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Abstract

The problem of reconstruction of broken surface objects embedded in 3-D space is handled.
A coordinate independent representation for the crack curves is developed. A new robust
matching algorithm is proposed which serves for finding matching pieces even when some
brittle pieces are missing. A prototype system having an X based GUI has been developed.
This system generates artifical wire-frame data of broken pieces (with some noise) for a pot-
shaped 3-D object and then recombines it using the proposed algorithms.

1 Introduction

The handled problem appears heavily in field archeology where reconstruction of hollow objects
becomes a tedious and laborious task. It is the problem of jigsaw puzzle assembling of 3-D surfaces
with no texture or color hints provided.

Previous work of [1, 2, 3] and the work of Wolfson [4] attack the 2-D problem and pro-
pose appropriate matching algorithms. Although Wolfson’s algorithm is not the most efficient
(O(nlogn + en)) it is especially well designed to deal with noise. In his work, 2-D objects are
represented by shape signatures that are strings which are obtained by polygonal approximation
of the boundary curve. Freeman [5] describes 2-D shapes by a set of critical points (like discon-
tinuities in curvature) and computes features between consecutive critical points. This method
is weak in treating curves that do not possess such points. Ayache and Faugeras [6] attack a
more difficult problem where rotation, translation and scale change is allowed. Their matching
algorithm is based on finding correspondence between sides of polygons that approximate the 2-D
shape curves. Another special feature based recognition technique is the one developed by Kalvin
et al. [7]. This technique makes use of breakpoints and carry by nature the handicap mentioned
for [5].

Works dealing with 3-D also exists. Kishon and Wolfson [8] introduce the arclength, curvature
and torsion as signatures of a 3-D curve but decide not use torsion because its requirement to
the third derivative. The matching problem is attacked as a longest substring search problem in
their work. Kishon, in his work [9] proposes a spline fit which enables the easy incorporation of
torsion as a stable signature. In another work [10], Schwartz and Sharir propose various metrics
(like color on the boundaries) and a smoothing operation on the data.

There exists real world problems where a 2-D solution is insufficient (Reconstruction from bro-
ken pieces of solid objects is one of them) so a 3-D solid model is inevitable. Furthermore, in many
of those real world problems a perfect match between two subjects is not possible. Environmental
aging effects, imperfections in the digitization environment, the accumulation of systematic errors
in numerical operations all contribute to this imperfection. Therefore, a robust, fault tolerant



partial matching is required. This work proposes such a solution. ' In our work 3-D surface piece
objects are represented by their boundary curves. These closed curves are parameterized by their
curvature and torsion scalars which are calculated from the discrete 3-D boundary curve data. A
noise tolerant matching algorithm serves to find the best match of two such circular strings even
for cases where the match is fragmented. By means of a search over all pairings of pieces the best
fit is picked and for this pair the pieces are removed from the piece pool and then reinserted as a
joint single piece. Henceforth this iteration is continued until a single piece only remains.

The heart of this proposed technique is based on a matching algorithm devised for the repre-
sentation of two piece. The algorithm can be schematized as follows:

e Construct the internal representation for each 3-D piece making use of
its discrete boundary curve data, namely k; the curvature, and 7; the
torsion values (where i is the discretization index over the boundary).
Consider [k;, ;] as the feature vector at the point i.

e For each pair of the representation:

— Construct a similarity matrix A with elements A;; defined as the
Euclidean distance between the feature vectors & and n; where ¢
reside on one piece and i on the other. The indices 7 and j range
over all possible discretization points of the two pieces, respectively.

— A;; values which are less then a noise treshold ¢ are considered as
matching points. By processing of the similarity matrix, all match-
ing fragments are determined.

— Among sequences of such matching points the longest sequence of
matching fragments will be determined in a noice tolerant manner.®
Considering the start and end information (the row and column
indices in the similarity matrix) of the fragments the longest non
overlapping sequence of fragments is determined (this is a non trivial
job, since due to the fault tolerence, a point on a piece can belong
to more then one matching fragment, hence it is very possible to
have overlapping fragments)

e The best fit is picked on a maximum count of matching point base. The
join procedure is carried out and the new created piece is replaced in
place of the joined pieces.

