
[Category: Genetic Programming]Genetic Programming for Grammar InductionEmin Erkan KorkmazDepartment of Computer EngineeringMiddle East Technical UniversityAnkara-Turkeykorkmaz@ceng.metu.edu.tr G�okt�urk �U�colukDepartment of Computer EngineeringMiddle East Technical UniversityAnkara-Turkeyucoluk@ceng.metu.edu.trAbstractThere has been a big interest in inducingclasses of grammars in the area of machinelearning. Various attempts have been car-ried out for automatically inferring di�erentgrammar classes. The symbolic nature of thegrammar induction problemmakes it suitablefor the GP-approach. However the straight-forward application of the GP method onContext Free Grammar Induction prob-lem fails to generate a satisfactory solution.The interdependency among subparts of aCFG is high and it seems to be the rea-son that prevents the GP method from �nd-ing out e�ective building blocks during thesearch. In this paper a new approach is pre-sented where the aim is to formalize a controlmodule for the genetic search which can usethe interdependency information existing inCFGs and hence can direct the search onlyamong well-�t grammars in the search space.1 IntroductionGP is an induction method used to search over ahuge state space consisting of structured representa-tions that are trees. Therefore GP is appropriate forsolving symbolic tasks like �nding out a function orcomposition of functions for a generalization over anexample set.Induction of context-free grammars can be visualizedas a symbolic task too. The left-hand side of a rewriterule in a grammar can be treated as a function whichis composed of the right-hand side elements of thesame rule. Thus, it is possible to represent context-freegrammars as structured trees and transfer the problemof inducing a context-free grammar to a search prob-

lem among the possible tree representations that canbe formed using the terminal and nonterminal sym-bols of a context-free grammar. When the GP methodis used in a straightforward manner for the CFG-induction problem, although it is possible to achievea certain degree of convergence, the output grammarinduced is far away from a reasonable abstraction overthe training sentences.It can be claimed that the limitations for the conver-gence appear to be due to the nature of the problemat hand. The interdependency among subparts of acontext-free grammar is high. That is, the contribu-tion of a part of a grammar to the �tness functionheavily depends on some other subparts. Hence therisk of destroying the interdependent overall structureand as a result a dramatic fall of the �tness value aftera genetic operation is quite high.On the other hand it can be claimed that the aboveproblem is based on the limitations of the tree rep-resentation used for the genetic search. The tree ab-stractions are capable of representing subparts of aproblem and how these subparts are connected to eachother. However the representations used, fail to cap-ture the global information based on the interdepen-dency relation of the subparts of a grammar, hence itbecomes possible to destroy this interdependent globalstructure throughout a genetic operation which resultsthose dramatic changes in the �tness values and dis-turbs the convergence. In the following sections, a newapproach which can formalize and process this globalinformation related to the overall structure of a gram-mar, is presented. This new attempt tries to concen-trate the search around the localization of well-�t ele-ments of the search space by means of a classi�cationalgorithm and tries to increase the e�ciency by assign-ing higher chances to creation of phenotypes that arein the vicinity of those localizations.In the following section a short summary of the pre-



vious attempts on grammar induction problem is pre-sented. In section 3 the straightforward applicationof GP method together with the initial results is de-scribed. Then in section 4 an analysis of the underly-ing facts that prevent the GP-method from a satisfac-tory convergence is provided. In section 5 the solutionis proposed; in section 6 the results obtained are pre-sented. The last sections conclude about the obtainedresults.2 Previous WorkAlthough statistical approaches form the main streamamong the researchers working on automatic grammarinduction, several attempts have been carried out toattack the problem with evolutionary techniques also.For instance in [8] a method using genetic algorithmsfor context-free grammar induction has been proposed.The authors claim that although statistical methodso�er a possible solution to the problem, it is quite di�-cult to escape from problems like the \zero-frequency"problem using this approach. Hence, they propose anevolutionary approach where each chromosome in thepopulation represents a context-free grammar. The�tness is measured by the ability of this grammar toparse a set of sample strings. The crossover operationused for the process combines subsets of the rules oftwo di�erent grammars, so the operation does not cre-ate new rules in the population, but just makes newcombinations of the existing rules appearing in dif-ferent chromosomes in the population. On the otherhand mutation is allowed to modify any symbol in thegrammar and this is the operation used to introducenew rules that may have not appeared in earlier gener-ations. The proposed approach is able to infer simplenatural language grammars over a small set of trainingexamples. The example grammar given as an outputof the experiments carried out, covers noun phrasescontaining a single determiner and a set of nouns andthe verb phrases containing a single verb and the nounphrase recursively.The work proposed by [7] is very similar to [8]. How-ever it is stressed that straight forward application ofgenetic algorithms are not very e�ective in grammarinduction. Based on this fact this work proposes mod-i�cations to increase the success of the method areproposed. An example among the proposed modi�ca-tions is to enlarge the mutation operation where theoperation mixes the sub-components of a grammar aswell as certain symbols of the grammar are modi�edby the operation.

