A PROPOSAL FOR EXTENSIONS TO REDUCE

```
G. Uçoluk*, A. Hacinlıyan**
Department of Physics, Bơ̆aziçi University
E. Karabudak
Department of Mathematics, Boğaziçi University
```


Informative Abstract:

Three classes of extensions are prooosed for REDUCE: A facility for evaluating arbitrary functions of matrices; a facility for grouping, modifying or restoring the status of various flags in REDUCE; further extensions and modifications for separating terms, coefficients of expressions, concatenation, and noncommuting algebra. These proposals have been implemented on the UNIVAC 1100 REDUCE system . Inclusion of these extensions on all version of REDUCE is suggested because of their usefulness.

REDUCE is probably the most widespread symbolic processing language. The extensions proposed below are designed to increase its flexibility and to speed up many operations normally requiring several steps, particularly in an interactive environment, which is the natural habitat of REDUCE. With a single exception to be noted, all of the proposed extensions are written in the symbolic mode of REDUCE. They should therefore be portable to any. REDUCE system, although they have been implemented on the UNIVAC 1100 REDUCE system.

It is well known that REDUCE does not intrinsically possess facilities for evaluating arbitrary functions of matrices and creating unit matrices of arbitrary dimensions. The latter is already available in the symbolic level of REDUCE but is not accessible to users in the algebraic mode.

By making use of this facility, the following two functions for generating unit matrices are introduced. l) The operator UNIT (N) where

[^0]N is a positive integer or identifier evaluating to a positive integer generates the unit matrix of indicated size.It can be used in matrix expressions.
2) The operator TYPEUNIT (M) where M is anything that evaluates to a square matrix generates the unit matrix of the same dimensionality as M.

Further facilities introduced in connection with matrix operations are the operators DIMR (M) and DIMC (M) where M is anything which evaluates to a matrix. DIMR gives the number or rows, DIMC gives the number of columns in the matrix M.

Introduction of the operator MATFUNC(F,M) to evaluate an arbitrary, Taylor expandable function, F of an identifier evaluating to a square matrix M is proposed. Eigenvalues of M should be available to the system by one of the following mechanisms prior to the execution of MATFUNC.
(a) The eigenvalues may be given to the system by the declaration EIGENVALUE $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3} \ldots \mathrm{~V}_{4}$. Otherwise :
If M is 2×2, MATFUNC uses the quadratic formula to evaluate the eigenvalues. If M is of higher dimensionality and no eigenvalue declaration has been made, the system automatically creates the atoms el,e2,...,eN in which e is the atom of the matrix name. (in the case above Ml, M2,.....). For example, if the second argument of MATFUNC is the 3×3 matrix RøTAT, the eigenvalues are taken to be $R \emptyset T A T 1, R \varnothing T A T 2$, and RØTAT3 in the absence of an explicit declaration.

The result of such a calculation would, in general, depend on the atoms el,e2,..... It is wortwhile to mention that the result must not depend on the eigenvalue, although the eigenvalues are used in the intermediate steps of the evaluation. The mathematical algorithm used by MATFUNC is described in APPENDIX 1.

REDUCE has over 30 flags controlling various aspects of its operation. Each of these flags mustbe turned on or off individually. Certain combinations of these flags freguently need to be manipulated as a group, especially in the interactive mode, to adjust the appearance of output.

It is a tedious task to make these manipulations individually. The following statements are now proposed in order to group flags, their status, and to store or reset their status as a group.

The notation is as follows: Anything in capital letters is directly written. Anything in lower case letters implies that something will be substituted for it. Parentheses imply choice of only one of the several alternatives. Square brackets denote an optional feature. Curly brackets imply choice of at least one of the several alternatives. All commas are cptional. l-list stands for any list of labels introduced by a LABEL statement
in the id position. f-list stands for any list of flags. stlist stands for a list of identifiers introduced via a STATE or $S T \emptyset R E$ statement. Backus normal forms of all the statements are given in Appendix IJ. All statements must terminate either with $\$$ or $;$ in conformity with standard REDUCE syntax. If $\$$ is used as terminator, printing of irformation concerning the execution of that statement is suppressed. Such suppressions can be made permanent by turning off a newly introduced flag, FLGMSG. If; is used as terminator, the flag status information will be given if FLGMSG is ON.
The LABEL statement:

$$
\text { LABEL id: }\left(\begin{array}{c}
\{1-1 i s i \\
\text {-1isi } \\
A L L
\end{array}\right) \quad\left[E \times C E P T \quad\left\{\begin{array}{c}
1-1 i s i \\
f-1 i s i
\end{array}\right\}\right]
$$

will give id as a label to the list of flags in the parentheses excluding any which may appear optionally in the EXCEPT clause. This group of flags can be collectively referred to with id as label until another group is assigned to the id, or the label is extended or modified.