?Noise tolerance in the algorithm is introduced in two aspects: (1) introducing a measure
of closeness of two feature vectors (as mentioned above), (2) having a control over the count
of fragmentation.

This work mainly focuses on the matching algorithm part of the above described procedure.

The rest of this paper is organized as follows: The mathematical foundation information is
introduced in the next section; section 3 covers the proposed matching algorithm; in section 4 a
brief coverage of the prototype system is given; the last section presents some concluding remarks
are presented.

LAn early version of this paper appeared in [11]



2 Mathematical Representation of the Problem

We will assume that the object which will be reassembled has no thickness, hence can be repre-
sented by a surface in a 3-D Euclidean space. The pieces of a surface structure embedded in a 3-D
space are surfaces with boundaries that are closed curves of the 3-D space. Since a matching over
these closed curves corresponds to the task of reassembling, a coordinate independent parameter-
ization of these curves are very desirable. The fundamental theorem of the local theory of curves
(see [12, 13]) reads as

Given differentiable functions k(s) > 0 and 7(s), s € 1, there exists a reqular parame-
terized curve 7 : T — R3 such that s is the arc length, k(s) is the curvature, and 7(s) is
the torsion of ¥. Moreover, any other curve 7', satisfying the same conditions, differs
from 7 by a rigid motion; that is, there exists an orthogonal linear map Q of R3, with
positive determinant, and a vector ¢ such that ¥ = Qo 7+ ¢.

What we can conclude from this theorem is exactly what we were looking for:

If two different curves which are parameterized by their arc length produce the same
torsion and curvature values then we can conclude that these curves are the same
(modulo rotation and translation).

Furthermore, the converse is also true. Curvature is defined as

k= |7

Torsion is defined as
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where the square brackets [- - - | have the special meaning of
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Furthermore the prime denotes differentiation with respect to the arc length s:
L dr
ds

As known s is defined by:
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Where t is the parameter of the curve that maps each value in an interval in R into a point
r(t) = (z(t),y(t), 2(t)) € R3 in such a way that the functions z(¢), y(t), z(t) are differentiable.

Intuitively speaking, the curvature at a point on the curve is the measure of how rapidly the
curve pulls away from the tangent line at that point (so in a close neighborhood of that point we
will have a deviated tangent line).
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Tangent is nothing else than the change in the position vector 7
namely 7'. The magnitude of the change rate of this vector |7"|is
called curvature.

Consider at any point on the curve the plane formed to include the vectors #' and 7" (at that
point). This plane is called the osculating plane of that point. Again intuitively speaking, the
torsion at a point on the curve is the measure of how rapidly the curve pulls away form the
osculating plate at that point (so in a close neighborhood of that point we will have a deviated
osculating plane).
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Osculating plane is the plane that contains the 7' and 7" vectors.
Of course this plane changes from point to point. torsion is the
scalar measure of the rate of deviation of this plane (the deviation
of the normal of the plane). torsion is defined as the change in
the magnitude of this deviation. This is so because calculation
reveals that the direction of the change is always in the direction
of 7"

In the discrete case we have instances of r which are labeled with an index 7. We assume that
the labeling is done such that for any two r; and r;;1 instances there exist no provided ry, value
that corresponds to a curve point that is between them. Hence, the index is the discrete form of
the curve parameter. Differentials will be replaced by differences with the following definitions

Az =2 — Ti Ay = yi — Yi—1 Ay = Yi — Yi—1

As; = /Ax? + Ay? + Az?
So for the arc length we have s; = 22:1 As;. Once obtained the tuples (7, s;) the 7', 7", 7" are
calculated for equally spaced (ds) points in the usual manner. To avoid local divergent behaviors
the derivatives are calculated as an average value in a given radius of neighborhood. Experimen-
tation has shown that a ds value which is large enough to accommodate ~ 20 As; values performs
very well.

At each discrete boundary curve point of the piece the x; and 7; values form a 2-dimensional
feature vector [k;,7;] which we will denote as & (or sometimes as 1;). The sequence of feature
vectors &; forms the shape signature string. Since the objects dealt with are defined to have closed
boundary curves, in all algorithms operating on the shape signature strings the assumption that
these strings round over (i.e. be circular) will be made.



