows: We useDS159 as the database ani5161 as the query set (See Table 7.2).

For each protein i)S161, we record the top similarity score iRS159 (nearest
neighbor) using a particular comparison tool (or a component classifier). Perform-
ing this operation for all the proteins 195161 results in a histogram indexed by

the similarity score used by the tool. We then sort the scores and scan, from high
score (or similarity) to low score, to decide on the bin boundaries. The bins partition
the score space of each tool into buckets, each containing roughly the same number
of proteins. Thekth such bin corresponding to tooélis called £, (£ stands for
Existing.

We also construct a dual set of bins for each tool from the lower end of the score
space, based on the tool’s accuracy of predicting that the protein is new (i.e., does
not belong to an existing category). Théh such bin corresponding to toolis
called N;;, (N stands foiNew). Note that the above bin construction is repeated at
each of the three levels: family, superfamily, and fold.

Given a query protein, the score computed by a classification tool can be used
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to map it to a pair o’ and NV bins, say(E;, N;). The classification tool assigns a

single confidence levet, to this pair of bins using:

C:’p:pEEi/\pENj/\piseXiStingXloo (7.1)
lp:p€ E; Ap e N

wherep represents the training proteins. This process is repeated for each tool,

resulting in a vector of confidence levels for the query protein. Next, we discuss how

the vector of values is combined together through decision tree rules and weighted

Bayesian rules.

Input p is the query protein for classificatioR, is a set of
classification rules.
Algorithm FIND-CLASSIBp, R)
If HAS-CLASSIF(p, R, family)

return ASSIGN-CLASSIEp, R, family)
elseif HAS-CLASSIRKp, R, super family)

return ASSIGN-CLASSIEp, R, super family)
elseif HAS-CLASSIRp, R, fold)

return ASSIGN-CLASSIBp, R, fold)
else returrNew-Fold

Figure 7.6: Overview of the classification algorithm.

7.4.2 Recognition of new categories using decision trees

The rule setR used in Figure 7.6 affects the performance of the classification algo-
rithm. Intuitively speaking, if rules irR can assume very general and complicated
forms, then one can expect an increased likelihood of finding a rule that generates

good classification results. However, complicated rules with many tunable param-
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eters result in large pools of candidate rules, which increase training time and size
of the training samples needed. This general trade-off, often referred to as the bias-
variance trade-off [23], is well understood in the machine learning community. It
states that flexible, general rules provide better (small bias), but less predictable
(large variance), classification results. The danger of over-fitting is also much higher
with flexible rules.

In our framework, we have five component classifiers whose results can be com-
bined to form rules inkR. The decision of each component classifier can be consid-
ered as an attribute of the query protein. Using the decision tree approach [23], the
final decision about a protein is made by consulting a set of attributes in a hierarchi-
cal manner.

However, even with only five component classifiers, the number of different de-
cision trees one can construct is huge. There are several parameters that affect the
decision tree creation process. The first one is the branching factor at each node of
the tree. That is, the decision consulted at each nodespiéyhe training data into
several subsets.

Fortunately, for the problem of SCOP classification by combining sequence/structure
comparison tools, a biologically sound decision can be made about the branching
factor at each node. That is, at each level by consulting the confidence levels, we
can split the training data intbree one partition being query proteins that belong to
existing categories (because of strong evidence of similarity), another partition be-
ing query proteins that are new (because of strong evidence of dissimilarity), and the

other partition being query proteins that are in the twilight zone. This observation
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Figure 7.7: The general structure of the decision trees suitable for protein classifi-
cation purposes.

limits the search space to decision trees having the structure shown in Figure 7.7,
whereC; is the combined confidence level of a number of toég’ls%s the confidence
threshold used to assign lab&) to a query protein at level L, and L, are the
labels for proteins that need new family/superfamily/fold categories, and that be-
long to existing family/superfamily/fold categories respectively. Note that, there is
a single threshold at the last level, i.&,= 65.

We further restrict the tree structure to be at most three levels because of the
small number of component classifiers used and the desire to expedite the training
process. Even with this fixed decision-tree structure, there are two important sets
of parameters that should be determinélls and@}s. These parameters are the
most crucial components of the decision tree since the classification accuracies vary
remarkably for different choices.

