
Automatic Reconstruction of Broken 3-D Surface ObjectsG�okt�urk �Uc�oluk _I. Hakk� TorosluDept. of Computer EngineeringMiddle East Technical University, Ankaraucoluk@ceng.metu.edu.trtoroslu@ceng.metu.edu.trAbstractThe problem of reconstruction of broken surface objects embedded in 3-D space is handled.A coordinate independent representation for the crack curves is developed. A new robustmatching algorithm is proposed which serves for �nding matching pieces even when somebrittle pieces are missing. A prototype system having an X based GUI has been developed.This system generates arti�cal wire-frame data of broken pieces (with some noise) for a pot-shaped 3-D object and then recombines it using the proposed algorithms.1 IntroductionThe handled problem appears heavily in �eld archeology where reconstruction of hollow objectsbecomes a tedious and laborious task. It is the problem of jigsaw puzzle assembling of 3-D surfaceswith no texture or color hints provided.Previous work of [1, 2, 3] and the work of Wolfson [4] attack the 2-D problem and pro-pose appropriate matching algorithms. Although Wolfson's algorithm is not the most e�cient(O(n logn + �n)) it is especially well designed to deal with noise. In his work, 2-D objects arerepresented by shape signatures that are strings which are obtained by polygonal approximationof the boundary curve. Freeman [5] describes 2-D shapes by a set of critical points (like discon-tinuities in curvature) and computes features between consecutive critical points. This methodis weak in treating curves that do not possess such points. Ayache and Faugeras [6] attack amore di�cult problem where rotation, translation and scale change is allowed. Their matchingalgorithm is based on �nding correspondence between sides of polygons that approximate the 2-Dshape curves. Another special feature based recognition technique is the one developed by Kalvinet al. [7]. This technique makes use of breakpoints and carry by nature the handicap mentionedfor [5].Works dealing with 3-D also exists. Kishon and Wolfson [8] introduce the arclength, curvatureand torsion as signatures of a 3-D curve but decide not use torsion because its requirement tothe third derivative. The matching problem is attacked as a longest substring search problem intheir work. Kishon, in his work [9] proposes a spline �t which enables the easy incorporation oftorsion as a stable signature. In another work [10], Schwartz and Sharir propose various metrics(like color on the boundaries) and a smoothing operation on the data.There exists real world problems where a 2-D solution is insu�cient (Reconstruction from bro-ken pieces of solid objects is one of them) so a 3-D solid model is inevitable. Furthermore, in manyof those real world problems a perfect match between two subjects is not possible. Environmentalaging e�ects, imperfections in the digitization environment, the accumulation of systematic errorsin numerical operations all contribute to this imperfection. Therefore, a robust, fault tolerant1



partial matching is required. This work proposes such a solution. 1 In our work 3-D surface pieceobjects are represented by their boundary curves. These closed curves are parameterized by theircurvature and torsion scalars which are calculated from the discrete 3-D boundary curve data. Anoise tolerant matching algorithm serves to �nd the best match of two such circular strings evenfor cases where the match is fragmented. By means of a search over all pairings of pieces the best�t is picked and for this pair the pieces are removed from the piece pool and then reinserted as ajoint single piece. Henceforth this iteration is continued until a single piece only remains.The heart of this proposed technique is based on a matching algorithm devised for the repre-sentation of two piece. The algorithm can be schematized as follows:� Construct the internal representation for each 3-D piece making use ofits discrete boundary curve data, namely �i the curvature, and �i thetorsion values (where i is the discretization index over the boundary).Consider [�i; �i] as the feature vector at the point i.� For each pair of the representation:{ Construct a similarity matrix � with elements �ij de�ned as theEuclidean distance between the feature vectors �i and �j where �reside on one piece and � on the other. The indices i and j rangeover all possible discretization points of the two pieces, respectively.{ �ij values which are less then a noise treshold " are considered asmatching points. By processing of the similarity matrix, all match-ing fragments are determined.{ Among sequences of such matching points the longest sequence ofmatching fragments will be determined in a noice tolerant manner.aConsidering the start and end information (the row and columnindices in the similarity matrix) of the fragments the longest nonoverlapping sequence of fragments is determined (this is a non trivialjob, since due to the fault tolerence, a point on a piece can belongto more then one matching fragment, hence it is very possible tohave overlapping fragments)� The best �t is picked on a maximum count of matching point base. Thejoin procedure is carried out and the new created piece is replaced inplace of the joined pieces.aNoise tolerance in the algorithm is introduced in two aspects: (1) introducing a measureof closeness of two feature vectors (as mentioned above), (2) having a control over the countof fragmentation.This work mainly focuses on the matching algorithm part of the above described procedure.The rest of this paper is organized as follows: The mathematical foundation information isintroduced in the next section; section 3 covers the proposed matching algorithm; in section 4 abrief coverage of the prototype system is given; the last section presents some concluding remarksare presented.1An early version of this paper appeared in [11]
