
A PROPOSAL FOR EXTENSIONS TO REDUCE

G. Uqoluk*, A. Haclnllyan**
Departmen% of Physics, Bo~aziqi University
E. Karabudak
Department of Mathematics, Bo~aziqi University

Informative Abstract:

Three classes of extensions are proposed for REDUCE: A facility

for evaluating arbitrary functions of matrices; a facility for

grouping, modifying or restoring the status of various flags in

REDUCE; further extensions and modifications for separating terms,

coefficients of expressions, concatenation, and noncommuting al-

gebra. These proposals have been implemented on the UNIVAC 1100

REDUCE system . Inclusion of these extensions on all version of

REDUCE is suggested because of their usefulness.

REDUCE is probably the most widespread symbolic processing lan-

guage. The extensions proposed below are designed to increase its

flexibility and to speed up many operations normally requiring

several step% particularly in an interactive environment, which is

the natural habitat of REDUCE. With a single exception to be noted,

all of the proposed extensions are written in the symbolic mode of

REDUCE. They should therefore be portable to any. REDUCE system,

although they have been implemented on the UNIVAC ii00 REDUCE system.

It is well known that REDUCE does not intrinsically possess facili-

ties for evaluating arbitrary functions of matrices and creating

unit matrices of arbitrary dimensions. The latter is already avail-

able in the symbolic level of REDUCE but is not accessible to users

in the algebraic mode.

By making use of this facility, the following two functions for gene-

rating unit matrices are introduced, i) The operator UNIT (N) where

*Part of this work to be submitted to the Department of Physics in
partial fulfillment of the requirements of a MS.C Degree

**Supported in part by the Turkish Scientific and Technical Research
Council (TBTAK)

N is a positive integer or identifier evaluating to a positive

integer generates the unit matrix of indicated size.lt can be

used in matrix expressions.

2)The operator TYPEUNIT (M) where M is anything that evaluates

to a square matrix generates the unit matrix of the same dimensi-

onality as M.

Further facilities introduced in connection with matrix operations

are the operators DIMR (M) and DIMC (M) where M is anything which

evaluates to a matrix. DIMR gives the number or rows, DIMC gives

the number of columns in the matrix M.

Introduction of the operator ~TFUNC(F,M) to evaluate an arbitrary,

Taylor expandable function, F of an identifier evaluating to a

square matrix M is proposed. Eigenvalues of M should be available

to the system by one of the following ~nechani~n$ prior to the exe-

cution of MATFUNC.

(a) The eigenvalues may be given to the system by the declaration

EIGENVALUE Vi,V2,V3.. V 4. Otherwise :

If M is 2x2, MATFUNC uses the quadratic formula to evaluate the

eigenvalues. If M is of higher dimensionality and no eigenvalue

declaration has been made, the system automatically creates the

atoms el,e2,...,eN in which e is the atom of the matrix name.

(in the case above M1, M2,). For example, if the second argument

of MATFUNC is the 3x3 matrix R~TAT,the eigenvalues are taken to be

R~TATi, R~TAT2~ and R~TAT3 in the absence of an explicit declaration.

The result of such a calculation would, in general ~, depend on

the atoms el,e2, It is wortwhile to mention that the result

must not depend on the eigenvalue, although the eigenvalues are

used in the intermediate steps of the evaluation. The mathematical

algorithm used by MATFUNC is described in APPENDIX I.

REDUCE has over 30 flags controlling various aspects of its opera-

tion. Each of these flags must be turned on or off individually.

Certain combinations of these flags frequently need to be manipulated

as a group, especially in the interactive mode, to adjust the appear-

ance of output.

It is a tedious task to make these manipulations individually.

The following statements are now proposed in order to group

flagss their status, and to store or reset their status as a

group.

The notation is as follows: Anything in capital letters is

directly written. Anything in lower case letters implies that

something will be substituted for it. Parentheses imply choice

of only one of the several alternatives. Square brackets denote

an optional feature. Curly brackets imply choice of at least one

of the several alternatives. All commas are optional, l-list

stands for any list of labels introduced by a LABEL statement

in the id Position. f-list stands for any list of flags, st-

list stands for a list of identifiers introduced via a STATE

or STARE statement. Backus normal forms of all the statements

are given in Appendix I]. All statements must terminate either

with ~ or; in conformity with standard REDUCE syntax. If ~ is

used as terminator, printing of information concerning the

execution of that statement is suppressed. Such suppressions

can be made permanent by turning off a newly introduced flag,

FLGMSG. If; is used as terminator, the flag status information

will be given if FLGMSG is ON.