TermsC);s can assume many different forms, and some popular ones are the sum,
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product, max, and min rules, which compute the sum, product, max, and min of the
component scores, respectively. The search space is exceedingly huge without some
restriction on the form that’;s can assume. In our experiment, we consider only the
sum rules, i.e., the decision is based on the weighted sum of the confidence levels of
component classifiers. To further simplify the analysis, edchases the confidence

levels of up to three components and always weighs the component scores equally.

Automated decision tree construction

We generated all possible trees witts composed of confidence levels of at most
three tools. There areh, 625 such trees. The accuracy of each tree is determined
by examining the categories of the proteins at the leaf nodes. The best accuracy is
achieved if all the proteins that are labeled/asare actually new proteins, and all

the proteins labeled ab, actually belong to existing categories. The erroneously
labeled proteins at leaf nodes decrease the accuracy. In other words, to achieve high
accuracies we want the leaf nodes to be as pure as possible, containing only proteins
sharing existing labels or needing new labels, both not both. In the machine learning
community, this is referred to as minimizing the impurity. Various impurity func-
tions can be used [23]. Most commonly used impurity measirgopy impurityis

defined as:

i(N) = — Z P(w;)log, P(w;), (7.2)

whereP(w;) is the fraction of patterns at nodé that are in category,.!

'In our case, there are two categories: one corresponds to the proteins that can be assigned an
existing label and the other corresponds to the proteins that need a new label.
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To search for the best values f@;’rfor each tree, we can consider a global op-
timization by minimizing the overall impurity (summation of the impurities at each
leaf node). However, this is a five dimensional optimization problem (to determine
the five thresholds in Figure 7.7) for each of the 625 trees, which is not feasi-
ble. Instead, we can use a greedy approach that does not guarantee optimality but
provides efficiency.

In our approach, the best thresholds at a level are determined by examining only
the leaf nodes at that level. However, we need to design this strategy carefully,
because trying to minimize impurities using a local, greedy procedure usually pro-
duces trees with bad accuracy. The reason is that one simple way of achieving low
impurity at a certain level is to limit the decisions for a small portion of the training
data. E.qg., if we pass all but two training samples (one sharing an existing label and
the other needing a new label) down the middle tree branch in Figure 7.7, and assign
the two samples to the appropriate left and right branches, we obtain zero impurity
at this level. However, this greedy strategy causes most of the decisions to be made
at the bottom of the tree where most of erroneous labeling occurs. To overcome
this problem, the cost function must be augmented to balance the impurity and the
number of samples classified at a particular level.

Using this greedy approach, we could generate very accurate ensemble classi-
fiers that perform much better on the training data than the component classifiers
used. However, when we tested these decision trees on the test data set, their perfor-
mance dropped drastically. The main reason, we suspect, is that the greedy approach

tends to over-fit the training data. We believe that this again can be attributed to the
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Figure 7.8: The decision tree for recognition of proteins that belong to existing
superfamilies.

bias-variance tradeoff. l.e., a decision tree with many tunable parameters can per-

form well on training data, but not on validation data.

Manual decision tree construction

As a solution to the over-fitting problem, we tried to construct decision trees man-
ually based on lessons learned from Section 7.3 on the strength and applicability of
the component classifiers. First, thes are determined by referring to Figure 7.4.
The tools with the highest performance are chosen to perform at the first level. Con-
sequently, for each following level the tool or tool combination that can best classify
the remaining proteins is chosen.

After the tool combinations that perform at each level are decided, the confidence
thresholds for decisionﬁj.s, are chosen. The most important benefit of manual

decision tree construction surfaces in choosing these thresholds. We make use of
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the knowledge of the performance of the tools that are used at each level, as we did
for determining the”;s. This knowledge allows us to optimize the impurities of leaf

nodes at two levels simultaneously. We find the four thresholds such that:

min Y 6(LY) +o(L5H) (7.3)
or gy =2
gl it

Here, 0} and6; are confidence level thresholds for ledfs and L at leveli.
6(L§) is a function proportional to the impurity of the |eﬁ§ and inversely propor-
tional to its population.

Therefore, local optima of two levels are computed simultaneously. This heuris-
tic is closer to the global optima than the one-level greedy approach. Equation 7.3 is
a 4 dimensional optimization problem where each dimen@j@an be optimized to
get the best impurities at the leaf nodes. However this leads to the over-fitting prob-
lem explained previously. So, we determine manual thresholds that are between the
score clusters as shown in Figure 74.and A, are the thresholds found by the au-
tomated greedy approach/; and M, are the manual thresholds. It is evident from
the figure thatd; and A, over-fit the data, wherea®; and M, do not. Moreover,
the benefits of such procedure is twofold. First, the over-fitting of the training data is
avoided. Second, since the number such significant thresholds is limited, the search
space of Equation 7.3 is bounded by a discrete minimization problem.