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2 Mathematical Representation of the ProblemWe will assume that the object which will be reassembled has no thickness, hence can be repre-sented by a surface in a 3-D Euclidean space. The pieces of a surface structure embedded in a 3-Dspace are surfaces with boundaries that are closed curves of the 3-D space. Since a matching overthese closed curves corresponds to the task of reassembling, a coordinate independent parameter-ization of these curves are very desirable. The fundamental theorem of the local theory of curves(see [12, 13]) reads asGiven di�erentiable functions �(s) > 0 and �(s); s 2 I, there exists a regular parame-terized curve ~r : I! R3 such that s is the arc length, �(s) is the curvature, and �(s) isthe torsion of ~r. Moreover, any other curve ~r0, satisfying the same conditions, di�ersfrom ~r by a rigid motion; that is, there exists an orthogonal linear map 
 of R3, withpositive determinant, and a vector ~c such that ~r0 = 
 � ~r + ~c.What we can conclude from this theorem is exactly what we were looking for:If two di�erent curves which are parameterized by their arc length produce the sametorsion and curvature values then we can conclude that these curves are the same(modulo rotation and translation).Furthermore, the converse is also true. Curvature is de�ned as� = j~r 00jTorsion is de�ned as � = 1�2 [~r 0~r 00~r 000]where the square brackets [� � � ] have the special meaning ofh ~A~B ~Ci � ������Ax Ay AzBx By BzCx Cy Cz ������Furthermore the prime denotes di�erentiation with respect to the arc length s:~r 0 = d~rdsAs known s is de�ned by:s(t) = Z t0 ds = Z t0 pd~r�d~r = Z t0 pdx2 + dy2 + dz2Where t is the parameter of the curve that maps each value in an interval in R into a pointr(t) = (x(t); y(t); z(t)) 2 R3 in such a way that the functions x(t), y(t), z(t) are di�erentiable.Intuitively speaking, the curvature at a point on the curve is the measure of how rapidly thecurve pulls away from the tangent line at that point (so in a close neighborhood of that point wewill have a deviated tangent line).
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Tangent is nothing else than the change in the position vector ~rnamely ~r 0. The magnitude of the change rate of this vector j~r 00jiscalled curvature.Consider at any point on the curve the plane formed to include the vectors ~r 0 and ~r 00 (at thatpoint). This plane is called the osculating plane of that point. Again intuitively speaking, thetorsion at a point on the curve is the measure of how rapidly the curve pulls away form theosculating plate at that point (so in a close neighborhood of that point we will have a deviatedosculating plane).
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∆r’’(s+  s)  Osculating plane is the plane that contains the ~r 0 and ~r 00 vectors.Of course this plane changes from point to point. torsion is thescalar measure of the rate of deviation of this plane (the deviationof the normal of the plane). torsion is de�ned as the change inthe magnitude of this deviation. This is so because calculationreveals that the direction of the change is always in the directionof ~r 00In the discrete case we have instances of r which are labeled with an index i. We assume thatthe labeling is done such that for any two ri and ri+1 instances there exist no provided rk valuethat corresponds to a curve point that is between them. Hence, the index is the discrete form ofthe curve parameter. Di�erentials will be replaced by di�erences with the following de�nitions�xi = xi � xi�1 �yi = yi � yi�1 �yi = yi � yi�1�si =p�x2i +�y2i +�z2iSo for the arc length we have si =Pik=1�si. Once obtained the tuples (~ri; si) the ~r 0; ~r 00; ~r 000 arecalculated for equally spaced (�s) points in the usual manner. To avoid local divergent behaviorsthe derivatives are calculated as an average value in a given radius of neighborhood. Experimen-tation has shown that a �s value which is large enough to accommodate � 20 �si values performsvery well.At each discrete boundary curve point of the piece the �i and �i values form a 2-dimensionalfeature vector [�i; �i] which we will denote as �i (or sometimes as �i). The sequence of featurevectors �i forms the shape signature string. Since the objects dealt with are de�ned to have closedboundary curves, in all algorithms operating on the shape signature strings the assumption thatthese strings round over (i.e. be circular) will be made.
