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AbstractThe problem of reconstruction of broken surface objects embedded in 3-D space is handled. Acoordinate independent representation for the crack curves is developed. A new robust matchingalgorithm is proposed which serves for �nding matching pieces even when some brittle pieces aremissing.1 IntroductionThe handled problem appears heavily in �eld archeology where reconstruction of hollow objectsbecomes a tedious and laborious task. It is the problem of jigsaw puzzle assembling of 3-D surfaceswith no texture or color hints provided.Previous work of [1, 2, 3] and the work of Wolfson [4] attack the 2-D problem and pro-pose appropriate matching algorithms. Although Wolfson's algorithm is not the most e�cient(O(n logn + �n)) it is especially well designed to deal with noise. In his work, 2-D objects arerepresented by shape signatures that are strings which are obtained by polygonal approximationof the boundary curve. Freeman [5] describes 2-D shapes by a set of critical points (like discon-tinuities in curvature) and computes features between consecutive critical points. This methodis weak in treating curves that do not possess such points. Ayache and Faugeras [6] attack amore di�cult problem where rotation, translation and scale change is allowed. Their matchingalgorithm is based on �nding correspondence between sides of polygons that approximate the 2-Dshape curves. Another special feature based recognition technique is the one developed by Kevinet al.. This technique makes use of breakpoints and carry by nature the handicap mentioned for[5].Works dealing with 3-D also exists. Kishon and Wolfson [7] introduce the arclength, curvatureand torsion as signatures of a 3-D curve but decide not use torsion because its requirement to thethird derivative. The matching problem is attacked as a longest substring search problem in theirwork. Kishon, in his work [8] proposes a spline �t which enables the easy incorporation of torsionas a stable signature. In another work [9], Schwartz and Sharir propose various metrics (like coloron the boundaries) and a smoothing operation on the data.There exists real world problems where a 2-D solution is insu�cient (Reconstruction from brokenpieces of solid objects is one of them) so a 3-D solid model is inevitable. Furthermore, in many ofthose real world problems a perfect match between two subjects is not possible. Environmentalaging e�ects, imperfections in the digitization environment, the accumulation of systematic errorsin numerical operations all contribute to this imperfection. Therefore, a robust, fault tolerantpartial matching is required. This work proposes such a solution. In our work 3-D surface pieceobjects are represented by their boundary curves. These closed curves are parameterized by theircurvature and torsion scalars which are calculated from the discrete 3-D boundary curve data
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and quadratically added to form a circular string of a single value. A noise tolerant matchingalgorithm serves to �nd the best match of two such circular strings even for cases where the matchis fragmented.2 Mathematical Representation of the ProblemWe will assume that the object which will be reassembled has no thickness, hence can be repre-sented by a surface in a 3-D Euclidean space. The pieces of a surface structure embedded in a 3-Dspace are surfaces with boundaries that are closed curves of the 3-D space. Since a matching overthese closed curves corresponds to the task of reassembling, a coordinate independent parameter-ization of these curves are very desirable. The fundamental theorem of the local theory of curves(see [10, 11]) reads asGiven di�erentiable functions �(s) > 0 and �(s); s 2 I, there exists a regular parameter-ized curve ~r : I! R3 such that s is the arc length, �(s) is the curvature, and �(s) is thetorsion of ~r. Moreover, any other curve ~r0, satisfying the same conditions, di�ers from~r by a rigid motion; that is, there exists an orthogonal linear map 