The STøRE statement:

$$
\text { STQRE [id } \quad:]\binom{\left\{\begin{array}{l}
1-1 i s i \\
f-1 i s i
\end{array}\right\}}{A L L}\left[E \times C E P T\left[\begin{array}{l}
1-1 ;: 1 \\
1-1 i s i
\end{array}\right]\right]
$$

will store the current status of all flags in its operand into the identifier id if it is given. Otherwise this information is stored into a temporary storage.

The STATE statement
will store into id the indicated states of the inaicated flags without actually modifying them. The 0 N clause immediately following: may be omitted.

This statement will restore the status of the indicated flags to that which was last assigned via a STATE or STØRE statement. An error message is generated, if no value has been assigned to any of its active operands before the execution of RESTøRE. Values for active operands other than those in a st-list are obtained from the temporary storage mentioned in connection with the STØRE statement.
The IDLE statement

$$
\left.\operatorname{IDLE}\binom{\left.\left[\begin{array}{c}
1-1 i s i \\
1-1 i s i
\end{array}\right]\right)[E X C E P T}{A L L}\left[\begin{array}{l}
1-1 i s i \\
1.1 i s i
\end{array}\right]\right]
$$

will set its active operands into their system default values. The STATUS statement
will print out the status of its active operands.
It is hoped that these statements will greatly enhance flag manipulation in REDUCE.

The implementation of the following extensions is also proposed. 1) GLUE, a n-ary concatenation operator of the form

```
GLUE ( al, a2,... an)
```

where
a1, a2.... an are identifiers which alone or after concatenation may evaluate to other identifiers. GLUE will concatenate the latest value the operands have evaluated themselves into. If. this combination itself evaluates into another expression, that value will be returned .
2) SEPARATE, an operator to separate an expression relative to a binary operator, of the form
where S is an expression which is to be separated into terms with respect to the binary operator op. ARR is an identifier which becomes an array, its 0 element containing the number of terms to which S has been separated, its further elements containing successive terms into which S has been separated from left to right.
3) ARG, to return individual arguments of an prefix operator, of the form ARG (pop, n). It returns the $n^{\text {th }}$ argument of the prefix operator pop.
4) Another operator NAME (argument) where the argument must evaluate to a prefix operator returns the name of this operator.
5) In REDUCE, a built in function CøEFF is available for extracting the coefficients of a polynomial. CøEFF takes three arguments (e, v, name). e is the polynomial, v is a kernel. Coefficients of its powers in e are to be separated by CØEFF. name is an identifier. If it is an array, its $i^{\text {th }}$ element contains the coefficient of v^{i} in e. If it is a non-array identifier, new atoms namel , name 2 , namei are created namei contains the coefficient of v^{i}.
In many problems, the highest power of v in e may not be known in advance and one may still wish to place the coefficients in an array. The operator $\operatorname{K\emptyset EFF}(e, v, ~ n a m e) ~ i s ~ p r o-~$ posed exactly for this purpose. The identifier name is automatically generated as an array of the proper dimensionality.
6) $N \varnothing N C \varnothing M M U T E$ and $C \varnothing M M U T E$ declarations are proposed to implement noncommuting algebra.
The former

$$
N \varnothing N C \varnothing M M \cup T E \quad v_{1}, v_{2}, \cdots, v_{n}
$$

where $V_{1}, V_{2} \ldots V_{n}$ are variables, declares these variables to be noncommuting. This declaration is cancelled by the declaration