4



3 The Matching Algorithm
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Figure 1: Two matching segments having a missing partSince we are dealing with broken pieces which might have worn o� contours the algorithm shallbe � robust in matching (i.e. fault tolerant),� allow the non-existence of some minor pieces.In Figure 1 two pieces with some missing portion and the a�ect of this on the string representationis illustrated. In the chosen representation, this corresponds to� accepting numerical matches with an " tolerance,� being able to resume the match after a gap of non-matching data.In this way each broken piece boundary is represented by an array of feature vectors. Throughoutthe rest of the paper we will refer to an example of two such feature vector arrays (Figure 2).�ij101 ) 1 2 3 4 5 6 7 8 9 10

�ij151 ) 1 2 3 4 5 6 7 9 108 11 12 13 14 15Figure 2: Example for the feature vector arrays: �ijR1 ; �ijC1 where each feature vector is represented byhatches. The pictorial rule of having a match of �i with �j is that either the count of up inclined hatchesor the count of down inclined hatches matches. (e.g. �4 matches (only-and-only) �8, �13 and �15).The devised algorithm to match two curves represented respectively by the strings �ijR1 and�ijC1 (�i and �i are feature vectors) is as follows: we de�ne a similarity matrix � as�ij =k �i � �j k5



This is nothing else but the Euclidean distance of two feature vectors �i and �j where the rowindex i and the coulumn index j take values over the the �rst and second pieces, respectively.Below, in Figure 3 an example of such a similary matrix is given.
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Figure 3: An example for the � matrix. In this example we consider two pieces, each of which isrepresented by a sequence of feature vectors with 10 and 15 elements, respectively. (�) represent a valuegreater than "; others (�) are values less than "In the following match algorithm a two dimensional array M is �lled out. M will be holdingthe start and end positions of the matching segments. Each such position is represented by twointegers standing for the row and column number of that matrix entry, respectively. So, oneindex takes values as start or end. The second index runs through an enumeration of the foundmatching segments. Mstartp and Mendp hold the start and end position informations of the foundpth segment, respectively.predecessor(i; j) f if i = 1 then k  R else k i� 1if j = 1 then l C else l j � 1return (k; l)ggsuccessor(i; j) ((i mod R) + 1; (j mod C) + 1)match() f S  minfR;Cgp 0for i 1 : : : R dofor j  1 : : : C doif �ij � " ^ �predecessor(i;j) > " thenf (k; l) (i; j)m 0repeat f m m+ 1(k; l) successor(k; l) guntil m � S _ �kl > "p p+ 1Mstartp  (i; j)Mendp  predecessor(k; l) gg 6
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M 1 2 3 4 5 6 7start 3,7 3,12 3,14 5,11 6,5 7,7 9,2end 4,8 6,15 5,1 7,13 7,6 9,9 2,5Figure 4: An example for the � matrix and the M array formed. The match algorithm determines thematching segments and stores the corresponding start and end positions in the � matrix into theM array.Numbers shown in the (�) (bullets) are the segment numbers.Figure 4 shows an example � matrix, corresponding two broken pieces with 15 and 10 featurepoints, respectively, which will be used in this section to explain the matching process. When thematch() procedure is executed for the above example it will detect seven matching segments. Itwill construct anM array with those segments being its members. For example the third segmentwill be represented in this array with its start and end entries in the matrix as Mstart3 = (3; 14)and Mend3 = (5; 1).From now on, denotationally, we will represent segments by a naming (e.g. �, � or �i). Eachsegment, naturally, has four values associated: its start position (a row and a column number)in the matrix � and its end position (a row and a column number). These are represented bythe appropriate combination of an superscript which is either start or end and a subscript that iseither row or column. For example, the segment M3 would be represented as:�3startrow = 3 and �3startcol = 15�3endrow = 5 and �3endcol = 1The next task is to determine, among the segments found, which can follow which. As wasstated, due to the circular structure of the matched curves a special treatment is necessary in�nding the answer to this question. To avoid the halting problem of the algorithm we impose acanonical order onto the concept of following. The canonical order we will impose says that if asegment � is following a segment � then �endrow < �startrowOf course this is `a necessary but not su�cient' criteria that has to be met. (The converse is notalways true: you can have non-following two segments � and � where �endrow < �startrow still holds).To complete the de�nition of the following segments we consider the possible positions of a segment� (which is going to be followed by �) in the � matrix as it is picturized in Figure 5.7