 of R3, with positivedeterminant, and a vector ~c such that ~r0 = 
 � ~r + ~c.What we can conclude from this theorem is exactly what we were looking for:If two di�erent curves which are parameterized by their arc length produce the sametorsion and curvature values then we can conclude that these curves are the same (modulorotation and translation).Furthermore, the converse is also true. Curvature is de�ned as� = j~r 00jTorsion is de�ned as � = 1�2 [~r 0~r 00~r 000]where the square brackets [� � � ] have the special meaning ofh ~A~B ~Ci � ������Ax Ay AzBx By BzCx Cy Cz ������Furthermore the prime denotes di�erentiation with respect to the arc length s:~r 0 = d~rdsAs known s is de�ned by:s(t) = Z t0 ds = Z t0 pd~r�d~r = Z t0 pdx2 + dy2 + dz2Where t is the parameter of the curve that maps each value in an interval in R into a pointr(t) = (x(t); y(t); z(t)) 2 R3 in such a way that the functions x(t), y(t), z(t) are di�erentiable.Intuitively speaking, the curvature at a point on the curve is the measure of how rapidly thecurve pulls away from the tangent line at that point (so in a close neighborhood of that point wewill have a deviated tangent line).
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Tangent is nothing else than the change in the position vector ~rnamely ~r 0. The magnitude of the change rate of this vector j~r 00jiscalled curvature.Consider at any point on the curve the plane formed to include the vectors ~r 0 and ~r 00 (at thatpoint). This plane is called the osculating plane of that point. Again intuitively speaking, thetorsion at a point on the curve is the measure of how rapidly the curve pulls away form theosculating plate at that point (so in a close neighborhood of that point we will have a deviatedosculating plane).
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∆r’’(s+  s)  Osculating plane is the plane that contains the ~r 0 and ~r 00 vectors.Of course this plane changes from point to point. torsion is thescalar measure of the rate of deviation of this plane (the deviationof the normal of the plane). torsion is de�ned as the change inthe magnitude of this deviation. This is so because calculationreveals that the direction of the change is always in the directionof ~r 00In the discrete case we have instances of r which are labeled with an index i. We assume thatthe labeling is done such that for any two ri and ri+1 instances there exist no provided rk valuethat corresponds to a curve point that is between them. Hence, the index is the discrete form ofthe curve parameter. Di�erentials will be replaced by di�erences with the following de�nitions�xi = xi � xi�1 �yi = yi � yi�1 �yi = yi � yi�1�si =p�x2i +�y2i +�z2iSo for the arc length we have si =Pik=1�si. Once obtained the tuples (~ri; si) the ~r 0; ~r 00; ~r 000 arecalculated for equally spaced (�s) points in the usual manner. To avoid local divergent behaviorsthe derivatives are calculated as an average value in a given radius of neighborhood. Experimen-tation has shown that a �s value which is large enough to accommodate � 20 �si values performsvery well.The �i and �i values form a 2-dimensional feature vector �i. The sequence of feature vectors �iforms the shape signature string. Since the objects dealt with are de�ned to have closed boundarycurves, in all algorithms operating on the shape signature strings the assumption that these stringsround over (i.e. be circular) will be made.
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3 The Matching AlgorithmSince we are dealing with broken pieces which might have worn o� contours the algorithm shallbe� robust in matching (i.e. fault tolerant),� allow the non-existence of some minor pieces.In Figure 1 two pieces with some missing portion and the a�ect of this on the string representationis illustrated. In the chosen representation, this corresponds to