3 Genetic Programming for GrammarInductionAs stated in section 1, it is possible to represent aCFG as a structured tree. This representation makesit possible to perform a genetic search among the can-didate grammars in the form of structured trees. Notethat, this representation allows the search to proceedby modifying the rules of a grammar both during mu-tation and crossover.3.1 Fitness FunctionThe initial �tness function that has been tried forthe search process was simply checking the number oftraining sentences that the grammar can parse success-fully. Obviously this initial try for the �tness functionwas away from success. As the majority of the gram-mars that appeared during the search were not able toparse even a single sentence, the population was �lledwith invalid elements during the search process. Hencethe convergence was disturbed.The idea used to overcome the problem has been as-signing a �tness value to a grammar even if the gram-mar is not able to parse even a single training sentencesuccessfully.In order to determine the �tness of such a ill-formedgrammar, a parse tree is formed while trying to parsethe training sentence with the parser formed by thecandidate grammar. If the sentence cannot be parsed,it is not possible to obtain a complete parse tree. How-ever, even if the parsing process stucks at some point, it is possible to obtain an incomplete parse tree ofthe sentence. This parse tree would denote the struc-ture that has been formed up to the point where theparsing was not able to proceed further. Dependingon the structure of the grammar, more than one suchincomplete parse trees can be formed for a single sen-tence. So these incomplete parse trees that appearduring the attempt to parse a sentence are analyzedand the maximum number of words, namely, terminalsymbols that appear on the parse trees throughout theparsing process, is determined. This maximum num-ber denotes the success of the grammar in parsing thatsentence. If this maximum is equal to the length of thesentence, it would mean that the sentence has beenparsed successfully. However even if the sentence can-not be parsed totally, this maximum number would bea measure of how close the grammar was to parse thesentence successfully.Using the idea presented above, the �tness function is



set as:F (G) = #ofsentencesXi=1 (LENGTH(Si)=MAXPARSE(G;Si))� 1 (1)The genetic programming search tries to minimize the�tness value above for the context free grammars. Inequation 1, MAXPARSE(G;Si) denotes the maxi-mum number of terminal elements that appear on theparse trees during the attempt to parse the sentence Siwith grammarG. When the sentence is parsed success-fullyMAXPARSE(G;Si) equals the sentence length,hence F (G) is zero.3.2 The initial resultsThe representation described in the previous sectionhas been tried on a group of training examples formedby considering a subpart of the English language. Thetraining set consisted of about 20 simple English sen-tences consisting of an NP and a V P structure wherethe verb existing in the V P can be either transitiveor intransitive. Considering the simplicity of the ele-ments of the training set it can be claimed that theaimed output grammar would be a toy grammar onthe English language. Though the training set wasbased on only a few simple structures that can existin English language, the abstraction obtained was notsatisfactory.With the use of the new �tness function presented inthe previous section, a certain degree of convergencehas been obtained. For instance consider the follow-ing fragment of a grammar induced where X2 and X3are non-terminal symbols and N and D are terminalssymbols corresponding to nouns and determiners:� X2 ! X3N� X3 ! X2� X3 ! DThis fragment induced, can be considered as a correctabstraction over the NP clauses existing in the ele-ments in the training set, since theNP s in the trainingset only consisted of a certain number of Ns precededby a determiner. If we consider the fragment induced,using the recursion on X2 any number of Ns can beproduced and this sequence has to be preceded by adeterminer.However, when the overall success of the search processis considered, it is observed that the induced grammarsusually have irrelevant rules and they over-generate onthe training set. It can be claimed that the straightfor-ward application of the GP method on CFG induction

problem fails to produce a reasonable abstraction andthe attempts to improve the �tness function does notseem to be helpful beyond a small degree.4 The Nature of the Problems inGrammar InductionThe interdependency among the subparts of grammarcan be considered as the major factor preventing con-vergence. Attempts to formalize more e�cient �tnessfunctions are not expected to be helpful, since a lot ofthe problem seems to be related to the basic aspectsof the genetic approach. This observation leads to theidea that the performance of the approach can only beincreased by an outside guidance. In this research thisguidance is considered to be a separate control modulethat can direct the GP search.The problem with applications with high interdepen-dency is that, it becomes so probable for the popula-tion to be captured with the invalid elements duringthe search. The reason causing this unwarranted sit-uation is related to the basic assumption underlyingthe GP method. GP approach assumes that combin-ing e�cient building blocks would lead to better solu-tions. However forming and processing such buildingblocks becomes impossible for problems with high in-terdependency. After all, genetic search is also basedon the idea of stepping from one structure to anotherthat is similar to the previous one, by modifying asubpart of the structure throughout a genetic opera-tion. The implicit assumption of this approach is thatsimilar structures would have compatible �tness valuesand it would be possible to proceed towards better so-lutions throughout the search. However with the treerepresentation it becomes possible to destroy a lot witheven a minor modi�cation on the chromosome. There-fore very similar structures in the domain might havetotally di�erent �tness values.This is the case for the grammar induction problemtoo. It is possible to analyze the case using an example:Consider the grammar given below with a terminal el-ement set consisting of N and V and a non-terminalelement set consisting of S, NP and V P . This gram-mar would cover recursive NP structures and simpletransitive VP structures consisting of a verb and anNP in English language.� S� > NP; V P� NP� > N;NP� NP� > N� V P� > V;NP