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ECase:I Case:IIFigure 5: Visual representation of the following segments concept: Light shaded areas are forbidden zonesfor the following segment to start in due to the imposed canonical order but it may end in there; darkshades are the regions where an overlapping would occur, so the following segment shall have no pointsin there.Consider the given similarity matrix of Figure 4. An example for Case I is:Segment 1 is followed by Segment 4 and Segment 5Similarly, an example for Case II is:Segment 3 is followed by Segment 5 and Segment 6We de�ne a comparison operator � that will admit two segments as operands and returnTrue if the right operand is a following segment of the left one and False otherwise. Formallythis operator can be de�ned as (we are making use of the mathematical notation for representingclosed/open/semiclosed sets; in our cases set elements are integral values):� � �  f if :wrappedcol(�) thenif �startrow 2 (�endrow; R] thenif �startcol 2 (�endcol ; C] thenf if wrappedcol(�) thenif �endcol =2 [1; �startcol ) then return (FALSE)elseif �endcol =2 (�endcol ; C] then return (FALSE)if wrappedrow(�) thenif �endrow =2 [1; �startrow ) then return (FALSE)elseif �endrow =2 (�endrow; R] then return (FALSE)gelseif �startcol 2 [1; �startcol ) thenf if wrappedrow(�) thenif �endrow =2 [1; �startrow ) _ �endcol =2 [1; �startcol ) then return (FALSE)elseif �endrow =2 (�startrow ; R] _ �endcol =2 (�startcol ; �startcol ) then return (FALSE)if wrappedcol(�) then return (FALSE)8



gelse return (FALSE)else return (FALSE)else if �startrow 2 (�endrow; R] ^ �startcol 2 (�endcol ; �startcol ) thenf if wrappedrow(�) thenif �endrow =2 [1; �startrow ) _ �endcol =2 (�endcol ; �startcol ) then return (FALSE)elseif �endrow =2 (�startrow ; R] _ �endcol =2 (�startcol ; �startcol ) then return (FALSE)if wrappedcol(�) then return (FALSE)gelse return (FALSE)if wrappedrow(�) then return (FALSE)return (TRUE)gwrapped�(�)  �start� > �end� ; �2frow;colgThe � operator will yield always the correct answer for the cases where � is following � or �si following �. On the other hand for segments that have overlapping regions the answer isundetermined. Hence we are able to de�ne a partial order among the set of all found segments,namely the M array.For our example the following relations among the matching segments will be true.M1 �M4; M1 �M5; M1 �M7; M2 �M6; M2 �M7; M3 �M5;M3 �M6; M3 �M7; M4 �M7;After all the match segments are determined, a sequence of these segments should be chosensatisfying the non-overlapping property in order to match and combine the two broken pieces.The join will be performed over those sequences of (matching) segments. Therefore, �rst, weshould �nd all possible segment sequences which are not subsequences of each others. We mightthen prefer the longest one of the possible segment sequences representing the best possible matchbetween two pieces.Our algorithm works as follows: each match segment is processed one by one from 1 to p(number of segments determined by the match procedure between these two pieces), trying togenerate new sequences. Each time a new segment is processed, it is tried against all the previouslyobtained sequences to determine if it is possible to add the new segment to those sequences, or togenerate a new sequence from of segments of the sequence which are followed by the new segment.In the following program n is the global variable which is the counter for the sequences (Sj 's)generated from the match segments (Mi's where i is beween 1 : : : p obtained by the match proce-dure).Sj  �Mi is a special operator which adds the match segment Mi into the sequence Sj .Each sequence Sj holds both the number of match segments (Sj :ln) and the match segments init (Sj :Mjk 's).find all match sequences() is the main procedure which generates all sequences of the matchsegments. Initially it generates a trivial sequence S1 from the �rst segmentM1. After that, all thesegments are considered by the outer for loop, processing all the previously generated sequences(Sj 's) with the new segment Mi in the inner for loop.9



