Reconstruction of 3-D Surface Object from its Pieces

GOKTURK UCOLUK I. HAKKI TOROSLU

Dept. of Computer Engineering
Middle East Technical University, Ankara

ucoluk@ceng.metu.edu.tr
toroslu@ceng.metu.edu.tr

Abstract

The problem of reconstruction of broken surface objects embedded in 3-D space is handled. A
coordinate independent representation for the crack curves is developed. A new robust matching
algorithm is proposed which serves for finding matching pieces even when some brittle pieces are
missing.

1 Introduction

The handled problem appears heavily in field archeology where reconstruction of hollow objects
becomes a tedious and laborious task. It is the problem of jigsaw puzzle assembling of 3-D surfaces
with no texture or color hints provided.

Previous work of [1, 2, 3] and the work of Wolfson [4] attack the 2-D problem and pro-
pose appropriate matching algorithms. Although Wolfson’s algorithm is not the most efficient
(O(nlogn + en)) it is especially well designed to deal with noise. In his work, 2-D objects are
represented by shape signatures that are strings which are obtained by polygonal approximation
of the boundary curve. Freeman [5] describes 2-D shapes by a set of critical points (like discon-
tinuities in curvature) and computes features between consecutive critical points. This method
is weak in treating curves that do not possess such points. Ayache and Faugeras [6] attack a
more difficult problem where rotation, translation and scale change is allowed. Their matching
algorithm is based on finding correspondence between sides of polygons that approximate the 2-D
shape curves. Another special feature based recognition technique is the one developed by Kevin
et al.. This technique makes use of breakpoints and carry by nature the handicap mentioned for
[5].

Works dealing with 3-D also exists. Kishon and Wolfson [7] introduce the arclength, curvature
and torsion as signatures of a 3-D curve but decide not use torsion because its requirement to the
third derivative. The matching problem is attacked as a longest substring search problem in their
work. Kishon, in his work [8] proposes a spline fit which enables the easy incorporation of torsion
as a stable signature. In another work [9], Schwartz and Sharir propose various metrics (like color
on the boundaries) and a smoothing operation on the data.

There exists real world problems where a 2-D solution is insufficient (Reconstruction from broken
pieces of solid objects is one of them) so a 3-D solid model is inevitable. Furthermore, in many of
those real world problems a perfect match between two subjects is not possible. Environmental
aging effects, imperfections in the digitization environment, the accumulation of systematic errors
in numerical operations all contribute to this imperfection. Therefore, a robust, fault tolerant
partial matching is required. This work proposes such a solution. In our work 3-D surface piece
objects are represented by their boundary curves. These closed curves are parameterized by their
curvature and torsion scalars which are calculated from the discrete 3-D boundary curve data

Page 1

and quadratically added to form a circular string of a single value. A noise tolerant matching
algorithm serves to find the best match of two such circular strings even for cases where the match
is fragmented.

2 Mathematical Representation of the Problem

We will assume that the object which will be reassembled has no thickness, hence can be repre-
sented by a surface in a 3-D Euclidean space. The pieces of a surface structure embedded in a 3-D
space are surfaces with boundaries that are closed curves of the 3-D space. Since a matching over
these closed curves corresponds to the task of reassembling, a coordinate independent parameter-
ization of these curves are very desirable. The fundamental theorem of the local theory of curves
(see [10, 11]) reads as

Given differentiable functions k(s) > 0 and 7(s), s € 1, there exists a regular parameter-
ized curve 7 : T — R3 such that s is the arc length, k(s) is the curvature, and 7(s) is the
torsion of 7. Moreover, any other curve 7, satisfying the same conditions, differs from
7 by a rigid motion; that is, there exists an orthogonal linear map Q of R3, with positive
determinant, and a vector C such that ¥ = Qo7+ C.

What we can conclude from this theorem is exactly what we were looking for:
If two different curves which are parameterized by their arc length produce the same
torsion and curvature values then we can conclude that these curves are the same (modulo

rotation and translation,).