This candidate grammar would be a valid element inour domain set and it is expected to have a high �tnessvalue since it can parse quite a number of sentences.However the interdependency between the subpartsmakes it too risky to end up with an invalid gram-mar if we apply a genetic operation on one of theseelements. For instance the terminal element "V" isone of the critical subparts in the grammar. The exis-tence of this element is a factor that contributes highlyto the �tness of the element.For instance, if we replace the terminal element "V"with the terminal element "N" the grammar cannotparse any sentence at all, since any sentence shouldhave a verb in it. The two grammars seem to be verysimilar and for the genetic search to proceed success-fully the �tness values in such cases should be compat-ible with each other. The absence of such a regularitymakes it impossible to determine if we are going tobe falling o� the edge or if we are stepping up to an-other con�dent structure when we perform a geneticoperation.The �tness function presented in section 3.1 can beconsidered as an attempt to overcome the problem,however this attempt can be considered only as a par-tial solution. The �tness function used enables thesearch to keep track of the building blocks more e�-ciently, since it is possible to assign �tness values toincomplete parse attempts. On the other side, it is stillprobable to destroy the overall structure of a chromo-some throughout a genetic operation, therefore stillthe problem of having dramatic changes in the �tnessvalue exists with such an improved �tness function too.5 Solution Proposed:5.1 Search for an answer in Cognitive ScienceThe organization of the conceptual system is an ongo-ing debate in the area of cognitive science. The classi-cal theory on category formation states that things areplaced into same categories on the basis of what theyhave in common and concepts are atomistic, that isthey can be broken down into smaller building blocks.However the classical view is not shared by all of thecognitive scientists and there are researchers claimingthat the classical theory is capable of explaining onlya small part of the whole story and concept formationis based on more complex processes rather than simplebuilding blocks. The new approach is called prototypetheory and visualizes concepts as atomic structures.The new approach focuses on the overall structures ofthe concepts that goes beyond putting together build-ing blocks [2].

It can be claimed that this theoretical debate takingplace in Cognitive science could have certain impactson the formalization of the control module needed todirect the genetic search. A parallelism can be formedbetween the debate taking place in Cognitive scienceand the limitations of the genetic approach. The treerepresentation used for chromosomes heavily dependson the assumption that a solution which can be con-sidered as a concept, is formed by bringing in di�erentbuilding blocks. The tree representation holds onlythese various building blocks and how they are con-nected to each other. And similar to the discussionstaking place in cognitive science, the representationused can help to solve certain amount of problems,however this seems to be only a small part of the wholestory and whenever the interdependency among thesubparts of a problem increases, that is to say the to-tal meaning goes beyond putting the building blockstogether, the genetic approach fails together with theclassical theory of concept formation.5.2 What could be the solution?Considering the limitations of the GP formalism, it canbe claimed that a control module is needed to guidethe genetic search which should be able to form andanalyze the global information due to the interdepen-dency among the subparts of the problem.In order to formalize the control module, again thedebate going on in cognitive science could be help-ful. The new approach in cognitive science considersatomic prototypes of concepts to be able to explainthe organization of the conceptual system. Being amember of a concept or category is de�ned in terms ofthe distance to these prototypes. Using the same ap-proach, if prototypes for the valid elements in the do-main can be built based on the interdependency infor-mation existing in the chromosomes, then it might bepossible to direct the search only around well-formedchromosomes.The key point for this re-representation of the chro-mosomes is related in fact to the rede�nition of thesimilarity between the chromosomes. The aim is ob-viously to visualize the domain from a di�erent angleso that the chromosomes with compatible �tness val-ues would be showing up in places close to each other.5.3 Vectorial RepresentationThe solution we propose is to transform the chromo-somes to single points of an n-dimensional space whichare then subject to the control module. It is aimed thatthe control module would use these atomic represen-