The LABEL statement:

L A B E L i,J :

ALL /

will give id as a label to the list of flags in the parentheses

excluding any which may appear optionally in the EXCEPT clause.

This group of flags can be collectively referred to with id

as label until another group is assigned to the id, or the

label is extended or modified.

The ST@RE statement:

t I "l 1 STQRE [,4 ~ k U - l l E X C E P T l i ,

\AL

will store the current status of all flags in its operand into

the identifier id if it is given. Otherwise this information

is stored into a temporary storage.

The STATE statement

S T A T E ia
f -I is I 1 .

will store into id the indicated states of th~ indicated flags

without actually modifying them. The ON clause immediately fol-

lowing: may be omitted.

The RESTORE statement is

/ ' " ' " I ' "
R E S T O R E ~l' l lsU E X C E P T lis

A L L

This statement will restore the status of the indicated flags

to that which was last assigned via a STATE or STORE statement.

An error message is generated, if no value has been assigned to

any of its active operands before the execution of RESTORE.

Va]ues for active operands other than those in a st-list are

obtained from the temporary storage mentioned in connection

with the ST~RE statement.

The IDLE statement

I - ' " l l
, o ~ tL,.,,,, q [E X C E P T Ill

\ ALL /

will set its active operands into their system default values.

The STATUS statement

,_,,. I-,,.ll
will print out the status of its active oDerands.

It is hoped that these statements will greatly enhance flag

manipulation in REDUCE.

The implementation of the following extensions is also proposed.

i) GLUE, a n-ary concatenation operator of the form

GLUE (al, a2 an)

where

al, a2 an are identifiers which alone or after concatenation

may evaluate to other identifiers. GLUE will concatenate the latest

value the operands have evaluated themselves into. If. this combi-

nation itself evaluates into another expression, that value will

be returned

2) SEPARATE, an operator to separate an expression relative to

a binary operator, of the form

SEPARATE (S,op, ARR)

where S is an expression which is to be separated into terms

with respect to the binary operator op. ARR is an identifier

which becomes an array, its 0 element containing the number

of terms to which S has been separated, its further elements

containing successive terms into which S has been separated

from left to right.

3) ARG, to return individual arguments of an prefix operator,
th

of the form ARG(pop,n). It returns the n argument of the

prefix operator pop.

4) Another operator NAME (argument) where the argument must

evaluate to a prefix operator returns the name of this o-

perator.

5) In REDUCE, a built in function C~EFF is available for ex-

tracting the coefficients of a polynomial. C@EFF takes three

arguments (e, v, name), e is the polynomial, v is a kernel.

Coefficients of its powers in e are to be separated by C~EFF.
.th

name is an identifier. If it is an array, its i element
i

contains the coefficient of v in e. If it is a non-array

identifier, new atoms namel , name2 [namei are created
1

namei contains the coefficient of v

In many problems, the highest power of v in e may not be

known in advance and one may still wish to place the coeffi-

cients in an array. The operator K~EFF (e, v, name) is pro-

posed exactly for this purpose. The identifier name is auto-

matically generated as an array of the proper dimensionality.

6) N~NC~MMUTE and C~MMUTE declaratioDs are proposed to implement

noncommuting algebra.

The former

N ~ N C ~ M M U T E ~ , ~ , • - • , ~

where Vl,V 2 V n are variables, declares these variables to be

noncommuting. This declaration is cancelled by the declaration

C C M M U T E ~ , ~ , - . . , v k

Variab]es that are declared to be noncommuting are placed in

a special set. Any variable in this set is treated as noncom-

muting with all other variables in the set. For example, if one

declares N@NC~UTE A,B , A and B do not commute with each

other~further declaration N~NC~t,~.IUTE C,D will now cause D to

be noncommutative with A,B and C, A to be noncommutative with

B,C and D.

7) R@@T, to calculate the numerical approximations to roots of a

polynomial. It has the form R@@T (P, Vi, ARR) where P is a

polynomial of the variable Vl with complex coefficients which

must evaluate to complex numerical expressions at the time of

the call to R@~T. ARR will become an array containing the roots

of P.