Furthermore, the converse is also true. Curvature is defined as

k= |F"|
Torsion is defined as
Lo,
T = ? [T Ir Ilr III]
where the square brackets [- - - | have the special meaning of
A, A, A,
[A C] =B, B, B.
c. C, C,

Furthermore the prime denotes differentiation with respect to the arc length s:

=1/

_&r
T ds

As known s is defined by:

t t t
50 = [as= [Virar= [VaTrary e
0 0 0

Where t is the parameter of the curve that maps each value in an interval in R into a point
r(t) = (z(t),y(t), 2(t)) € R? in such a way that the functions x(t), y(t), z(t) are differentiable.

Intuitively speaking, the curvature at a point on the curve is the measure of how rapidly the
curve pulls away from the tangent line at that point (so in a close neighborhood of that point we
will have a deviated tangent line).

Page 2

/—/ P (s)
S
¥(s)

Tangent is nothing else than the change in the position vector 7
namely 7'. The magnitude of the change rate of this vector |7"|is
called curvature.

Consider at any point on the curve the plane formed to include the vectors 7’ and 7" (at that
point). This plane is called the osculating plane of that point. Again intuitively speaking, the
torsion at a point on the curve is the measure of how rapidly the curve pulls away form the
osculating plate at that point (so in a close neighborhood of that point we will have a deviated
osculating plane).

PEOAT(S) P(s+A8) AF”(s+As)
Normal of the oscula
(Normal of the osculating (p\:ga%os‘ti;:;;-g‘g)
plane at position S) P (s+As)
’(s+AS) 4
\ .
.
-

-

P -7
-
/ L (Osculating plane at position) / \
(Osculating plane at positition S+AS)

Osculating plane is the plane that contains the 7' and 7" vectors.
Of course this plane changes from point to point. torsion is the
scalar measure of the rate of deviation of this plane (the deviation
of the normal of the plane). torsion is defined as the change in
the magnitude of this deviation. This is so because calculation
reveals that the direction of the change is always in the direction

of 7"

In the discrete case we have instances of r which are labeled with an index i. We assume that
the labeling is done such that for any two r; and r;;; instances there exist no provided r value
that corresponds to a curve point that is between them. Hence, the index is the discrete form of
the curve parameter. Differentials will be replaced by differences with the following definitions

Az =a; — Ay; = yi — Yim1 Ay; = yi — Yio1

As; = \/Az? + Ay? + Az?
So for the arc length we have s; = Y, _, As;. Once obtained the tuples (7, s;) the 7', 7", 7" are
calculated for equally spaced (ds) points in the usual manner. To avoid local divergent behaviors
the derivatives are calculated as an average value in a given radius of neighborhood. Experimen-
tation has shown that a ds value which is large enough to accommodate ~ 20 As; values performs
very well.

The k; and 7; values form a 2-dimensional feature vector &;. The sequence of feature vectors &;
forms the shape signature string. Since the objects dealt with are defined to have closed boundary
curves, in all algorithms operating on the shape signature strings the assumption that these strings
round over (i.e. be circular) will be made.

Page 3

3 The Matching Algorithm

Since we are dealing with broken pieces which might have worn off contours the algorithm shall
be

e robust in matching (i.e. fault tolerant),
e allow the non-existence of some minor pieces.

In Figure 1 two pieces with some missing portion and the affect of this on the string representation
is illustrated. In the chosen representation, this corresponds to

Non-Matching

Matching A Matching
N NTTTTTITTITHTRS N « String,
¢ Curve,
: : : ¢ Curve,
N NCEEE g String,

Matching - Matching

Non-Matching

Figure 1: Two matching segments having a missing part

e accepting numerical matches with an e tolerance,

e being able to resume the match after a gap of non-matching data.

The devised algorithm to match two curves represented respectively by the strings &;|® and n;[¢

(& and n; are feature vectors) is as follows: we define a matrix A as

Aij =1 & —nj |l

So A is a symmetric with nonnegative entries.