3 The Matching Algorithm
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Figure 1: Two matching segments having a missing part

Since we are dealing with broken pieces which might have worn off contours the algorithm shall
be

e robust in matching (i.e. fault tolerant),
¢ allow the non-existence of some minor pieces.

In Figure 1 two pieces with some missing portion and the affect of this on the string representation
is illustrated. In the chosen representation, this corresponds to

e accepting numerical matches with an ¢ tolerance,
e being able to resume the match after a gap of non-matching data.

In this way each broken piece boundary is represented by an array of feature vectors. Throughout
the rest of the paper we will refer to an example of two such feature vector arrays (Figure 2).

1 2 3 4 5 6 7 8 9 10

&i }0 =
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Figure 2: Example for the feature vector arrays: fi|{{:77i|? where each feature vector is represented by
hatches. The pictorial rule of having a match of & with n; is that either the count of up inclined hatches
or the count of down inclined hatches matches. (e.g. £4 matches (only-and-only) ns, m13 and n15).

The devised algorithm to match two curves represented respectively by the strings &|F and
¢ (& and 1; are feature vectors) is as follows: we define a similarity matrix A as

i

Aij =1 & —nj I



This is nothing else but the Euclidean distance of two feature vectors & and n; where the row
index ¢ and the coulumn index j take values over the the first and second pieces, respectively.
Below, in Figure 3 an example of such a similary matrix is given.
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Figure 3: An example for the A matrix. In this example we consider two pieces, each of which is
represented by a sequence of feature vectors with 10 and 15 elements, respectively. ( X ) represent a value
greater than g; others (®) are values less than e

In the following match algorithm a two dimensional array M is filled out. M will be holding
the start and end positions of the matching segments. Each such position is represented by two
integers standing for the row and column number of that matrix entry, respectively. So, one
index takes values as start or end. The second index runs through an enumeration of the found
matching segments. M3/ and M¢"? hold the start and end position informations of the found

pt? segment, respectively.

predecessor(i, j) < {
ifi=1thenk<+ Relsek+i—1
if j=1then/<+ Celsel+ j—1
return (k,1)}

}

successor(i,j) < (( mod R) + 1,(j mod C) + 1)

match() < {
S < min{R, C}
p+0
fori+ 1...R do
forj«—1...C do
< e N NApredeces: sor(i,j) > € then
{(6D) ()
m <0
repeat { m « m +1
(k,1) < successor(k,l) }
until m> S V Ay > ¢
p<p+1
MG (i)
M5 « predecessor(k,l) }
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12 3 4 5 6 7
start [ 3,7 ] 3,12 | 3,14 | 5,11 | 6,5 | 7,7 | 9,2
end | 48| 6,15 | 51 | 7,13 | 7.6 | 9.9 | 2,5

Figure 4: An example for the A matrix and the M array formed. The match algorithm determines the
matching segments and stores the corresponding start and end positions in the A matrix into the M array.
Numbers shown in the (®) (bullets) are the segment numbers.

Figure 4 shows an example A matrix, corresponding two broken pieces with 15 and 10 feature
points, respectively, which will be used in this section to explain the matching process. When the
match() procedure is executed for the above example it will detect seven matching segments. It
will construct an M array with those segments being its members. For example the third segment
will be represented in this array with its start and end entries in the matrix as M5 = (3,14)
and Mg = (5,1).

From now on, denotationally, we will represent segments by a naming (e.g. a, 3 or «;). Each
segment, naturally, has four values associated: its start position (a row and a column number)
in the matrix A and its end position (a row and a column number). These are represented by
the appropriate combination of an superscript which is either start or end and a subscript that is
either row or column. For example, the segment M3 would be represented as:

start _ start _
agiort =3 and  azli™ =15
end __ end __
QA3 pow = 5 and 3o = 1

The next task is to determine, among the segments found, which can follow which. As was
stated, due to the circular structure of the matched curves a special treatment is necessary in
finding the answer to this question. To avoid the halting problem of the algorithm we impose a
canonical order onto the concept of following. The canonical order we will impose says that if a
segment 3 is following a segment a then

end start
arow < row
Of course this is ‘a necessary but not sufficient’ criteria that has to be met. (The converse is not
. 4 end start H
always true: you can have non-following two segments a and 8 where at7% < 5197 still holds).

