Controlled Genetic Programming Search for Solving Deceptive
Problems

Emin Erkan Korkmaz
Department of Computer Engineering
Middle East Technical University
Ankara-Turkey
korkmaz@ceng.metu.edu.tr
+(90) — 312 — 210 — 5536

Abstract

Traditional GP randomly combines subtrees
by applying crossover and mutation. There is
a growing interest in methods that can con-
trol such recombination operations. In this
study a new approach is presented for guid-
ing the recombination process for GP. Our
method is based on extracting the global in-
formation of the promising solutions that ap-
pear during the genetic search. The aim is to
use this information to control the crossover
operation afterwards.

1 Introduction

It is clear that the random recombination used in tra-
ditional GP can easily disturb the building blocks. An
attempt based on determining the beneficial building
blocks and preventing them to be disturbed during the
recombination operations can be helpful. However for
deceptive class of problems such an approach is ques-
tionable. The interaction between the partial solu-
tions is high for these problems. The global meaning
of finding a possible solution goes beyond determin-
ing isolated, non-interacting building blocks and bring-
ing them together. In this study a different approach
which focuses on the global information of promising
solutions is presented. The aim is to extract the knowl-
edge of what it is to be good globally and hence per-
form the right crossover operations which would keep
the search among the localization of well-fit elements
afterwards.

The proposed method has been applied to two dif-
ferent domains which are Context-Free Grammar In-
duction and N-Parity Problem. Both of the domains
can be considered as highly deceptive. Traditional GP
has exhibited quite a low performance for both of the

Goktiirk Ugoluk
Department of Computer Engineering
Middle East Technical University
Ankara-Turkey
ucoluk@ceng.metu.edu.tr
+(90) — 312 — 210 — 5584

problems. In the following section an overview of var-
ious approaches in the area are given. In section 3 our
approach is presented in detail. In section 4 the ap-
plication of our approach on CFG induction is given.
Then in section 5 the N-Parity problem is analyzed
in the light of our approach and in the last section
conclusions and discussions are presented.

2 Related Work

Researchers have been interested in controlling recom-
bination in GP. For instance [2] proposes a method
called Recombinative Guidance for GP. The method is
based on calculating the performance values for sub-
trees of a GP tree during evolution and then applying
recombination operators so that the subtrees with high
performance are not disturbed. On the other hand
[11] uses a knowledge repository which is expected to
guide the search towards better solutions. The knowl-
edge repository collects code segments from the genetic
population together with some associated information
like fitness, number of occurrences, depth and so on.
[11] proposes a method to calculate a single score for
each segment that would reflect its overall contribu-
tion for the current task. The evolution proceeds by
adding new code segments with high performance to
the knowledge repository and excluding the ones which
are subject to performance loss.

Similar approaches trying to control the recombina-
tion operators could be found in the area of Genetic
Algorithms too, [1, 6, 7].

The attempts presented are usually based on deter-
mining the important building blocks and preventing
them to be disturbed by the recombination operations.
However [8] states that for some functions even if it is
possible to decompose the function into some compo-
nents, the subfunctions could interact. In such a case
it becomes impossible to consider each subfunction in-

dependently, optimize it and then obtain the optimum
by combining the partial solutions.

For this set of problems it is clear that an attempt
based on determining building blocks is not expected
to increase the performance a lot. Therefore our re-
search has focused on analyzing the global information
of well-fit elements which are expected to represent de-
pendencies of subparts in a GP-tree and which could
provide clues to increase the performance of GP for
deceptive problems too.

3 Extracting the Global Information

CONTROL
MODULE

Figure 1: The dual structure proposed.

In order to process the global information, we have
designed a new module called Control Module. Fig-
ure 1 displays the dual structure of this system. The
genetic engine which can be considered as the base
structure, performs the standard genetic search. The
control module as a super structure, keeps an eye on
the search carried out by the genetic engine. It focuses
on the global information of the chromosomes and per-
forms a meta-level learning at certain periods to de-
termine what it is to be good globally. Once the first
learning process takes place, the control module starts
sending feedback to the genetic engine about the con-
sequences of possible crossover operations. Then, the
genetic engine chooses the most appropriate crossover
points by using the feedback it receives.

For this scheme a new representation which would en-
able the control module to process the ’global’ infor-
mation of the chromosomes, is needed. The solution
we propose is to map chromosomes to single points in
R™.

It is this mapping which reflects what is considered
as global to a tree. It is thought that the frequency
information of the elements in a chromosome and how
they are distributed on the tree might form a beneficial
global picture for the structure at hand.

This is a simple formalization about the global orga-
nization of the tree which does not have a heavy com-
putational load. The method we have used is mapping
the terminal and function elements to base vectors and

then using a bottom up construction to obtain a sin-
gle vector for the whole GP-tree. A leaf node is only
mapped to its base vector while the vector for an in-
ternal node is obtained by adding the vectors of its
children plus the base vector corresponding to it.