The manually constructed decision trees vary with the taxonomy level. When
deciding if a protein is from an existing family, we give priority to the sequence tools.

So, we first assign a family label based on HMM and PSI-Blast. For our training set,
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Figure 7.9: An example histogram of the confidence levels for the training data.

these two tools together are able to assign 90% of the queries confidently. For the
remaining proteins, we use the structure tools. An interesting point here is that if
sequence tools are unable to find a significant match for a protein, but structure tools
find a significant match, then the protein likely belongs to a new family.

At the superfamily level, Vast and HMM perform the best, as seen from Fig-
ure 7.4. So, they have the top priorities. We first use Vast, and then use HMM on
the proteins that Vast cannot predict with confidence. Finally, on the twilight zone
of these two tools, we apply Dali and CE. At the fold level, structure tools perform
better. So, we use the structure tools in the order of Vast, CE, and Dali. The com-
plete set of decision tree rules, for family, superfamily, and fold levels from top to
bottom rows, is shown in Table 7.1. At each level (column), a combination of tools
is run and the probability of being a member of an existing category is assigned to
each protein. The proteins that have probabilities higher than the indicated range are

assigned to the predicted category, the ones within the range are passed to the next
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Level 1 Range Level 2 Range Level 3 Threshold
HMM+Blast | (60%:95%)| CE+Vast+Dali|| (70%:85%)| HMM+Blast 85%
Vast (45%:93%) HMM (40%:75%)| CE+Dali 55%
Vast (50%:85%) CE (80%:90%) Dali 60%

Table 7.1: Heuristic decision tree rules for the category membership problem.

step, and those below the range are deemed new. For the last level, only a single

threshold exists.

7.4.3 Classification assignment for members of existing categories

After deciding that a protein is a member of one of the existing categories, we assign
its classification. The assignment is done by using a weighted Bayesian rule, in
which the weights for the components classifiers are determined according to their
training accuracies. Each tool assigns the query protein to a category with a certain
confidence. These categories are compared and the query protein is assigned to
the category that gets the highest probability. We consider the reliability of each
tool to weigh its contribution to the consensus decision. Figure 7.5 provides us this
information. When assigning family labels, sequence tools are more reliable than
structure tools, and when assigning superfamilies and folds, structure tools are more

important than sequence tools.
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7.5 Experimental Evaluation

To validate that consensus decision indeed improves classification performance, we
apply the standard validation technique in pattern recognition [23]. Two data sets
are used: a training set and a test set. In each case, we need a set of database pro-
teins (proteins of known classification) and query proteins (proteins to be assigned
an existing fold/superfamily/family label or a new label). We choose three versions
of the SCOP database [64] in our experiments, thus also reflecting the expansion
of the protein structure universe. SCOP version 159159, May 2002) and ver-

sion 1.61 (December 2002) are used to generate the training set. The training query
set is generated by extracting the protein chains from version 1.61 that were in-
troduced after version 1.59)5161. After training our method usin@S159 and

5161, we apply the same strategy to SCOP versions 1.61 and 1.63 (May 2003)
to evaluate the performance of our algorithm. Table 7.2 shows the number of pro-
tein chains used for training and validation. As seen in the table, the distributions
of introduced superfamilies and folds changed dramatically between versions 1.61
and 1.63. This change poses a challenge to our ensemble classifier, since the gen-
erated classification rules depend on the training set. However, as the results of our
experiments show below, our algorithm performs well in this real-life setting and
the difference between the classification accuracy of training and classification ac-
curacy of evaluation tests is in agreement with the difference between training error

and generalization error observed in other pattern recognition contexts [23].
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7.5.1 Training Procedure
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Figure 7.10: Performance of individual classifiers compared to the ensemble on
category membership problem for the new proteins introduced in SCOP v1.61.

