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Abstract

There has been a big interest in inducing
classes of grammars in the area of machine
learning. Various attempts have been car-
ried out for automatically inferring different
grammar classes. The symbolic nature of the
grammar induction problem makes it suitable
for the GP-approach. However the straight-
forward application of the GP method on
Context Free Grammar Induction prob-
lem fails to generate a satisfactory solution.
The interdependency among subparts of a
CFG is high and it seems to be the rea-
son that prevents the GP method from find-
ing out effective building blocks during the
search. In this paper a new approach is pre-
sented where the aim is to formalize a control
module for the genetic search which can use
the interdependency information existing in
CFGs and hence can direct the search only
among well-fit grammars in the search space.

1 Introduction

GP is an induction method used to search over a
huge state space consisting of structured representa-
tions that are trees. Therefore GP is appropriate for
solving symbolic tasks like finding out a function or
composition of functions for a generalization over an
example set.

Induction of context-free grammars can be visualized
as a symbolic task too. The left-hand side of a rewrite
rule in a grammar can be treated as a function which
is composed of the right-hand side elements of the
same rule. Thus, it is possible to represent context-free
grammars as structured trees and transfer the problem
of inducing a context-free grammar to a search prob-
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lem among the possible tree representations that can
be formed using the terminal and nonterminal sym-
bols of a context-free grammar. When the GP method
is used in a straightforward manner for the CFG-
induction problem, although it is possible to achieve
a certain degree of convergence, the output grammar
induced is far away from a reasonable abstraction over
the training sentences.

It can be claimed that the limitations for the conver-
gence appear to be due to the nature of the problem
at hand. The interdependency among subparts of a
context-free grammar is high. That is, the contribu-
tion of a part of a grammar to the fitness function
heavily depends on some other subparts. Hence the
risk of destroying the interdependent overall structure
and as a result a dramatic fall of the fitness value after
a genetic operation is quite high.

On the other hand it can be claimed that the above
problem is based on the limitations of the tree rep-
resentation used for the genetic search. The tree ab-
stractions are capable of representing subparts of a
problem and how these subparts are connected to each
other. However the representations used, fail to cap-
ture the global information based on the interdepen-
dency relation of the subparts of a grammar, hence it
becomes possible to destroy this interdependent global
structure throughout a genetic operation which results
those dramatic changes in the fitness values and dis-
turbs the convergence. In the following sections, a new
approach which can formalize and process this global
information related to the overall structure of a gram-
mar, is presented. This new attempt tries to concen-
trate the search around the localization of well-fit ele-
ments of the search space by means of a classification
algorithm and tries to increase the efficiency by assign-
ing higher chances to creation of phenotypes that are
in the vicinity of those localizations.

In the following section a short summary of the pre-



vious attempts on grammar induction problem is pre-
sented. In section 3 the straightforward application
of GP method together with the initial results is de-
scribed. Then in section 4 an analysis of the underly-
ing facts that prevent the GP-method from a satisfac-
tory convergence is provided. In section 5 the solution
is proposed; in section 6 the results obtained are pre-
sented. The last sections conclude about the obtained
results.

2 Previous Work

Although statistical approaches form the main stream
among the researchers working on automatic grammar
induction, several attempts have been carried out to
attack the problem with evolutionary techniques also.

For instance in [8] a method using genetic algorithms
for context-free grammar induction has been proposed.
The authors claim that although statistical methods
offer a possible solution to the problem, it is quite diffi-
cult to escape from problems like the “zero-frequency”
problem using this approach. Hence, they propose an
evolutionary approach where each chromosome in the
population represents a context-free grammar. The
fitness is measured by the ability of this grammar to
parse a set of sample strings. The crossover operation
used for the process combines subsets of the rules of
two different grammars, so the operation does not cre-
ate new rules in the population, but just makes new
combinations of the existing rules appearing in dif-
ferent chromosomes in the population. On the other
hand mutation is allowed to modify any symbol in the
grammar and this is the operation used to introduce
new rules that may have not appeared in earlier gener-
ations. The proposed approach is able to infer simple
natural language grammars over a small set of training
examples. The example grammar given as an output
of the experiments carried out, covers noun phrases
containing a single determiner and a set of nouns and
the verb phrases containing a single verb and the noun
phrase recursively.