In the following algorithm a two dimensional array M is filled out. M will be holding the start
and end positions of the matching segments. So, one index takes values as start or end. The
second index runs through an enumeration of the found matching segments. Mzt‘”"t and M;”d

hold the start and end position informations of the found pth segment, respectively. A position
information of a start (or end) is a pair of indices, namely the row and column numbers of the A
matrix where the segment starts (or ends).

predecessor(i,j) + {ifi=1then k< Relse k +i—1
if j=1thenl < Celsel <+ j—1
return (k, 1)} }

successor(i,j) < ((i mod R) + 1, (j mod C) + 1)

Page 4

match() «+ {
S + min{R, C}
p+ 0
fori < 1...R do
for j < 1...C do
if Aij A Apredecessor(i,j) > € then
{(6,0) & (i,)
m <+ 0
repeat { m «— m+1
(k,1) < successor(k,l) }
untilm > S VvV Ay >¢
p+p+1
Mls)tart — (Z,])
Mend «— predecessor(k,1) } }

From know on, denotationally, we will represent segments by a naming (e.g. a, 3 or ;). Each
segment, naturally, has four values associated: its start position (a row and a column number)
in the matrix A and its end position (a row and a column number). These are represented by
the appropriate combination of an superscript which is either start or end and a subscript that is
either row or column.

The next task is to determine, among the segments found, which can follow which. As was
stated, due to the circular structure of the matched curves a special treatment is necessary in
finding the answer to this question. To avoid the halting problem of the algorithm we impose a
canonical order onto the concept of following. The canonical order we will impose says that if a
segment 3 is following a segment o then

end start

arow < row

Of course this is ‘a necessary but not sufficient’ criteria that has to be met. (The converse is not
always true: you can have non-following two segments a and 3 where a¢nd < Bstart gtill holds).
To complete the definition of the following segments we consider the possible positions of a segment
a (which is going to be followed by 8) in the A matrix (light shaded areas are forbidden zones for
the following segment to start in due to the imposed canonical order but it may end in there; dark
shades are the regions where an overlapping would occur, so the following segment shall have no

points in there).

Page 5

L J N 1 L i
Casg:I Casg:IlI CaAsEe:II1
Y 1 [N
N
\
N 1 L N
CAsSE:IV CASE:V

Start and end point-wise, CASE IV and CASE V are not different from each other, so they will
be considered as the same. We define a comparison operator < that will admit two segments as
operands and return True if the right operand is a following segment of the left one and False oth-
erwise. Formally this operator can be defined as (we are making use of the mathematical notation

for representing closed/open/semiclosed sets; in our cases set elements are integral values):

a<f i wrapped,o(a) then B € (agnd, aziart) A Bird € (B agter?)

row TOU) TOU)
else f33Ler" € (afpd R) A Bind € (Bilar, RIU[1,03%47")
A
if wrapped.q () then B3 € (affil,asli™) A AT € (B2 adi™)
else 331f™" € [1,a31™) U (ay,]
A

if ﬁgtart (end C] then ﬁend c [Lai(t)?rt) (end C]

Qeol s col Qeol s

else g € [1,astert)

Where we have defined
wrappeds(x) + x5 > x| sefrow.col}

The < operator will yield always the correct answer for the cases where « is following § or visa
versa. For segments, though, that have overlapping regions the answer is undetermined. Hence
we are able to define a partial order among the set of all found segments, namely the M array.
So, we will perform a topological sort on the M array where < is the ordering criteria. A simple
bubble sort will do the job (++ stands for ‘content exchange’):

sort_M() < for j < 1...lastindex(M) do
for i — 1...(lastindex(M) — j) do
if M1 < M; then M; <& M1

The remaining of the algorithm is basically a search for the longest path in a graph where vertices
are the segments and unidirectional edges between these vertices are introduced from segments
to the following segments. The weights on the vertices are nothing else than the lengths of the
segments. The task of finding the longest match is converted into a task in which the longest

Page 6

path of the described graph is found. The longest path will yield a maximal weight (length of
segments) sum of the vertices (segments) on the path. To start a search for the longest path we
have to identify the starting and terminating vertices of the graph (i.e. those segments which are
not following any segment and segments which are not followed by any segment). By two linear
scans over the M array we are able to identify and mark those segments:

mark_terminatings() + {
for i «— 1...lastindex(M) do mark_as_terminating(M;)
start
T4 [Mlastindex(M)]T w
start
C < [Mlastindem(M)] col
for i < (lastindex(M) —1)...1 do
if (M, < A ML) < ¢ then remove_terminating mark(M;)
else if [M;]""" > r A [M;]?%"" > ¢ then

row col

{ r e [Mi]Start

row

C [Mi]start }

col

mark_startings() < {
for i + 1...lastindex(M) do mark_as_starting(M,;)
re Mo
¢ [Ml]igzd
for i « 2...lastindex(M) do
if [ML]P7" > A ML > ¢ then remove_starting mark (M)
else if [M;]"? <r A M < ¢ then