On the other side, the depth information is reflected in
the vector as a fractional value to make a distinction
with the frequency information.

In general terms, if P(Cy,Cs,...,Cy) is any subpart of
a chromosome, then the vector that would correspond
to P can be obtained using the following formula.

Vp =Veo, +Ve, +...+ Ve, +Vp, ..+ VP, *0.01x depth(P) (1)

For instance, consider the function and terminal sets;
F={+,—,% /}and T = {z}. The base vectors would
be:

e V; =10,0,0,0,1]
e V_ =10,0,0,1,0]
e vV, =100,0,1,0,0]
e V. =10,1,0,0,0].

e V, =1[1,0,0,0,0].

Note that the dimension of the vectors is determined
as the total number of function and terminal elements.

Sl

Figure 2: A sample chromosome.

For the tree in figure 2, the vector construction mech-
anism will be as follows. The base vectors are as spec-
ified above. The three different usages of the termi-
nal element X are labeled as X7, X5, and X3. Since
X1 and X5 have the same depth value, their vectors
will be the same. This vector would be [1.02,0, 0,0, 0].
On the other side, the vector corresponding to Xj
will be [1.01,0,0,0,0] due to the depth value of 1.
According to equation 1, the vector of '+’ will be
[2.04,0,0,0,1.01]. Lastly, the vector corresponding to
'sx" which would be the vector of the whole tree, can
be obtained by using the vectors of '+’ and X3 this
time. Hence, Vi = [3.05,1,0,0,1.01]. Note that, each
dimension of this vector provides information about
the usage of a terminal or a function element. For in-
stance the first dimension is reserved for the terminal

element X. The value in this dimension denotes that
the terminal element is used three times and the sum
of the depths of these three different usages is five. On
the other side the second dimension denotes that 'x’
operation is only used for once as the root node of the
tree.

Note that the constant value that is used to transform
the depth value into a fractional one in equation 1 is
0.01. However if the sum of the depths exceeds 100,
depth and frequency information will interfere with
each other. If this is possible, a smaller constant has
to be used. At least, it should be guaranteed that
the number of such ill formed vectors are kept small
enough that the learning process does not get affected.

Also note that different chromosomes can be mapped
to the same vector. However this is not contradictory
with our assumption since different elements in the
base structure could be similar in terms of the super
structure.

3.1 Using the Global Information

The interaction between the genetic engine and the
global module is as follows. For each chromosome in
the population, the corresponding vector is formed and
sent to the control module together with the fitness
value. The control module collects the vectors and
fitnesses for a certain period of generations, which we
call the learning period. Then the average and the
standard deviation of the fitness values are calculated.

The control module forms the training set using the
elements with fitness values deviating from the aver-
age more than the standard deviation. The ones with
positive deviation are marked as positive examples and
the others as negative. The ”C4.5, Decision Tree Gen-
erator” is used to generate the abstraction over the
test set. Then for each crossover operation to be per-
formed, the genetic engine sends to the control module
three different alternative crossover points. The con-
trol module predicts if the alternative offsprings will be
in the positive class or in the negative class by using
the abstraction made so far. The best alternative is
chosen by the genetic engine and the learning process
is repeated periodically.

Using a certain percentage of the best and the worst
elements could be another method to form the test set.
However it is observed that using standard deviation
provides a flexibility for the control module. Some-
times it is possible for the control module to guide the
genetic search to a local minima. In such a case the
standard deviation decreases a lot and no positive ex-
amples could be found for the training set. In such a

3 Control
! Module

(/7, fitness)
(\, fitness)
(—, fitness)

(1, fitness) (7 titness)

Crossover selected

3 Proposed crossover points

Standart Deviation

Average

Positive Negative

Exa\n:las Ex;wples

Decision Tree ‘

Figure 3: Interaction between the Control Module and the
Genetic search.

situation since nothing could be learnt, crossover be-
comes random again. This makes it more probable to
escape from the local minima since recombination is
not controlled. However determining a percentage of
the examples as positive always, looks like insisting on
the mistake that the control module has made.

4 TESTBED,: Context Free
Grammar Induction

Natural language sentences have been used in order
to form the training set for the CFG-induction prob-
lem. The training set consists of 21 positive examples
and 17 negative examples. The sentences formalize
a subset of English including sentences consisting of
structures like NP,V P and PP. The Noun phrase
(NP) is quite simple and consists of a determiner (D)
followed by a noun (NN) or compound noun. On the
other hand, the verb phrase (V P) can be intransitive,
transitive or ditransitive and the prepositional phrase

(PP) could be attached to VP or NP. The aim is
to induce a CFG that can parse the positive examples
and reject the negative ones. Each chromosome in the
population is a candidate grammar and the details of
this representation can be found in [5].