The work proposed by [7] is very similar to [8]. How-
ever it is stressed that straight forward application of
genetic algorithms are not very effective in grammar
induction. Based on this fact this work proposes mod-
ifications to increase the success of the method are
proposed. An example among the proposed modifica-
tions is to enlarge the mutation operation where the
operation mixes the sub-components of a grammar as
well as certain symbols of the grammar are modified
by the operation.

3 Genetic Programming for Grammar
Induction

As stated in section 1, it is possible to represent a
CFG as a structured tree. This representation makes
it possible to perform a genetic search among the can-
didate grammars in the form of structured trees. Note
that, this representation allows the search to proceed
by modifying the rules of a grammar both during mu-
tation and crossover.

3.1 Fitness Function

The initial fitness function that has been tried for
the search process was simply checking the number of
training sentences that the grammar can parse success-
fully. Obviously this initial try for the fitness function
was away from success. As the majority of the gram-
mars that appeared during the search were not able to
parse even a single sentence, the population was filled
with invalid elements during the search process. Hence
the convergence was disturbed.

The idea used to overcome the problem has been as-
signing a fitness value to a grammar even if the gram-
mar is not able to parse even a single training sentence
successfully.

In order to determine the fitness of such a ill-formed
grammar, a parse tree is formed while trying to parse
the training sentence with the parser formed by the
candidate grammar. If the sentence cannot be parsed,
it is not possible to obtain a complete parse tree. How-
ever, even if the parsing process stucks at some point
, it is possible to obtain an incomplete parse tree of
the sentence. This parse tree would denote the struc-
ture that has been formed up to the point where the
parsing was not able to proceed further. Depending
on the structure of the grammar, more than one such
incomplete parse trees can be formed for a single sen-
tence. So these incomplete parse trees that appear
during the attempt to parse a sentence are analyzed
and the maximum number of words, namely, terminal
symbols that appear on the parse trees throughout the
parsing process, is determined. This maximum num-
ber denotes the success of the grammar in parsing that
sentence. If this maximum is equal to the length of the
sentence, it would mean that the sentence has been
parsed successfully. However even if the sentence can-
not be parsed totally, this maximum number would be
a measure of how close the grammar was to parse the
sentence successfully.

Using the idea presented above, the fitness function is



set as:

#ofsentences

F(G) = Z

i=1

(LENGTH(S;)/MAXPARSE(G,S;)) —1 (1)

The genetic programming search tries to minimize the
fitness value above for the context free grammars. In
equation 1, MAXPARSE(G,S;) denotes the maxi-
mum number of terminal elements that appear on the
parse trees during the attempt to parse the sentence S;
with grammar G. When the sentence is parsed success-
fully MAX PARSE(G, S;) equals the sentence length,
hence F(G) is zero.

3.2 The initial results

The representation described in the previous section
has been tried on a group of training examples formed
by considering a subpart of the English language. The
training set consisted of about 20 simple English sen-
tences consisting of an NP and a V P structure where
the verb existing in the VP can be either transitive
or intransitive. Considering the simplicity of the ele-
ments of the training set it can be claimed that the
aimed output grammar would be a toy grammar on
the English language. Though the training set was
based on only a few simple structures that can exist
in English language, the abstraction obtained was not
satisfactory.

With the use of the new fitness function presented in
the previous section, a certain degree of convergence
has been obtained. For instance consider the follow-
ing fragment of a grammar induced where X, and X3
are non-terminal symbols and N and D are terminals
symbols corresponding to nouns and determiners:

e Xy o XgN
e X3 — Xo

e X3 = D

This fragment induced, can be considered as a correct
abstraction over the NP clauses existing in the ele-
ments in the training set, since the N Ps in the training
set only consisted of a certain number of Ns preceded
by a determiner. If we consider the fragment induced,
using the recursion on X, any number of Ns can be
produced and this sequence has to be preceded by a
determiner.