find all match sequences() f n 1Sn  �M1for i 2 : : : p dotn nfor j  1 : : : tn doif (create new sequence(Sj ;Mi)) then add if not exist(Sn; tn)gThe below de�ned create new sequence(Sj;Mi) function creates, if possible, a new sequence fromthe previously generated sequence Sj and a match segment Mi. First, from Sj , all those matchsegments which are followed by Mi are determined. If all the match segments of Sj are followedby Mi, then instead of creating new sequence, Mi is appended to Sj and the procedure returnsFALSE. IfMi is followed ony by the subset of the match segments of the sequence Sj , then usingthose match segments and Mi a new sequence is generated, and the procedure returns TRUE.(Below Mjk is the kth match segment of sequence j)create new sequence(Sj ;Mi) f n n+ 1Sn:ln 0for k  1 : : :Sj :ln doif Sj :Mjk �Mi then f Sn:ln Sn:ln+ 1Sn  � Sj :Mjk gif Sn:ln = Sj :ln then f n n� 1Sj :ln Sj :ln+ 1Sj  �Mireturn (FALSE) gelse f Sn:ln Sn:ln+ 1Sn  � Mireturn (TRUE) ggThe following procedure, add if not exist(Sn; tn), is called only if a new sequence is gener-ated by processing match segment Mi. The match segment Mi might follow the subset of (orexactly the same) match segments in some previously generated sequences. Such a case meansthe newly generated sequence is redundant and it is discarded from the list of sequences. One ofthe previously generated sequence could be a subset of the new sequence and in that case thatpreviously generated sequence becomes redundant, hence must be eliminated. To do this check,the new sequence is only compared with the sequences generated during the processing of thematch segment Mi.add if not exist(Sn; tn) f for i tn+ 1 : : : n� 1 doif Sn � Si then n n� 1else if Si � Sn then f n n� 1Si  Sn gg 10



For our example, after applying the above described procedure, �nally, the following sequenceswould be generated:M1M4M7; M1M5; M2M6; M2M7; M3M5; M3M6; M3M7; M4M7After all the sequences are generated, the longest can be choosen. However, instead of simplysumming up the lengths of the match segments in the sequence, more complicated techniquesmight be used. As an example, we might prefer longer segments to the shorter ones, therefore, wemight use the summation of the square of the lengths of the segments in determining the sequencethat we choose.4 ImplementationAn early version of the system is implemented as a prototype. The GUI is based on X-Motif andfully capable of 3-D view-operations. The system starts by generating a user determined numberof random broken pieces of a rotational surface shape where the rotational cross section function isde�ned by the user. The user has control over the noise introduced on the boundary curve of thebroken pieces which simulates, in a very natural way, worn outs due to ageing e�ects. The systemcontinues by generating widgets of buttons for each broken-piece each of which is marked by a 2-Dview of that broken piece. The user sellects a broken piece by pressing the corresponding button.The system then starts to search the workspace which contains the partially reconstructed object(at the start of the session this space is empty) for a best match with the chosen piece. If such amatch is found the coordinate transformation necessary to `stick' the piece into its found place isautomatically calculated. The piece moves to its place and `updates' the partially reconstructedobject by integrating itself into it: The matched curve portion is removed and the boundary isupdated to include the boundary of the unmatched part of the new piece. Tests reveals that thesystem reacts almost instantly on a SUN-4 system where each piece (about 20 pieces), on average,is represented by a feature vector of 100 elements.The pictures below displays the two snapshots of the system-user interaction window justbefore and after the last move which completes the reconstruction.
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5 ConclusionWe presented a method for matching two closed space curves which are holding discrete featurevalues, in a robust manner. Unlike in other related works the problem of the proper treatment ofmissing parts in a match is put under focus and a complete solution is proposed. The reconstructionof the object is just an exhaustive search over all `pieces' and choosing the best �ttings. The ideais as follows:� Find the best match.� Join the matching portions (perform in parallel the necessary bookkeeping).� Removing the parts of the joint obtain the representation of a single piece.� Add this new obtained piece and remove the two pieces which were joined from the database,hence reducing the count of pieces by one, continue until only one piece is left.Further e�orts can go into the implementation details where a suitable data representation ande�cient retrieval mechanisms will be the main concern.6 AcknowledgementWe would like to thank Mr. Y�lmaz C�eken for the development of the tools used for the generationof test data and the user interface as part of his MS thesis [14].References[1] H. Freeman and L. Garder. A pictorial jigsaw puzzles: The computer solution of a problemin pattern recognition. IEEE Trans. Electron. Comput., EC-13:118{127, 1964.12
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