The ensemble classifier is trained in a similar hierarchical manner described in Sec-
tion 6.3. The first case is to recognize if a new protein has an existing classification.
We train the ensemble classifier, i.e., produce the decision tree rules, to perform
best on the databadeS159, proteins in SCOP v1.59, with the queries introduced
inv1.61,QS161. Figure 7.10 depicts the comparison of the ensemble with the five
component classifiers. At the family level, the best performance among the tools is
achieved by HMM with a 5.5% error rate. The ensemble is able to reduce this error
rate to 3.7%. Figure 7.4 shows that for 1.2 % of the queries none of the tools find the

correct classification. So, one cannot reduce this error rate below 1.2%, which can
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be accepted as the theoretical limit. The ensemble manages to outperform HMM 1.5
times, PSI-Blast 2 times, and the structure tools more than 3 times. The ensemble is
successful for 96.3% of the proteins.

At the superfamily level, the ensemble classifier is not as close to the theoreti-
cal limit as it was for the family level. Yet, it still improves the performance of the
individual tools. Performance improvements are between 1.4-2.9 times. the ensem-
ble is successful for 86.1% of the queries. In Figure 7.4, the overlap between the
correctly-identified proteins by the tools is minimum at the fold level. Figure 7.10
shows that the ensemble classifier outperforms individual tools 1.1-1.4 times by be-
ing successful for 89% of the queries.

[e-Hm ]
- CE

Vast

Dali

70 4 PSI-Blast
-8 Ensemble

* T/ ——NONE /I
-

Percentage of misclassified proteins
-4

family superfamily fold
Classification level

Figure 7.11: Performance of individual classifiers compared to the ensemble classi-
fier on category assignment problem for the new proteins introduced in SCOP v1.61.
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Training Evaluation
Database| DS159 (20449)| DS161 (22724)
Query Q5161 (2241) | QS163 (2825)

newFam 248 618
newSF 84 424
newFold 47 339

Table 7.2: Database and query data sets and their sizes.

The second part of training is the assignment of an existing class label to the
new protein. Figure 7.10 shows that the ensemble classifier outperforms all the
component tools. At the family level, none of the tools is successful for 2.1% of
the queries, as can be seen in Figure 7.5. The ensemble classifier performs at this
theoretical limit (97.9% of the proteins). The improvement at the family level is
between 2.4-5.6 times. At the superfamily level, the ensemble classifier performs
almost at the theoretical limit. It has an error rate of 6.7% whereas the theoretical
limit is 6.1%. As a result, the performance of the tools has been improved 2.7-13
times. At the fold level, the ensemble has an error rate of 35% which is the same as
the theoretical limit. Performance of the individual tools has been improved 1.3-2.8

times, and 65% of the proteins are assigned to the correct folds.

7.5.2 Validation Procedure

When we test our algorithm by using queries frgi§163 on the databas® 5161,
we see that the ensemble improves the performance as in Figure 7.10. None of

the tools is able to perform better than ensemble on all levels. Although HMM
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Figure 7.12: Performance of individual classifiers compared to the ensemble on
category membership problem for the new proteins introduced in SCOP v1.63.

performs close to the ensemble classifier at the family level, it fails to compete at
the superfamily and the fold levels. The ensemble outperforms HMM by 1.3 times
at the family and superfamily levels. At the fold level the ensemble outperforms
the best tool, Vast, by 1.4 times. The ensemble also manages high accuracies at all
levels; 96.5% for family, 83.8% for superfamily, and 86% for fold levels.

After training the ensemble on tHeS5159 and() S161, we test it with the trained
parameters o S161 and(.S163. By comparing Figure 7.11 and Figure 7.13, we
can see the effect of improvement. We trained the ensemble classifier to perform
close to the theoretical limit. When we tested it, it performs slightly worse than the

theoretical limit, but significantly better than the individual tools. The improvement
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Figure 7.13: Performance of individual classifiers compared to the ensemble on
category assignment problem for the new proteins introduced in SCOP v1.63.

at the family level is 3-12 times, at the superfamily level 1.5-4.5 times, and at the
fold level 1.1-2.4 times. The ensemble classifier assigns 97.9% of proteins to correct
families, and 83% of the proteins to the correct superfamilies, and 61.2% of the

queries to the correct folds.

7.5.3 Error analysis

We have analyzed the query proteins where the ensemble fails to find the correct
classifications. Most of these errors are due to factors that depend on human judge-
ment rather than on computational results using sequence and structural similarity.