However, when the overall success of the search process
is considered, it is observed that the induced grammars
usually have irrelevant rules and they over-generate on
the training set. It can be claimed that the straightfor-
ward application of the GP method on CFG induction

problem fails to produce a reasonable abstraction and
the attempts to improve the fitness function does not
seem to be helpful beyond a small degree.

4 The Nature of the Problems in
Grammar Induction

The interdependency among the subparts of grammar
can be considered as the major factor preventing con-
vergence. Attempts to formalize more efficient fitness
functions are not expected to be helpful, since a lot of
the problem seems to be related to the basic aspects
of the genetic approach. This observation leads to the
idea that the performance of the approach can only be
increased by an outside guidance. In this research this
guidance is considered to be a separate control module
that can direct the GP search.

The problem with applications with high interdepen-
dency is that, it becomes so probable for the popula-
tion to be captured with the invalid elements during
the search. The reason causing this unwarranted sit-
uation is related to the basic assumption underlying
the GP method. GP approach assumes that combin-
ing efficient building blocks would lead to better solu-
tions. However forming and processing such building
blocks becomes impossible for problems with high in-
terdependency. After all, genetic search is also based
on the idea of stepping from one structure to another
that is similar to the previous one, by modifying a
subpart of the structure throughout a genetic opera-
tion. The implicit assumption of this approach is that
similar structures would have compatible fitness values
and it would be possible to proceed towards better so-
lutions throughout the search. However with the tree
representation it becomes possible to destroy a lot with
even a minor modification on the chromosome. There-
fore very similar structures in the domain might have
totally different fitness values.

This is the case for the grammar induction problem
too. It is possible to analyze the case using an example:
Consider the grammar given below with a terminal el-
ement, set, consisting of NV and V and a non-terminal
element set consisting of S, NP and V P. This gram-
mar would cover recursive NP structures and simple
transitive VP structures consisting of a verb and an
NP in English language.

e S—>NPVP
e NP— > N,NP
e« NP— >N

« VP—>V,NP



This candidate grammar would be a valid element in
our domain set and it is expected to have a high fitness
value since it can parse quite a number of sentences.
However the interdependency between the subparts
makes it too risky to end up with an invalid gram-
mar if we apply a genetic operation on one of these
elements. For instance the terminal element ”V” is
one of the critical subparts in the grammar. The exis-
tence of this element is a factor that contributes highly
to the fitness of the element.

For instance, if we replace the terminal element ”V”
with the terminal element ”N” the grammar cannot
parse any sentence at all, since any sentence should
have a verb in it. The two grammars seem to be very
similar and for the genetic search to proceed success-
fully the fitness values in such cases should be compat-
ible with each other. The absence of such a regularity
makes it impossible to determine if we are going to
be falling off the edge or if we are stepping up to an-
other confident structure when we perform a genetic
operation.

The fitness function presented in section 3.1 can be
considered as an attempt to overcome the problem,
however this attempt can be considered only as a par-
tial solution. The fitness function used enables the
search to keep track of the building blocks more effi-
ciently, since it is possible to assign fitness values to
incomplete parse attempts. On the other side, it is still
probable to destroy the overall structure of a chromo-
some throughout a genetic operation, therefore still
the problem of having dramatic changes in the fitness
value exists with such an improved fitness function too.

5 Solution Proposed:

5.1 Search for an answer in Cognitive Science

The organization of the conceptual system is an ongo-
ing debate in the area of cognitive science. The classi-
cal theory on category formation states that things are
placed into same categories on the basis of what they
have in common and concepts are atomistic, that is
they can be broken down into smaller building blocks.
However the classical view is not shared by all of the
cognitive scientists and there are researchers claiming
that the classical theory is capable of explaining only
a small part of the whole story and concept formation
is based on more complex processes rather than simple
building blocks. The new approach is called prototype
theory and visualizes concepts as atomic structures.
The new approach focuses on the overall structures of
the concepts that goes beyond putting together build-
ing blocks [2].