To complete the definition of the following segments we consider the possible positions of a segment
a (which is going to be followed by ) in the A matrix as it is picturized in Figure 5.
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Figure 5: Visual representation of the following segments concept: Light shaded areas are forbidden zones
for the following segment to start in due to the imposed canonical order but it may end in there; dark
shades are the regions where an overlapping would occur, so the following segment shall have no points

in there.

Consider the given similarity matrix of Figure 4. An example for CASE 1 is:
Segment @ is followed by Segment @) and Segment @
Similarly, an example for CAsSE 1T is:
Segment e is followed by Segment e and Segment e

We define a comparison operator < that will admit two segments as operands and return
True if the right operand is a following segment of the left one and False otherwise. Formally
this operator can be defined as (we are making use of the mathematical notation for representing
closed/open/semiclosed sets; in our cases set elements are integral values):

a<p <« A
if ~wrapped.oi(a) then
if 220" € (ot R then
if gstamt ¢ (a7, C) then

col
{
if wrapped..i(3) then
if B0 ¢ [1,asl4™") then return (FALSE)
else
if Bt ¢ (as™, C) then return (FALSE)

col eol
if wrapped, . (B) then
if 8222 ¢ [1,a5t%") then return (FALSE)
else
if 82d ¢ (e, R] then return (FALSE)
}
else
if il € [1,a5k™") then

col
{
if wrapped, o (B) then
if gend ¢ [1,a88%7t) v B ¢ [1,a5L97)  then return (FALSE)
else
if A0 ¢ (B0 R VB ¢ (B alli™) then return (FALSE)
if wrapped..i(3) then return (FALSE)



}

else return (FALSE)
else return (FALSE)
else
if Biow " € (arou, Bl A BLi™" € (acsf, alei™) then

{

if wrapped, o (B) then
if Bend ¢ [1,a8tert) v Bent ¢ (it aflt™)  then return (FALSE)

col col » “col

else
if Bive & (Bri', Rl V Bent @ (Bshi™", asli™) then return (FALSE)
if wrapped..i(83) then return (FALSE)

}

else return (FALSE)
if wrapped,ow() then return (FALSE)
return (TRUE)

}

wrappeds(x) — X3 > xE" | sefrow.col}

The < operator will yield always the correct answer for the cases where a is following 3 or
si following a. On the other hand for segments that have overlapping regions the answer is
undetermined. Hence we are able to define a partial order among the set of all found segments,
namely the M array.

For our example the following relations among the matching segments will be true.

M] < M47 M] < M57 M] < M77 M2 < MG: M2 < M7: M3 < M57
M3 < Mg, M3 < M7, My < My,

After all the match segments are determined, a sequence of these segments should be chosen
satisfying the non-overlapping property in order to match and combine the two broken pieces.
The join will be performed over those sequences of (matching) segments. Therefore, first, we
should find all possible segment sequences which are not subsequences of each others. We might
then prefer the longest one of the possible segment sequences representing the best possible match
between two pieces.

Our algorithm works as follows: each match segment is processed one by one from 1 to p
(number of segments determined by the match procedure between these two pieces), trying to
generate new sequences. FEach time a new segment is processed, it is tried against all the previously
obtained sequences to determine if it is possible to add the new segment to those sequences, or to
generate a new sequence from of segments of the sequence which are followed by the new segment.

In the following program n is the global variable which is the counter for the sequences (S;’s)
generated from the match segments (M;’s where i is beween 1...p obtained by the match proce-
dure).