Since LISP is not suitable for numerical work, interfacing to

a FORTRAN, or ~ routine is needed. Such an interfacing will

necessarily involve Operating System facilities such as checkpoint/

restart,interrupt, priviledged instruction, supervisor call

dynamic runstream modification and return. All modern Operating

systems contain such facilities. However, the precise form of these

facilities and their availability to LISP and F~RTRAN (or PL/I)

will differ from computer to computer. Hence, the details of

implementation will be different for every system. In spite

of this difficulty, the availability of this facility, or a more

general facility enabling interfacing between REDUCE and a

F~RTRAN program, is extremely useful, since it will enable blending

of symbolic and numerical compuatation.

The implementation of the operator for the UNIVAC ii00 system

is based on the checkpoint/restart feature and the CSF command

enabling execution of certain EXEC-8 Job Control Commands in

UNIVAC REDUCE. The coefficients of the polynomial are written

in F~RTRAN compatible form into a file, REDUCE exits to the

supervisor which then calls a F@RTRAN routine to evaluate the roots

by a CERN library routine numerically. Control is then returned

to REDUCE with the array ARR containing the numerical values of

the roots.

Since similar features also exist in other REDUCE systems, a

similiar implementation should be feasible in other systems.

An illustrative example is given in Appendix III. Further illus-

trative examples and source codes can be obtained from the authors

upon written request.

The authors would like to express their gratitude to Prof. J.A.

Campbell for his constant encouragement and valuable guidance

during the progress of this work. Partial support from the Turkish

Scientific and Technical Research Council is also acknowledged.

A P P E N D I X I

The algorithm Used in MATFUNC is the following.

Let F be any Taylor expandable function of a nxn matrix M,

of the form

F (M) : aol + a i M ÷ a 2 M 2 + . - - * a k M k ÷ . - • (1)
M satisfies its own characteristic equation, so that pn (M) = 0

where pn is a n th degree polynomial. Hence we can write

= % M 2 M "-1 M n ~ * c|M ÷ ÷ " • " + C n _ 1
(2)

and using this relation repeatedly, all powers of M k with k) n

can be expressed in terms of Mklk (n. Hence, without loss of

generality, we may truncate (i) as

F(M) = % 1 . biM • ~M2....* b M k'1
k-1 (3)

Eq(3) is satisfied by the eigenvalues of the matrix, ~i,~2, ,~n

Hence, if there is no degeneracy, we have the following system

of n equations to determine the n coefficient bo, bl...bn_l.

F(X k) % b,X k b 2x2k* " ~ " = + ÷ " ' ' ÷ bn-1 k k.1,2, , . (4)

This gives for the unknown coefficients the following formula
°

%
51

I

°

1 1 "" 1

~i ~ 2 "" ~n
2

= ~1 ~ 2 - - '~n

.-1 I -I
9~1 -- ,

-1 [F(X.)I
iF(h) I

(5)

If M is degenerate and hence has only k (n independent eigenvalues,

the above procedure must be slightly modified. It can be shown

that M now satisfies a polynomial equation of degree k, and hence

all powers of M greater than or equal to k may be reduced. Thus

F(M) may be written as

= * • • • b M "'! F (M) %1 + b i M b 2 M 2 + + .-I

(6)

and the k independent eigenvalues furnish k equations for determining

b o, b I bk_ 1 and hence F(M).

i0

A P P E N D I X I I

B A C K U S N O R M A L FORM

D E F I N I T I O N S OF

E X T E N S I ONS TO R E D U C E

FOR FLAG H A N D L I NGS

<sdec list> ::= <If list> I <lf list> don/off list> I don/off list>

<on/off list> ::= ON <sdec list> I OFF <sdec list>

<If list> : := <l-id> <sep> <if list> I <f--id> <sep> <if list> J <l-id> I <f-id>

<l-id> ::=did>

<f-id> ::= <flag>

<s-id> : := did>

<st-id> : :=did>

<sep> : : = I ,

<tm> ::= ; I

<alf list> ::= ALL <if list>

<a.lfst list> ::= <s-id> I <s-id> <sep> <alfst list> I <all list> I <st-id> I
<st-list> <sep> <alfst list>