It can be claimed that this theoretical debate taking
place in Cognitive science could have certain impacts
on the formalization of the control module needed to
direct the genetic search. A parallelism can be formed
between the debate taking place in Cognitive science
and the limitations of the genetic approach. The tree
representation used for chromosomes heavily depends
on the assumption that a solution which can be con-
sidered as a concept, is formed by bringing in different
building blocks. The tree representation holds only
these various building blocks and how they are con-
nected to each other. And similar to the discussions
taking place in cognitive science, the representation
used can help to solve certain amount of problems,
however this seems to be only a small part of the whole
story and whenever the interdependency among the
subparts of a problem increases, that is to say the to-
tal meaning goes beyond putting the building blocks
together, the genetic approach fails together with the
classical theory of concept formation.

5.2 What could be the solution?

Considering the limitations of the GP formalism, it can
be claimed that a control module is needed to guide
the genetic search which should be able to form and
analyze the global information due to the interdepen-
dency among the subparts of the problem.

In order to formalize the control module, again the
debate going on in cognitive science could be help-
ful. The new approach in cognitive science considers
atomic prototypes of concepts to be able to explain
the organization of the conceptual system. Being a
member of a concept or category is defined in terms of
the distance to these prototypes. Using the same ap-
proach, if prototypes for the valid elements in the do-
main can be built based on the interdependency infor-
mation existing in the chromosomes, then it might be
possible to direct the search only around well-formed
chromosomes.

The key point for this re-representation of the chro-
mosomes is related in fact to the redefinition of the
similarity between the chromosomes. The aim is ob-
viously to visualize the domain from a different angle
so that the chromosomes with compatible fitness val-
ues would be showing up in places close to each other.

5.3 Vectorial Representation

The solution we propose is to transform the chromo-
somes to single points of an n-dimensional space which
are then subject to the control module. It is aimed that
the control module would use these atomic represen-



tations and would try to determine prototypes for the
valid and invalid elements in the domain. Then, these
prototypes can be fed in the genetic search and the
genetic search can use them to determine the conse-
quences of a genetic operation beforehand and perform
the right genetic operations that would keep the search
only among the sensible elements in the search space.

Here it should be noted that this transformation is not
aimed to be a one-to-one correspondence between the
chromosomes and points in the n-dimensional space.
Rather it is aimed to capture the overall information
that exists implicitly in the chromosome structure.

The transformation process for a chromosome can be
divided into two phases. First, the terminal elements
used for the genetic search have to be transformed into
the new space. In order to perform this transformation
base vectors have been used for each terminal set, since
the elements in the terminal set can be considered as
entities having the same characteristics.

The dimension of the space has been determined as the
number of elements in the terminal set. For instance if
the terminal is T = {D, N, P, V'} then the base vectors
corresponding to the elements would be:

D =1[0,0,0,1]
N =1(0,0,1,0]
P =10,1,0,0]
V =11,0,0,0]

The usage of these base vectors for the terminal set
elements allows to place the set members into the space
with the same distances among each other.

On the other hand, in order to form the vectors cor-
responding to a nonterminal element there are various
methods that can be used. The most trivial one would
be adding the vectors of the arguments of this nonter-
minal element. For instance if X (X, Xy) is a subpart
of the tree, then the vector that would correspond to
X might be determined as:

Vx =Vx, +Vx, (2)

By using such a bottom up construction it is possible
to determine a single vector for the whole chromosome.
Note that it is possible to have more than one chro-
mosomes mapped to the same point in the space since
the vector addition is commutative and associative.
However this is not in contradiction with our purpose,
since it is aimed to extract information regarding to
the overall structure of a chromosome with this map-
ping. For instance with this addition operation it is

possible to gather the information about how many of
which terminal elements are used in a chromosome.

5.4 The interaction between the Control

Module and GP

The general flow of the interaction between the two
modules is formalized as follows:

e Genetic Search : start the search and for each
chromosome that appears in a population, form
the corresponding vector representation and send
the vector together with the fitness value to the
control module.

e Control Module: after collecting a certain amount
of vector values and corresponding fitnesses, run
a classification algorithm on the data and try to
form prototypes for the valid and invalid chromo-
somes based on the fitness values.

e Genetic Search: after the prototypes are formed
by the control module, for each genetic operation
to be performed, send more than one alternative
to the control module. ( For instance for the
crossover operation different alternatives would
mean different crossover points on the parents.)
Then, receive from the control module the dis-
tances between the offsprings that would be pro-
duced by the alternative operations and the pro-
totypes induced and then choose the alternative
with offsprings closest to the valid prototypes in
the n-dimensional space.