������
������
������
������

�
�
�
�

String1

����

��
��
��
��

��
��
��
��

��

����

����
����
����
����

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����������
����������
����������
����������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

 Curve

 Curve

String

1

2

2

MatchingMatching

Matching Matching

Non-Matching

Non-Matching

Figure 1: Two matching segments having a missing part� accepting numerical matches with an " tolerance,� being able to resume the match after a gap of non-matching data.The devised algorithm to match two curves represented respectively by the strings �ijR1 and �ijC1(�i and �i are feature vectors) is as follows: we de�ne a matrix � as�ij =k �i � �j kSo � is a symmetric with nonnegative entries.In the following algorithm a two dimensional arrayM is �lled out. M will be holding the startand end positions of the matching segments. So, one index takes values as start or end. Thesecond index runs through an enumeration of the found matching segments. Mstartp and Mendphold the start and end position informations of the found pth segment, respectively. A positioninformation of a start (or end) is a pair of indices, namely the row and column numbers of the �matrix where the segment starts (or ends).predecessor(i; j) f if i = 1 then k  R else k  i� 1if j = 1 then l C else l j � 1return (k; l)g gsuccessor(i; j) ((i mod R) + 1; (j mod C) + 1)
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match() f S  minfR;Cgp 0for i 1 : : : R dofor j  1 : : : C doif �ij ^ �predecessor(i;j) > " thenf (k; l) (i; j)m 0repeat f m m+ 1(k; l) successor(k; l) guntil m � S _ �kl > "p p+ 1Mstartp  (i; j)Mendp  predecessor(k; l) g gg
From know on, denotationally, we will represent segments by a naming (e.g. �, � or �i). Eachsegment, naturally, has four values associated: its start position (a row and a column number)in the matrix � and its end position (a row and a column number). These are represented bythe appropriate combination of an superscript which is either start or end and a subscript that iseither row or column.The next task is to determine, among the segments found, which can follow which. As wasstated, due to the circular structure of the matched curves a special treatment is necessary in�nding the answer to this question. To avoid the halting problem of the algorithm we impose acanonical order onto the concept of following. The canonical order we will impose says that if asegment � is following a segment � then