Below, we present a few of such cases.
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The protein structure 1kuu-A, antj class protein, is predicted by the ensemble
to be a member of an existing superfamilyterminal nucleophile aminohydrolases
It is very similar to the members of its predicted superfamily, according to both
sequence and structure classifiers. But, it is actually a member éfytbethetical
protein MTH102Guperfamily. The only difference between these two superfamilies
is that the latter lacks the N-terminal nucleophile. Clearly SCOP authors decided to
create a new superfamily based on information that cannot be inferred by automated
classifiers. The false hits between these two superfamilies contribute to significant
portion of the mistakes of the ensemble classifier for superfamily assignments.

For proteins in thés-bladed beta-propellefold, classifiers get false hits from
other structurally similar folds. CE and Dali assign proteins from this fold to the
6-bladed beta-propellefold, and Vast assigns them to thebladed beta-propeller
fold. Since these folds have a similar layout, their members are prone to get short
but high scoring alignments across classes. This is an example of the Russian Doll

effect [68].

7.6 Discussion

The most trusted protein classification databases are the manually-curated ones.
However, as new protein structures are continuously being discovered, there is a
need to automatically update protein classification dataktamesy andaccurately

to account for the new structures. In this chapter, we explored the applicability of

automated classification, and proposed a novel method that uses the consensus deci-
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sion principle to obtain higher quality classifications of manually curated databases
using automated techniques. Our technique significantly outperforms the individ-
ual component classifiers by achieving error rates that are 3-12 times less than the
individual classifiers’ error rates at the family level, 1.5-4.5 times less at the super-
family level, and 1.1-2.4 times less at the fold level. We envision that our technique
can help researchers classify proteins in a completely automated manner. Even for

manual classification, it can provide strong clues that will reduce the workload.
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Chapter 8

Conclusions and Future Work

In this dissertation, we have presented methods that we have developed that can
scale well with the increase in the amount of available structure data and help bi-
ologists analyze large numbers of protein structure data more efficiently. Our con-
tribution can be described in three main categories: (1) visualization and surface
modelling, (2) structure comparison and similarity search, and (3) automated classi-

fication.

1. For efficiently visualizing protein structures using a scene-graph based graph-
ics API, we have presented methods to optimize the constructed scene-graph
to enable real-time visualization of very large protein complexes. Our method
(FPV) achieves up to 8 times interactive speed compared to existing methods.
For molecular surfaces we have presented a method based on a level set for-
mulation that can compute the surface and interior inaccessible cavities very

efficiently (1.5 to 3.14 times faster on the average than compared methods).
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2. For comparison and similarity search of protein structures we have presented
a method that utilizes local shape signatures based on the theory of differential
geometry. Our method (CTSS) is up to 30 times faster than CE in conduct-
ing protein structure similarity search in a large database of protein structures,
while achieving the similar level of accuracy. We have also presented an in-
tegrated sequence and structure analysis method (ProGreSS), which enables
biologists to perform joint sequence and structure similarity queries while im-

proving on the accuracy and efficiency of existing methods.

3. For classification of protein structures automatically, we have presented an en-
semble classifier framework based on decision trees rooted in machine learn-
ing. We have demonstrated that higher classification accuracy can be achieved

using the joint hypothesis of the ensemble classifier.

The methods developed in this dissertation can be extended in the following

ways:

1. For our solution for the molecular surface computation, the next step is to
find the molecular surface dynamically as the probe radius changes. Using
distance-transform one can generate a list of initial surface points (zero dis-
tance) and then propagate from those points outward to a particular distance,
k (the maximum probe radius). The solvent-accessible surface for a particular
probe radius- < k is then readily computed by this method. The solvent-
excluded surface can also be determined dynamically by shrinking the acces-

sible surface using another distance transform (fixed-speed level set formula-
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tion). All the points that are distance from the initial surface will give the

solvent-excluded surface.

2. Molecular surface comparison is a more difficult computational challenge
compared to sequence or structure comparison methods. Finding surface sim-
ilarities among a family of proteins may help reveal the functional determinant
of that family, and the other dual problem of finding a complementary surface
(the docking problem) may help in drug discovery and development. Several
surface properties can be considered when comparing protein surfaces: elec-
trostatic potential, surface curvature, cavity size, molecular surface area, and

molecular volume.

3. In Chapter 4, we have developed a method for performing structural similarity
gueries using a geometric hashing based index structure. The index structure
is also suitable for performing multiple structural alignments. Given a family
of proteins as input, we can use the index to detect the most conserved lo-
cal regions, as they will be accumulated into the same or close-by hash bins.
The remaining task is to build the alignment as a consistent chain of local

fragments.
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