{ re [Mi]end

row

¢« [M;]

col

}

For convenience we introduce two dummy vertices, namely at start Mg and at end M) (where
A = lastindex(M) + 1) with length zero and satisfying the conditions

Vi 3 marked_as_terminating(M;) : My < M;
Vi 3 marked_as_starting(M;) o M; <M,

The below given greedy type algorithm uses dynamic programming to find the longest path.

Gradually it fills out an array that we will name as longest:

findlongest_path() < for i « lastindex(M)...0 do
longest; < max{ w(length(My)) + longest; | M; < M; }

length is a function that returns the count of match points of the segment given as argument to
it. It is defined as:

H start end end start
length(a) < if o200 < afls then il — allt

end start
else R+ afld — oty

w() is a function which defines the weight contribution of the count of match points for a continuous
match segment given to it as the argument. The idea is to allow a penalty treatment for short

matches. If no such penalty is favored then it is possible to simply define w(m) = m.

Page 7

4 Conclusion

We presented a method for matching two closed space curves which are holding discrete feature
values, in a robust manner. Unlike in other related works the problem of the proper treatment of
missing parts in a match is put under focus and a complete solution is proposed. The reconstruction
of the object is just an exhaustive search over all ‘pieces’ and choosing the best fittings. The idea

is simple:
e Find the best match.

Join the matching portions (perform in parallel the necessary bookkeeping).

e Removing the parts of the joint obtain the representation of a single piece.

Add this new obtained piece and remove the two pieces which were joined from the database,

hence reducing the count of pieces by one, continue until only one piece is left.

For a possible implementation we would propose a visual workbench approach in which the user
has a full control over the matching parameters and the matching itself and the availability of
an undo operation over the construction history. A project of such an implementation has been
started.

Further efforts can go into the implementation details where a suitable data representation and

efficient retrieval mechanisms will be the main concern.

References

[1] H. Freeman and L. Garder. A pictorial jigsaw puzzles: The computer solution of a problem
in pattern recognition. IEEE Trans. Electron. Comput., EC-13:118-127, 1964.

[2] G. M. Radack and N. I. Badler. Jigsaw puzzle matching using a boundary-centered polar
encoding. Comput. Graphics Image Processing, 19:1-17, 1982.

[3] H. Wolfson, E. Schonberg, A Kalvin, and Y. Lambdan. Solving jigsaw puzzle using computer
vision. Ann. Oper. Res., 12:51-64, 1988.

[4] H. Wolfson. On curve matching. IEEE, Trans. Pattern. Anal. Machine. Intell., 12:483-489,
1990.

[5] H. Freeman. Shape description via the use of critical points. Pattern Recogn., 10:159-166,
1978.

[6] N. Ayache and O. D. Faugeras. Hyper: A new approach for the recognition and positioning
of two-dimensional objects. IEEE, Trans. Pattern. Anal. Machine. Intell., 8:44-54, 1986.

[7] E. Kishon and H. Wolfson. 3-d curve matching. In Proceeding of the AAAI Workshop on
Spatial Reasoning and Multi-sensor Fusion, pages 250-261, 1987.

[8] E. Kishon, T. Hastie, and H. Wolfson. 3d curve matching using splines. In First Europian
Conference on Computer Vision, pages 589-591, 1990.

Page 8

[9] J. T. Schwartz and M. Sharir. Identification of partially obscured objects in two and three
dimension by matching noisy characteristic curves. IEEE, Trans. Pattern. Anal. Machine.
Intell., 8:44-54, 1986.

[10] M. P. do Carmo. Differential geometry of curve and surfaces. Prentice-Hall, Englewood Cliffs,
New Jersey, 1976.

[11] A. Goetz. Introduction to differential geometry of curve and surfaces. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1970.

Page 9