$$
C \varnothing M M \cup T E \quad v_{1}, v_{2}, \cdots, v_{k}
$$

Variables that are declared to be noncommuting are placed in a special set. Any variable in this set is treated as noncommuting with all other variables in the set. For example, if one declares $N \not \subset N C \varnothing M M U T E A, B, A$ and B do not commute with each other Afurther declaration NøNCøNUTE C,D will now cause D to be noncommutative with A, B and C, A to be noncommutative with B, C and D.
7) RøøT, to calculate the numerical approximations to roots of a polynomial. It has the form RøøT ($\mathrm{P}, \mathrm{Vl}, \mathrm{ARR}$) where P is a polynomial of the variable Vl with complex coefficients which must evaluate to complex numerical expressions at the time of the call to $R \varnothing \varnothing \mathrm{~T}$. ARR will become an array containing the roots of P .

Since LISP is not suitable for numerical work, interfacing to a FøRTRAN, or PLA routine is needed. Such an interfacing will necessarily involve Operating System facilities such as checkpoint/ restart,interrupt, priviledged instruction, supervisor call dynamic runstream modification and return. All modern Operating systems contain such facilities. However, the precise form of these facilities and their availability to LISP and FøRTRAN (or PL/l) will differ from computer to computer. Hence, the details of implementation will be different for every system. In spite of this difficulty, the availability of this facility, or a more general facility enabling interfacing between REDUCE and a FøRTRAN program, is extremely useful, since it will enable blending of symbolic and numerical compuatation.
The implementation of the operator for the UNIVAC 1100 system is based on the checkpoint/restart feature and the CSF command enabling execution of certain EXEC-8 Job Control Commands in UNIVAC REDUCE. The coefficients of the polynomial are written in $F \emptyset$ RTRAN compatible form into a file, REDUCE exits to the supervisor which then calls a $F \emptyset$ RTRAN routine to evaluate the roots by a CERN library routine numerically. Control is then returned to REDUCE with the array $A R R$ containing the numerical values of the roots.

Since similar features also exist in other REDUCE systems, a similiar implementation should be feasible in other systems. An illustrative example is given in Appendix III. Further illustrative examples and source codes can be obtained from the authors upon written request.
The authors would like to express their gratitude to Prof. J.A. Campbell for his constant encouragement and valuable guidance during the progress of this work. Partial support from the Turkish Scientific and Technical Research Council is also acknowledged.

The algorithm used in MATFUNC is the following.
Let F be any Taylor expandable function of a nxn matrix M, of the form

$$
\begin{equation*}
F(M)=a_{0} I+a_{1} M+a_{2} M^{2}+\cdots+a_{k} M^{k}+\cdots \tag{1}
\end{equation*}
$$

M satisfies its own characteristic equation, so that $p^{n}(M)=0$ where p^{n} is a $n^{\text {th }}$ degree polynomial. Hence we can write

$$
\begin{equation*}
M^{n}=c_{0}+c_{1} M+c_{2} M^{2}+\cdots+c_{n-1} M^{n-1} \tag{2}
\end{equation*}
$$

and using this relation repeatedly, all powers of M^{k} with $k \geqslant n$ can be expressed in terms of $M^{k}, k<n$. Hence, without loss of generality, we may truncate (1) as

$$
\begin{equation*}
F(M)=b_{0} I+b_{1} M+b_{2} M^{2}+\cdots+b_{k-1} M^{k-1} \tag{3}
\end{equation*}
$$

Eq(3) is satisfied by the eigenvalues of the matrix, $\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{\mathbf{2}}, \cdots, \boldsymbol{\lambda}_{\mathbf{n}}$ Hence, if there is no degeneracy, we have the following system of n equations to determine the n coefficient $b_{0}, b_{1} \ldots b_{n-1}$.

$$
\begin{equation*}
F\left(\lambda_{k}\right)=b_{0}+b_{1} \lambda_{k}+b_{2} \lambda_{k}^{2}+\cdots+b_{n-1} \lambda_{k}^{n-1} \quad k=1,2, \cdots, n \tag{4}
\end{equation*}
$$