6 Implementation & Results

In the implementation, the control module used col-
lects vector and fitness values for a period of thirty
generations and after each thirty generations, the con-
trol module uses the ”C4.5 Decision Tree Induction
System” for building the prototypes. It is aimed to in-
duce two different kinds of prototypes. The first one is
assumed to be a prototype for chromosomes with low
fitness values and the second one for chromosomes with
average or high fitness values. Therefore the positive
examples for the induction system are set as vectors
with a corresponding average or high fitness value and
the negative examples are determined as vectors with
fitness values below the average.

The control module produces the first prototypes at
generation thirty. Then, before each genetic operation
is carried out, the genetic engine sends the alterna-
tive operations and gets the feedback from the con-
trol module about the the offsprings that would be



produced. The alternative that would reproduce off-
springs in the positive class is chosen.

Different trials have been carried out with varying ran-
dom seeds in order to visualize the behavior of the
genetic search with and without the control module.
During the runs with the control module, for each ge-
netic operation two different alternatives are sent to
the control module and the better one is chosen accord-
ing to the feedback obtained from the control module.

In order to be able to compare the results obtained
with and without the control module the genetic pa-
rameters are kept constant through all the different
trials. Below is the list of genetic parameters used in
all trials.

Population size = 100

max depth for new trees = 3

max depth after crossover = 4

e max mutant depth = 2

crossover at function point fraction = 0.1

crossover at any point fraction = 0.7

Reproduction fraction = 0.1

Mutation fraction = 0.1
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Figure 1: Comparison of controlled search and normal
run.

In figures 1, 2, 3, 4 and 5, five different comparisons are
presented between the normal run and the controlled
search. The change of the fitness value for both the
normal run and the controlled search are presented
together. Here the dashed lines in each graph denote
the change of the fitness function during the controlled
search. For each comparison a different random seed
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Figure 2: Comparison of controlled search and normal
runm.

is used in order to determine if the progress obtained
is within the borders of normal variation of the genetic
search or not.
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Figure 3: Comparison of controlled search and normal
runm.

The controlled search has a better performance com-
pared to the straightforward application of GP on the
CFG-induction problem. In the first three figures the
controlled search clearly outperforms the normal run.
However it is not possible to claim that the controlled
search is always able to escape from the local minimas
that the normal run is suffering from. The perfor-
mance in figures 4 and 5 denotes that the normal run
can follow the controlled search with some phase dif-
ference in some trials. In these figures the normal run
can reach the performance of the controlled search af-
ter a certain amount of generations and then the two
methods seem to be stuck at the same local minima.
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Figure 4: Comparison of controlled search and normal
runm.
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Figure 5: Comparison of controlled search and normal
run.

7 Conclusion

In the previous section the initial attempts to formal-
ize the control module and the initial results obtained
by this new approach are presented. The progress ob-
tained compared to the classical approach seems to be
very motivating.

The current results denote that using the new con-
trolled search provides more efficient searches on the
problem domain. The classical approach is able to
reach the fitness values that are produced with the
new approach with a phase difference. This denotes
an increase in the efficiency. Here the processing time
consumed by forming the vectors and checking mem-
berships brings in an overhead to the search. However
it should be noted that all of the operations related
to vector algebra are either linear or logarithmic. It is

obvious that such operations would be much more effi-
cient rather then calculating the fitness value of a chro-
mosome for the problem of grammar induction where
you have to extract the grammar from the chromo-
some and test if the grammar parses the sentences in
the training set one by one.

The transformation used to map the chromosomes into
the space is still trivial. The future work should fo-
cus on advanced ways to carry out the transformation
where more insights about the global information pro-
duced by the interdependency would be obtained.
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