The problem can be considered as a highly deceptive
one. It is possible to divide a grammar into subparts
like NP, VP or PP, however these subparts do not have
clear borders. Overlapping exists due to the fact that
NP is a part of VP and PP.

80

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Generation Number

Figure 4: Comparison of controlled search and normal run
for the CFG-induction problem. The dashed lines denote
the performance of controlled search. Learning period is
200.

The fitness function used is the standard one. For
grammar G, if S is the set of sentences consisting of
the positive examples that G cannot parse and the
negative examples that G parses, then the fitness of G
is defined as:

F(G) = E SENTENCELENGTH(S;) (2)

s;€s

So the aim is to minimize the fitness function. For
the test data the worst fitness for a grammar could
be 243 which is the sum of the length of all sentences
both in the positive and the negative set. And the best
fitness is certainly zero which can be achieved when a
grammar parses all of the examples in the positive set
and parses none of the ones in the negative set.

The grammar evolved is subject to only one restriction.
The number of right hand side elements in a grammar
could be at most two. The terminal and function sets
areT = {D,N,V,P}and F = {X1, Xy, ..., X19}. Con-
sidering the restriction specified above each element of
the function set could have one or two arguments.

The mapping process described in section 3 is used to
form the vectors for the control module. Since the total
number of elements in the function and the terminal
set is 14, the vectors will be formed in R™.

Best Fitness Value

80

o 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Generation Number

Figure 5: Comparison of controlled search and normal run
for the CFG-induction problem. The dashed lines denote
the performance of controlled search. Learning period is
500.

For the first trial the learning period has been set as
30. The genetic parameters used for the trials are as
follows:

e Population size = 100

e Crossover at function point fraction = 0.1
e Crossover at any point fraction = 0.7

e Reproduction fraction = 0.1

e Mutation fraction = 0.1

e Number of Generations = 5000

Both the controlled search and the straightforward ap-
plication of GP have been run using eight different ran-
dom seeds. Surprisingly it has been observed that the
controlled search performed worse than the straight-
forward application. It seems that the information
sent by the control module to the genetic engine was
misleading and directed the search to a local minima
resulting a performance worse than random crossover.
An increase in the performance had been obtained
with simpler data and with smaller number of func-
tion elements. The details of this initial attempt can
be found in [5]. The main difference with this initial
attempt is the total number of function and terminal
elements used. This total number is 14 for this new
setup. Therefore it is thought that the data collected
with the learning period of 30 might be quite low for
making a reasonable abstraction over vectors with this
dimension. On the other side, we have observed that

the decision trees induced for this case are simple and
contain less information. Therefore it has been decided
to increase the learning period.

Figure 4 presents the comparison with the straight-
forward application of GP when the learning period
is increased to 200. Again the results denote the av-
erage of eight runs with different random seeds. The
performance of the controlled search clearly increased,
compared to the trial with a learning period of 30.
However still it is not the case that controlled search
can outperform the straightforward application.

However the increase in the performance parallel to the
increase in the learning period is encouraging. There-
fore another trial has been been carried out with a
learning period of 500 generations this time . Fig-
ure 5 presents this new trial. This time the average
of twenty different runs are used in order to increase
the liability of the performance increase obtained. As
it can be seen in the figure, the desired performance
increase has been obtained.

5 TESTBED,: N-Parity Problem

The N-parity problem has been selected also in
order to analyze our approach. The aim is to
induce a function consisting of internal operators
AND,OR,NAND and NOR which takes a binary
sequence of of length n and returns true if the number
of ones in the sequence is odd and false otherwise.

The problem is to our interest as it is highly deceptive.
[3] states that the problem quickly becomes more dif-
ficult with increasing order. He also denotes that flip-
ping any bit in the sequence inverts the outcome of the
parity function and notes this as a fact to denote the
hardness of the problem.

The 5-parity problem has been chosen for the test cases
since [3] denotes that no solutions is found by basic GP
for the 5-parity.

The function and the ter-
minal sets are F' = {AND,OR,NAND,NOR} and
T = {X;y, X9, X3, X4, X5}. T represents the binary
input sequence of length five. The number of possible
input binary sequences is 32 for the 5-parity problem.
The fitness function simply adds a penalty of one if
the induced function returns the wrong answer for an
input sequence. Hence, the fitness value may range
between 0 and 32.

The genetic parameters used for the trials are as fol-
lows:

e Population size = 100

e Crossover at function point fraction = 0.1

e Crossover at any point fraction = 0.7
e Reproduction fraction = 0.1
e Mutation fraction = 0.1

e Number of Generations = 20000

14

8
o 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Generation Number

Figure 6: Comparison of controlled search and normal
run for the N-Parity problem. The dashed lines denote the
performance of controlled search. Learning period is 200.