This gives for the unknown coefficients the following formula

$$
\left[\begin{array}{c}
b_{0} \tag{5}\\
b_{1} \\
\vdots \\
b_{n-1}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
\lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \\
\lambda_{1}^{2} & \lambda_{2}^{2} & \cdots & \lambda_{n}^{2} \\
\vdots & \vdots & & \vdots \\
\lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots & \lambda_{n}^{n-1}
\end{array}\right]^{-1}=\left[\begin{array}{c}
F\left(\lambda_{1}\right) \\
F\left(\lambda_{2}\right) \\
\vdots \\
F\left(\lambda_{n}\right)
\end{array}\right]
$$

If M is degenerate and hence has only $k<n$ independent eigenvalues, the above procedure must be slightly modified. It can be shown that M now satisfies a polynomial equation of degree k, and hence all powers of M greater than or equal to k may be reduced. Thus F(M) may be written as

$$
\begin{equation*}
F(M)=b_{0} 1+b_{1} M+b_{2} M^{2}+\cdots+b_{n-1} M^{n-1} \tag{6}
\end{equation*}
$$

and the k independent eigenvalues furnish k equations for determining $b_{o}, b_{1} \ldots b_{k-1}$ and hence $F(M)$.

| BACKUS | NORMAL | FORM |
| :---: | :---: | :---: | :---: |
| DEFINITIONS | 0 F | |


```
<sdec list> ::= <lf list> | <lf list> <on/off list> | <on/off list>
<on/Off list> ::= ON <sdec list> | OFF <sdec list>
<lf list> : := <l-id> <sep> <lf list> | <f-id> <sep> <lf list> | <l-id> | <f-id>
<l-id> ::=<id>
<f-id> ::= <flag>
<s-id> ::=<id>
<st-id> ::=<id>
<sep> ::= 1,
<tm> ::= ; | &
<alf list> ::= ALI <lf list>
<alfst list> ::= <s-id> | <s-id> <sep> <alfst list> | <alf list> | <st-id> |
                                    <st-list> <sep> <alfst list>
<state statement> ::= STATE <s-id> : <sdec list> <tm>
<common statement tail> ::= <alf list> <tm> | <alf list> EXCEPT <lf list> <tm>
<label statement> ::= LABEL <l-id> : <common statement tail>
<idle statement> ::= IDLE <common statement tail>
<store statement> ::= STORE <st-id> : <common statement tail> |
<status statement> ::= STATUS <common sta.tement tail>
<restore statement> ::= RESTORE <alfst list> <tm> |
                                    RESTORE <alfst list> EXCEPT <lf list> <tm>
```