tations and would try to determine prototypes for thevalid and invalid elements in the domain. Then, theseprototypes can be fed in the genetic search and thegenetic search can use them to determine the conse-quences of a genetic operation beforehand and performthe right genetic operations that would keep the searchonly among the sensible elements in the search space.Here it should be noted that this transformation is notaimed to be a one-to-one correspondence between thechromosomes and points in the n-dimensional space.Rather it is aimed to capture the overall informationthat exists implicitly in the chromosome structure.The transformation process for a chromosome can bedivided into two phases. First, the terminal elementsused for the genetic search have to be transformed intothe new space. In order to perform this transformationbase vectors have been used for each terminal set, sincethe elements in the terminal set can be considered asentities having the same characteristics.The dimension of the space has been determined as thenumber of elements in the terminal set. For instance ifthe terminal is T = fD;N; P; V g then the base vectorscorresponding to the elements would be:D = [0; 0; 0; 1]N = [0; 0; 1; 0]P = [0; 1; 0; 0]V = [1; 0; 0; 0]The usage of these base vectors for the terminal setelements allows to place the set members into the spacewith the same distances among each other.On the other hand, in order to form the vectors cor-responding to a nonterminal element there are variousmethods that can be used. The most trivial one wouldbe adding the vectors of the arguments of this nonter-minal element. For instance if X(X1; X2) is a subpartof the tree, then the vector that would correspond toX might be determined as:VX = VX1 + VX2 (2)By using such a bottom up construction it is possibleto determine a single vector for the whole chromosome.Note that it is possible to have more than one chro-mosomes mapped to the same point in the space sincethe vector addition is commutative and associative.However this is not in contradiction with our purpose,since it is aimed to extract information regarding tothe overall structure of a chromosome with this map-ping. For instance with this addition operation it is

possible to gather the information about how many ofwhich terminal elements are used in a chromosome.5.4 The interaction between the ControlModule and GPThe general 
ow of the interaction between the twomodules is formalized as follows:� Genetic Search : start the search and for eachchromosome that appears in a population, formthe corresponding vector representation and sendthe vector together with the �tness value to thecontrol module.� Control Module: after collecting a certain amountof vector values and corresponding �tnesses, runa classi�cation algorithm on the data and try toform prototypes for the valid and invalid chromo-somes based on the �tness values.� Genetic Search: after the prototypes are formedby the control module, for each genetic operationto be performed, send more than one alternativeto the control module. ( For instance for thecrossover operation di�erent alternatives wouldmean di�erent crossover points on the parents.)Then, receive from the control module the dis-tances between the o�springs that would be pro-duced by the alternative operations and the pro-totypes induced and then choose the alternativewith o�springs closest to the valid prototypes inthe n-dimensional space.6 Implementation & ResultsIn the implementation, the control module used col-lects vector and �tness values for a period of thirtygenerations and after each thirty generations, the con-trol module uses the "C4.5 Decision Tree InductionSystem" for building the prototypes. It is aimed to in-duce two di�erent kinds of prototypes. The �rst one isassumed to be a prototype for chromosomes with low�tness values and the second one for chromosomes withaverage or high �tness values. Therefore the positiveexamples for the induction system are set as vectorswith a corresponding average or high �tness value andthe negative examples are determined as vectors with�tness values below the average.The control module produces the �rst prototypes atgeneration thirty. Then, before each genetic operationis carried out, the genetic engine sends the alterna-tive operations and gets the feedback from the con-trol module about the the o�springs that would be



produced. The alternative that would reproduce o�-springs in the positive class is chosen.Di�erent trials have been carried out with varying ran-dom seeds in order to visualize the behavior of thegenetic search with and without the control module.During the runs with the control module, for each ge-netic operation two di�erent alternatives are sent tothe control module and the better one is chosen accord-ing to the feedback obtained from the control module.In order to be able to compare the results obtainedwith and without the control module the genetic pa-rameters are kept constant through all the di�erenttrials. Below is the list of genetic parameters used inall trials.� Population size = 100� max depth for new trees = 3� max depth after crossover = 4� max mutant depth = 2� crossover at function point fraction = 0:1� crossover at any point fraction = 0:7� Reproduction fraction = 0:1� Mutation fraction = 0:1
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Generation NumberFigure 5: Comparison of controlled search and normalrun.7 ConclusionIn the previous section the initial attempts to formal-ize the control module and the initial results obtainedby this new approach are presented. The progress ob-tained compared to the classical approach seems to bevery motivating.The current results denote that using the new con-trolled search provides more e�cient searches on theproblem domain. The classical approach is able toreach the �tness values that are produced with thenew approach with a phase di�erence. This denotesan increase in the e�ciency. Here the processing timeconsumed by forming the vectors and checking mem-berships brings in an overhead to the search. Howeverit should be noted that all of the operations relatedto vector algebra are either linear or logarithmic. It is
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