�endrow < �startrowOf course this is `a necessary but not su�cient' criteria that has to be met. (The converse is notalways true: you can have non-following two segments � and � where �endrow < �startrow still holds).To complete the de�nition of the following segmentswe consider the possible positions of a segment� (which is going to be followed by �) in the � matrix (light shaded areas are forbidden zones forthe following segment to start in due to the imposed canonical order but it may end in there; darkshades are the regions where an overlapping would occur, so the following segment shall have nopoints in there).
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SCase:IV Case:VStart and end point-wise, Case IV and Case V are not di�erent from each other, so they willbe considered as the same. We de�ne a comparison operator � that will admit two segments asoperands and return True if the right operand is a following segment of the left one and False oth-erwise. Formally this operator can be de�ned as (we are making use of the mathematical notationfor representing closed/open/semiclosed sets; in our cases set elements are integral values):� � �  if wrappedrow(�) then �startrow 2 (�endrow; �startrow ) ^ �endrow 2 (�startrow ; �startrow )else �startrow 2 (�endrow; R] ^ �endrow 2 (�startrow ; R] [ [1; �startrow )^if wrappedcol(�) then �startcol 2 (�endcol ; �startcol ) ^ �endcol 2 (�startcol ; �startcol )else �startcol 2 [1; �startcol ) [ (�endcol ; C]^if �startcol 2 (�endcol ; C] then �endcol 2 [1; �startcol ) [ (�endcol ; C]else �endcol 2 [1; �startcol )Where we have de�nedwrapped�(�)  �start� > �end� ; �2frow;colgThe � operator will yield always the correct answer for the cases where � is following � or visaversa. For segments, though, that have overlapping regions the answer is undetermined. Hencewe are able to de�ne a partial order among the set of all found segments, namely the M array.So, we will perform a topological sort on the M array where � is the ordering criteria. A simplebubble sort will do the job ($ stands for `content exchange'):sort M() for j  1 : : : lastindex(M) dofor i 1 : : : (lastindex(M)� j) doif Mi+1 �Mi then Mi $Mi+1The remaining of the algorithm is basically a search for the longest path in a graph where verticesare the segments and unidirectional edges between these vertices are introduced from segmentsto the following segments. The weights on the vertices are nothing else than the lengths of thesegments. The task of �nding the longest match is converted into a task in which the longest
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path of the described graph is found. The longest path will yield a maximal weight (length ofsegments) sum of the vertices (segments) on the path. To start a search for the longest path wehave to identify the starting and terminating vertices of the graph (i.e. those segments which arenot following any segment and segments which are not followed by any segment). By two linearscans over theM array we are able to identify and mark those segments:mark terminatings() f for i 1 : : : lastindex(M) do mark as terminating(Mi)r  �Mlastindex(M)�startrowc �Mlastindex(M)�startcolfor i (lastindex(M)� 1) : : : 1 doif [Mi]endrow < r ^ [Mi]endcol < c then remove terminating mark(Mi)else if [Mi]startrow > r ^ [Mi]startcol > c thenf r  [Mi]startrowc [Mi]startcol ggmark startings() f for i 1 : : : lastindex(M) do mark as starting(Mi)r  [M1]endrowc [M1]endcolfor i 2 : : : lastindex(M) doif [Mi]startrow > r ^ [Mi]startcol > c then remove starting mark(Mi)else if [Mi]endrow < r ^ [Mi]endcol < c thenf r  [Mi]endrowc [Mi]endcol ggFor convenience we introduce two dummy vertices, namely at start M0 and at end M� (where� = lastindex(M) + 1) with length zero and satisfying the conditions8i 3 marked as terminating(Mi) : M0 �Mi8i 3 marked as starting(Mi) : Mi �M�The below given greedy type algorithm uses dynamic programming to �nd the longest path.Gradually it �lls out an array that we will name as longest:find longest path() for i lastindex(M) : : : 0 dolongesti  maxf!(length(Mk)) + longestj jMi �Mj glength is a function that returns the count of match points of the segment given as argument toit. It is de�ned as:length(�) if �startrow < �endrow then �endrow � �startrowelse R+ �endrow � �startrow!() is a function which de�nes the weight contribution of the count of match points for a continuousmatch segment given to it as the argument. The idea is to allow a penalty treatment for shortmatches. If no such penalty is favored then it is possible to simply de�ne !(m) = m.
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4 ConclusionWe presented a method for matching two closed space curves which are holding discrete featurevalues, in a robust manner. Unlike in other related works the problem of the proper treatment ofmissing parts in a match is put under focus and a complete solution is proposed. The reconstructionof the object is just an exhaustive search over all `pieces' and choosing the best �ttings. The ideais simple:� Find the best match.� Join the matching portions (perform in parallel the necessary bookkeeping).� Removing the parts of the joint obtain the representation of a single piece.� Add this new obtained piece and remove the two pieces which were joined from the database,hence reducing the count of pieces by one, continue until only one piece is left.For a possible implementation we would propose a visual workbench approach in which the userhas a full control over the matching parameters and the matching itself and the availability ofan undo operation over the construction history. A project of such an implementation has beenstarted.Further e�orts can go into the implementation details where a suitable data representation ande�cient retrieval mechanisms will be the main concern.References[1] H. Freeman and L. Garder. A pictorial jigsaw puzzles: The computer solution of a problemin pattern recognition. IEEE Trans. Electron. Comput., EC-13:118{127, 1964.[2] G. M. Radack and N. I. Badler. Jigsaw puzzle matching using a boundary-centered polarencoding. Comput. Graphics Image Processing, 19:1{17, 1982.[3] H. Wolfson, E. Schonberg, A Kalvin, and Y. Lambdan. Solving jigsaw puzzle using computervision. Ann. Oper. Res., 12:51{64, 1988.[4] H. Wolfson. On curve matching. IEEE, Trans. Pattern. Anal. Machine. Intell., 12:483{489,1990.[5] H. Freeman. Shape description via the use of critical points. Pattern Recogn., 10:159{166,1978.[6] N. Ayache and O. D. Faugeras. Hyper: A new approach for the recognition and positioningof two-dimensional objects. IEEE, Trans. Pattern. Anal. Machine. Intell., 8:44{54, 1986.[7] E. Kishon and H. Wolfson. 3-d curve matching. In Proceeding of the AAAI Workshop onSpatial Reasoning and Multi-sensor Fusion, pages 250{261, 1987.[8] E. Kishon, T. Hastie, and H. Wolfson. 3d curve matching using splines. In First EuropianConference on Computer Vision, pages 589{591, 1990.
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