14

8

o 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Generation Number

Figure 7: Comparison of controlled search and normal
run for the N-Parity problem. The dashed lines denote the
performance of controlled search. Learning period is 500.

The first test case has been carried out again using
a learning period of 30. Similarly eight different runs
have been carried out with various random seeds both
for the basic and the controlled GP. The results ob-
tained were consistent with the CFG-induction prob-
lem. Again the controlled search exhibited a worse
performance. Considering the total number of termi-
nal and function set elements which is 9, obtaining a
similar performance is not surprising. Therefore the

second test case has been tried with a period of 200
generations. The results of this test case are presented
in figure 6. Again the results are consistent with the
results obtained for CFG-induction. The controlled
search can compete with the straightforward applica-
tion but still cannot outperform it. A test with a learn-
ing period of 500 generations has been carried out and
the results are presented in figure 7. Again the aver-
age of twenty different runs is used for this learning
period. This period is sufficient for 5-parity problem
too and the performance increase is outstanding.

6 Conclusion and Future Work

Our initial question was, if it could be possible to ex-
tract information during the genetic evolution and use
this information to control the recombination opera-
tions afterwards. Our focus has been on highly de-
ceptive problems, therefore we have tried to extract
information about the global structure of the chromo-
somes. The results obtained in two different domains
provides strong evidence about the success of our ap-
proach.

The critical question about the method proposed is
about the extra processing time required for the con-
trol module. The learning process takes place at cer-
tain time intervals (every 500 generations for the suc-
cessful tests) and could be considered as a constant
increase in the processing time. However the main
overhead depends on the procedure of forming vectors
for the alternative offsprings and determining the class
they belong to. Obviously the algorithm presented to
form the vectors is linear in terms of the total num-
ber of nodes on a GP-tree. The effect of this overhead
on the total processing time is related to the fitness
function used. For problems with non-linear fitness
functions, this overhead could be negligible and the
performance increase becomes more important. CFG-
induction problem is such an example as the fitness
function includes the procedure of parsing the train-
ing examples.

References

[1] Baluja,S. & Davies, S. (1997) Using optimal
dependency-trees for combinatorial optimization:
Learning structure of the search space. In Pro-
ceedings of the 14th International Conference
on Machine Learning (pp. 30-38). Morgan Kauf-
mann.

[2] Hitoshi Iba and Hugo de Garis, Extending Ge-
netic Programming with Recombinative Guidance,

[10]

[11]

In P. Angeline and K. E. Kinnear, Jr., editors,
Advances in Genetic Programming 2, chapter 4.
MIT Press, Cambridge, MA, USA, 1996.

de Jong, Edwin D., Watson, Richard A., Pollack,
Jordan B. Reducing Bloat and Promoting Diver-
sity using Multi-Objective Methods. In Proceed-
ings of the Genetic and Evolutionary Computa-
tion Conference. July 7-11,2001. San Francisco,
California.

Keller, B. and Lutz, R. (1997). Evolving stochas-
tic context-free grammars from examples using a
minimum description length principle. The Work-
shop on Automata, Inductive Grammatical Infer-
ence and Language Acquisition. ICML-97.

Emin Erkan Korkmaz, Goktiirk Ucoluk. Genetic
Programming for Grammar Induction In Proceed-
ings of 2001 Genetic and Evolutionary Computa-
tion Conference Late Breaking Papers, July 9-11,
2001 San Francisco, California.

Miihlenbein, H., & Paab, G. (1996). From recom-
bination of genes to the estimation of distributions
I. Binary Parameters. Parallel Problem Solving
from Nature, PPSN IV,178-187.

Pelikan, M., & Miihlenbein, H.(1999). The bi-
variate marginal distribution algorithm. 7 Ad-
vances in Soft Computing - Engineering Design
and Manufacturing” ,London Springer-Verlag. (pp
521-535)

Pelikan, M., D. E. Goldberg, and E. Cantu-
Paz (2000). Linkage problem, distribution es-
timation, and bayesian networks. Evolutionary
Computation 340.

Simon Lucas, Structuring Chromosomes for
Context-Free Grammar Evolution, Proceedings of
first IEEE International Conference on Evolution-
ary Computation, pp 130-135, June, 1994.

Smith, T.C. and Witten, I.H. (1995) A genetic
algorithm for the induction of natural language
grammars, Proc IJCAI-95 Workshop on New Ap-
proaches to Learning for Natural Language Pro-
cessing, 17-24, Montreal, Canada.

Zannoni,Elena; Reynolds, Robert G. (1997)
Learning to Control the Program Evolution Pro-
cess with Cultural Algorithms Evolutionary Com-
putation, Summer97, Vol. 5 Issue 2, p181.