<state statement> ::= STATE <s-id> : <sdec list> <tm>

<common statement tail> ::= <a.lf list> <tm> I <all list> EXCEPT <If list> <tm,

<label statementm ::= LABEL <l-id> : <common statement tail>

<idle statement> : := IDLE <common statement tail>

<store statement> ::= STORE <st-id> : <common statement tail> I
STORE <common statement tail>

<status statement> ::= STATUS <common statement tail>

<restore statement> ::= RESTORE <alfst list> <tm> l

RESTORE <alfst list> EXCEPT <if list> <tm>

ii

A P P E N D I X I I I

ABOGAZICI*OURREDUCE.REnUCE,~I.REDUCEXTEND" AL!SPSPF.LISP BOGAzI
EXTENDED REDUCE IFEB-2-82) ~. .

% MATFUNC EXAMPLE ;

MATRIX H ;
M 1 : HAT((I,O,~) , (D,COS X,SIN X) , (O,-SIN
FOR ALL X.Y LET

LOG(x**Y) : Y.LOS X p
LO~(I /X**T) : -y'LUG X ,
~IN X : (~ * * (I * X) - E * * (- I * X ~) / P / I

• CoS X : { L * * (I * X) ~ E * * (- l * X ~ } / 2 ;
% ~ERE WE INTRODUCE THE EIGE~VALUES : "
EIuENVALUE M, E * * (I * X) , E * * { - I * X) , I :
%~ATFUNC TAK{S THE LOG OF N ! :
~ATFUNC (LOG,B) I

MAT(I,1) := 0

MAT(l,2) :-- 0

MAT(I,3) : : 0

MAT(2,1) := 0

MAT(2,2) := 0

MAT(2,3) :: X

MAT(~t]) : : 0

MAT(3p2) :: - X

MAT(3'3) : : 0

x,cOS

OF DINR,DINC~UNITwTyPEUNIT ; ~EXAMPLES
DIMR M ;

3
DIMC M ;

~NIT 2 |

MAT(I ' I) : : 1

MAT(I'2) : : 0

MAT(2fl) : : 0

HAT(2t2) := I

%A SHORT STATEMENT WHICH CALCULATES THE
CH RACIERIST C POLTNOM AL F MATRIX M

CHRPOL := DEe(M - [A~DA.TYPEUN~T(M? } I

cHRPOL : : (E(2*X*I)*LAMDA2 - EI2*X*II*LAMDA _ E

E(X*I).LAMDA ~ _ E(X*I}.LA~DA ÷

E(X* i) - (X* I } "~ LAMDA 2 LAMDA)/E

X))

IX* I)
.LAMDA 3

12

LET US TAKE ANY ARBITRARY ~AYLOR
EXPANDABLE FUNCTION IF OF ~ GENERAL

X 2 MATRIX wITH ENTRIES A(IPJ}
MATRIX M(2t2) ;

EIGENVALUE M ,Et,E2 ;
OPERATOR A ~F "
FOH I : : I : 2 00 FOR J : : I : 2 DO M (I , J) : : A (I , J) ;
MATFUNC(F,M) ;

HAT(I,1) := (A (I , I) * F (E I) - A (I ,]) * F (E 2) - F(EI)*E2 + F (E 2) * E I) / (E I - E2)

MAT(I,2) := (A (I ' 2) * (F (E 1) - F (E 2))) / (E I - E2)

MAT(2,1) := (A (2 , 1 } * (F (E I) - F (E2))) / (E1 - E2)

MAT(2,2) := (A (2 ,2) *F (E I) - A(2,2)*F(E2) - F(EI)~E2 4 F (E 2) * E I) / (E I - E2)

• LET US TAKE ASSUME THAT F I~ AN TAILOR
XWENDARLE FUNC~TUN WE OEGLARE T~

XS AN OPERATOR, AS LJSOAL, BUt GIVE
NO SPESI~IC DEFINITION FOR I • t
OPERATOR F I
~LET US DEFINE A MATRIX AS ;
M .= MAT((X , 3 - X) , (2 + X ' I - X }) $

• ~ M DECLAREn MATRIX
~LLT US TAKE ~ oF M ..
r~ATFUNC (F,M)