S; +® M, is a special operator which adds the match segment M; into the sequence S;.
Each sequence S; holds both the number of match segments (S;.In) and the match segments in
it (Sj-Mjk7S)-

segments. Initially it generates a trivial sequence S; from the first segment M;. After that, all the
segments are considered by the outer for loop, processing all the previously generated sequences
(S;’s) with the new segment M; in the inner for loop.



n+<1
Sn B M
fori < 2...pdo
tn < n
for j < 1...tn do
if (create_new_sequence(S;, M;)) then add_if_not_exist(Sy,tn)

}

The below defined create_new_sequence(S;, M;) function creates, if possible, a new sequence from
the previously generated sequence S; and a match segment M;. First, from S;, all those match
segments which are followed by M; are determined. If all the match segments of S; are followed
by M;, then instead of creating new sequence, M; is appended to S; and the procedure returns
FALSE. If M, is followed ony by the subset of the match segments of the sequence S;, then using
those match segments and M; a new sequence is generated, and the procedure returns TRUE.
(Below M, is the k™ match segment of sequence j)

create_new_sequence(S;, M;) < {
n<n+1
S,.ln+ 0
for k< 1...S;.in do
if Sj.M]‘k < M; then
{Sn.n« Sp.in+1
Sn «® §;.Mj, }
if S,..ln = S, .In then
{n+<mn-1
Sj.ln — S,In +1
S; «® M;
return (FALSE) }
else
{Sn.in« Syin+1
S, «® M;
return (TRUE) }
}

The following procedure, add_i f_not_exist(S,,tn), is called only if a new sequence is gener-
ated by processing match segment M;. The match segment M; might follow the subset of (or
exactly the same) match segments in some previously generated sequences. Such a case means
the newly generated sequence is redundant and it is discarded from the list of sequences. One of
the previously generated sequence could be a subset of the new sequence and in that case that
previously generated sequence becomes redundant, hence must be eliminated. To do this check,
the new sequence is only compared with the sequences generated during the processing of the
match segment M;.

add_if _not_exist(S,,tn) « {
fori<—tn+1...n—1do
ifS, CS;thenn«+n-1
else if S; C S,, then
{n+mn-1
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For our example, after applying the above described procedure, finally, the following sequences
would be generated:

M. M;M7, MiM;s, MaMg, MMy, M3Ms, M3Mg, MsMy;, M;My

After all the sequences are generated, the longest can be choosen. However, instead of simply
summing up the lengths of the match segments in the sequence, more complicated techniques
might be used. As an example, we might prefer longer segments to the shorter ones, therefore, we
might use the summation of the square of the lengths of the segments in determining the sequence
that we choose.

4 Implementation

An early version of the system is implemented as a prototype. The GUI is based on X-Motif and
fully capable of 3-D view-operations. The system starts by generating a user determined number
of random broken pieces of a rotational surface shape where the rotational cross section function is
defined by the user. The user has control over the noise introduced on the boundary curve of the
broken pieces which simulates, in a very natural way, worn outs due to ageing effects. The system
continues by generating widgets of buttons for each broken-piece each of which is marked by a 2-D
view of that broken piece. The user sellects a broken piece by pressing the corresponding button.
The system then starts to search the workspace which contains the partially reconstructed object
(at the start of the session this space is empty) for a best match with the chosen piece. If such a
match is found the coordinate transformation necessary to ‘stick’ the piece into its found place is
automatically calculated. The piece moves to its place and ‘updates’ the partially reconstructed
object by integrating itself into it: The matched curve portion is removed and the boundary is
updated to include the boundary of the unmatched part of the new piece. Tests reveals that the
system reacts almost instantly on a SUN-4 system where each piece (about 20 pieces), on average,
is represented by a feature vector of 100 elements.

The pictures below displays the two snapshots of the system-user interaction window just
before and after the last move which completes the reconstruction.

% ]
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5 Conclusion

We presented a method for matching two closed space curves which are holding discrete feature
values, in a robust manner. Unlike in other related works the problem of the proper treatment of
missing parts in a match is put under focus and a complete solution is proposed. The reconstruction
of the object is just an exhaustive search over all ‘pieces’ and choosing the best fittings. The idea
is as follows:

e Find the best match.
e Join the matching portions (perform in parallel the necessary bookkeeping).
e Removing the parts of the joint obtain the representation of a single piece.

e Add this new obtained piece and remove the two pieces which were joined from the database,
hence reducing the count of pieces by one, continue until only one piece is left.

Further efforts can go into the implementation details where a suitable data representation and
efficient retrieval mechanisms will be the main concern.
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