APPENDIX II

```
\(\triangle B O G A Z I E I * O U R R E D U C E \cdot R E Q U C E F F I\) BOGAZICI REDUCEXTEND.
* MATFUNC EXAMPLE:
MATRIX M:
MOR = MLL \(\left.X, Y(1,0, O),(0, \operatorname{COS} X, S I N X),\left(0,-S_{I N} X, \operatorname{COS} X\right)\right) \$\)
```



```
MAT(1,1) \(:=0\)
\(\operatorname{MAT}(1,2):=0\)
MAT(1,3) \(:=0\)
\(\operatorname{MAT}(2,1):=0\)
MAT \((2,2):=0\)
\(\operatorname{MAT}(2,3):=x\)
\(\operatorname{MAT}^{T}(3,1):=0\)
\(\operatorname{MAT}(3,2):=-x\)
\(\operatorname{MAT}(3,3):=0\)
XEXAMPLES OF DIMR,DIMC,UNIT, TYPEUNIT ;
\({ }^{3}\) DIMC M :
\(3 N \mathrm{UT} 2\) :
\(\operatorname{MAT}(1,1):=1\)
\(\operatorname{MAT}(1,2):=0\)
\(\operatorname{MAT}^{T}(2,1):=0\)
\(\operatorname{MAT}(2,2):=1\)
*A SHORT STATEMENT WHICH CALCULATES THE
```



```
\(C H R P O L:=\left(E^{(2 * X * I)} * L A M D A^{2}-E^{(2 * X * I)} * L A M D A-E^{(X * I)} * L A M D A^{3}+\right.\)
    \(E^{(X * I)} * L A M D_{A}^{2}-E^{(X * I)} * L A M D_{A}+\)
    \(\left.E^{(X * I)}+\operatorname{LAMDA}^{2}-\operatorname{LAMDA}\right) / E^{(X * I)}\)
```

```
* LET US TAKE ANY ARBITRARY TAYLOR
    EXPANDARLLEFUNCTION :F OF A GENERAL
    MATRIXM(2,2) :
l
MAT(1.1):= (A(1,1)*F(E1) - A(1.1)*F(E2) - F(E1)*E2 + F(E2)*Ej)/(E1 - E2)
MAT(1,2) := (A(1,2)*(F(E1) - F(E2)))/(E1 - E2)
MAT(2,1) := (A(2,1)*(F(E1) - F(E2)))/(E1 - E2)
```



```
$LET US TAKE FASSUME THAT FITS AN TAYLOR
```



```
OPERATOR F D
```



```
*** MMSECLARED MATRIX
MAT(1,1):= (F(3)*X+2*F(3)-F((-2))*X+3*F((-2)))/5
MAT(1.2):= (-F(3)*X + 3*F(3) +F((-2))*X-3*F(1-2)))/5
MAT(2,1):= (F(3)*X + 2*F(3)-F((-2))*X-2*F((-2)))/5
MAT(2.2):= (-F(3)*X+3*F(3)+F((-2))*X+2*F(1-2)))/5
*EXAMPLES FOR SEPARATE,GLUE,ARGUMENT,NAM;
OPERATOR ANY : ANY(A1,AL,A3,A4) ;
S: := ANY(A1:A2,AB,A4)
ARM i\overline{\Xi})}\mathrm{ ANOTHERTHING
ANYGUMENT(S.2) ;
ANOTHERTHING
**LET US SEPARATE THE ABOVE CALCULATED
```



```
N:= &
% NOR ABOVE CONTAINS THE NIMBER OF TERMS ; ; ;
HORSE(1):= E (X*I)}*\mp@subsup{L}{\mathrm{ LAMMA }}{
HORSE(2) := - E (X*I)}*\mathrm{ LAMDA
HORSE(3):= - LAMDA3
HORSE(4):= LAMDA 
HORSE(5):= - LAMDA
HORSE(6):= 1
HORSE(7):= LAMDAD}/\mp@subsup{E}{}{(X*I)
HORSE(8): (䘖 (FROLAMDA)/E(X*I)
```



```
OONALDDBX\overline{N}AALD,2);
ANOTHERTHING
```

```
* AN EXAMPLE FOR NONCOMMUTE ;
```



```
x12}+x1*x2-3*x1*x3+x\mp@subsup{2}{}{2}-x2*x3+x\mp@subsup{3}{}{2
* NOW EXAMPLES FOR FLAGG FACILITY STATEMENTS.
GCD IS OFF
MCD IS ON
ON GCD,DIV ; OFF NAT ;
ON GCD,DIV OFF NAT
OIV IS OFF
*WE MAY REFERE TO A GROUP OF FLAGS BY ;
YABEL OESY GOTHER ONE GCDDIV,FLOAT:
ZABELHERRCKK : ALL EXCEPT DESY ,FORT:
DIVTUS DENS
GEO IS 2FF
*NOW ANOTHER STATEMENT : STATE ;
*SOME ONE CAN SAVE THE CURRENT STATUS
OF ANY GROUN OF FLAGS BY
STORE LIST :DESY ;
LOAT JS OFF AS OFF
GCD STORED AS OFF
*IN THE ABOVE STATEMENT THE TEMPORARY
LET US HAVE A WARRMANENT STÓRAGE :
STORE QUCK DESY EXCERT GCD :
FLOAT STOREE AS OFF, HOLDING CURRENCIES:
OIV AS ON
FLOAT AS OFF
*WE MAY RESTORE ALL THE ABOVE STORED
RESTORE DUCK :
DIV RESTORED AS ON
KESAOREESIGREEXASPOFEIV :
MCD RESTORED AS OFF
GCBARESITQREREAS ONON
MTHE INFORMATIVE PRINTING CAN BE SUPRESSED:
QUIT:
ENO OF LISP
```


[^0]: *Part of this work to be submitted to the Department of finysics in partial fulfillment of the requirements of a MS.C Degree
 **Supported in part by the Turkish Scientific and Technical Research Council (TBTAK)