MAT(i , t) : : (F(3)*X ~ 2.F(3) - P ((- 2)) * X + 3 ~ F ((- 2)) } / 5

NAT(I,2) : : (- F (3) .X + 3.F{3) + F((-2)~*X - 3 " ~ ((- 2))) / 5

MAT(2,1) : : (F(3)*X , 2.F(3) - F ((- 2)) * X - 2 . F ((- 2))) / 5

NAT(2,2) := (- F (3) .X + 3.F[3) + F((-2)~*X ~ 2 . ; (t - 2))) / 5

%EXAMPLES FOR SEPARATE,GLUE,ARGUMENT,NAM ;
OPERATOR ANY ;
S :-- ANY(AI,A2,A3,Aq) ;

S := ANY(Ai,A2,A3,AA}
A2 := ANOTIAERTHING ;

~RM:: ANOTHERTHING
{S) ;

ANY
ARGUMENT (S, 2) ;

AN_OTHERTHING
ARGUMENT(S,3) ;

A3LET US SEPARATE TH AOO E CA T T E V , LCULA ED
CHAR~ACR.~R~ISTIC POt:YNOMIA[, CHRPOL

N := SEPARATE(CH m-'UL~÷,HORSE~ $

N := 8
% R N ABOVE CONTAINS THE NUMBER OF TERMS ;
FO I : : I ; N DO WRITE HORSE(1) := HORSE(I} ;

(X . I) 2
HORSE(I) : : E W'LANF~A

(X - I) HORSE(2) :: - E *LAMDA

HORSE(3) :: - LAMDA 3

HORSE(q) : : i_AMD A2
HORSE(5) := - LAMDA

HORSE(G) := 1

2 (X . I)
HORSE(?) : : LAMoA /E

IX, I)

%LET US.SET DONALD TO A ;
DONALD . : A ;

DONALD :: A
GLUE (DONALD, 2) l

ANOTHERTHING

13

% AN EXAMPLE FOR NONCOMMUTE ;
NONCOMMUTE XI,X2,X3 ;
(Xl ÷ X2}*(X2 - X3) ~ (X3 - X1)*~2 t

%THIS RESULT IS UIFFER[NT IN THE
COMqUTING XI,X2,X3 AS FOLLOWS i

COMMUTE XlI{~,X3x~
(Xl ÷ X21~ -) ~ (X3 - X1) . .2 i

XI 2 * Xi~X2 - 3,XI*X3 + X22 - X2,X3 • X32

% NOW EXAMPLES FOR ELAG FACILITY STATEMENTS .
sTATUS GCD,MCDPNATPuIv I

GCD IS OFF
MCD S ON
NAT ~S ON

ON GCD,DIV ~ OFF NAT I
IDLE GCD,NAT ;
~TATUS GCD,NAT,qIV I
DIV IS OFF
GC~ IS OFF
NAI ~S ON

~WE MAY REFERE TO A GROUP nF FLAGS BY
LABEL DESY . GCD,DIVpFLOAT ;
%ANOTHER ONE l
LABEL TRICK ! ALL EXCEPT DESY ,FORT :
STATUS DESY z
DIV IS ON ~ i~ ~ F . _
,Now ANOT.ER sTATEMENT • STALE '
STATE . I G . . oN DEsY OfF Moo ,
~so.E oNE CAN S~VF THE CURRENT STATUS

OF ANY GROUN OF FLAGS BY ;
sTORE LIST ,DESY ;

L T OFF
[i ~ s~REO As OFF
GC~ STORED AS OFF
DI v STORED AS ON
%1N THE ABOVE STATEMFNT~£~ THE TEMPORARY

t STORAGE W~SRAf~UME~ . .
LE US HAVE A HE MA ENT STORAGE ;
STORE DUCK t DES Y EXCEPT GCD ;
FL9AT STOREO AS OFF
DUSK DECLARED STATE, HOLDING CURRENCIES :
DIV AS ON
FL'~AT AS OFF
iDLE ALL I
~WL ~4AY RESTORE ALL THE ABOVE STORED

STATUSES BY I
RESTORE DUCK ;

DIV RESTORED AS ON

Mc~ RESTORED AS OFF

%THE INFORMATIVE PRINTING CAN BE SUPRESSED ;
RESTORE D u c k ,

QUIT I

END OF LISP

14

