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Informative Abstract: 

Three classes of extensions are proposed for REDUCE: A facility 

for evaluating arbitrary functions of matrices; a facility for 

grouping, modifying or restoring the status of various flags in 

REDUCE; further extensions and modifications for separating terms, 

coefficients of expressions, concatenation, and noncommuting al- 

gebra. These proposals have been implemented on the UNIVAC 1100 

REDUCE system . Inclusion of these extensions on all version of 

REDUCE is suggested because of their usefulness. 

REDUCE is probably the most widespread symbolic processing lan- 

guage. The extensions proposed below are designed to increase its 

flexibility and to speed up many operations normally requiring 

several step% particularly in an interactive environment, which is 

the natural habitat of REDUCE. With a single exception to be noted, 

all of the proposed extensions are written in the symbolic mode of 

REDUCE. They should therefore be portable to any. REDUCE system, 

although they have been implemented on the UNIVAC ii00 REDUCE system. 

It is well known that REDUCE does not intrinsically possess facili- 

ties for evaluating arbitrary functions of matrices and creating 

unit matrices of arbitrary dimensions. The latter is already avail- 

able in the symbolic level of REDUCE but is not accessible to users 

in the algebraic mode. 

By making use of this facility, the following two functions for gene- 

rating unit matrices are introduced, i) The operator UNIT (N) where 
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N is a positive integer or identifier evaluating to a positive 

integer generates the unit matrix of indicated size.lt can be 

used in matrix expressions. 

2)The operator TYPEUNIT (M) where M is anything that evaluates 

to a square matrix generates the unit matrix of the same dimensi- 

onality as M. 

Further facilities introduced in connection with matrix operations 

are the operators DIMR (M) and DIMC (M) where M is anything which 

evaluates to a matrix. DIMR gives the number or rows, DIMC gives 

the number of columns in the matrix M. 

Introduction of the operator ~TFUNC(F,M) to evaluate an arbitrary, 

Taylor expandable function, F of an identifier evaluating to a 

square matrix M is proposed. Eigenvalues of M should be available 

to the system by one of the following ~nechani~n$ prior to the exe- 

cution of MATFUNC. 

(a) The eigenvalues may be given to the system by the declaration 

EIGENVALUE Vi,V2,V3.. V 4. Otherwise : 

If M is 2x2, MATFUNC uses the quadratic formula to evaluate the 

eigenvalues. If M is of higher dimensionality and no eigenvalue 

declaration has been made, the system automatically creates the 

atoms el,e2,...,eN in which e is the atom of the matrix name. 

(in the case above M1, M2, ..... ). For example, if the second argument 

of MATFUNC is the 3x3 matrix R~TAT,the eigenvalues are taken to be 

R~TATi, R~TAT2~ and R~TAT3 in the absence of an explicit declaration. 

The result of such a calculation would, in general ~, depend on 

the atoms el,e2, ..... It is wortwhile to mention that the result 

must not depend on the eigenvalue, although the eigenvalues are 

used in the intermediate steps of the evaluation. The mathematical 

algorithm used by MATFUNC is described in APPENDIX I. 

REDUCE has over 30 flags controlling various aspects of its opera- 

tion. Each of these flags must be turned on or off individually. 

Certain combinations of these flags frequently need to be manipulated 

as a group, especially in the interactive mode, to adjust the appear- 

ance of output. 

It is a tedious task to make these manipulations individually. 

The following statements are now proposed in order to group 

flagss their status, and to store or reset their status as a 

group. 

The notation is as follows: Anything in capital letters is 

directly written. Anything in lower case letters implies that 

something will be substituted for it. Parentheses imply choice 

of only one of the several alternatives. Square brackets denote 

an optional feature. Curly brackets imply choice of at least one 

of the several alternatives. All commas are optional, l-list 

stands for any list of labels introduced by a LABEL statement 



in the id Position. f-list stands for any list of flags, st- 

list stands for a list of identifiers introduced via a STATE 

or STARE statement. Backus normal forms of all the statements 

are given in Appendix I]. All statements must terminate either 

with ~ or; in conformity with standard REDUCE syntax. If ~ is 

used as terminator, printing of information concerning the 

execution of that statement is suppressed. Such suppressions 

can be made permanent by turning off a newly introduced flag, 

FLGMSG. If; is used as terminator, the flag status information 

will be given if FLGMSG is ON. 

The LABEL statement: 

L A B E L  i,J : 

ALL / 

will give id as a label to the list of flags in the parentheses 

excluding any which may appear optionally in the EXCEPT clause. 

This group of flags can be collectively referred to with id 

as label until another group is assigned to the id, or the 

label is extended or modified. 

The ST@RE statement: 

t I "l 1 STQRE [,4 ~ k U - l l  E X C E P T  l i ,  

\AL 

will store the current status of all flags in its operand into 

the identifier id if it is given. Otherwise this information 

is stored into a temporary storage. 

The STATE statement 

S T A T  E ia 
f -I is I 1 . 

will store into id the indicated states of th~ indicated flags 

without actually modifying them. The ON clause immediately fol- 

lowing: may be omitted. 



The RESTORE statement is 

/ ' " ' " I  ' "  
R E S T O R E  ~l' l lsU E X C E P T  lis 

A L L  

This statement will restore the status of the indicated flags 

to that which was last assigned via a STATE or STORE statement. 

An error message is generated, if no value has been assigned to 

any of its active operands before the execution of RESTORE. 

Va]ues for active operands other than those in a st-list are 

obtained from the temporary storage mentioned in connection 

with the ST~RE statement. 

The IDLE statement 

I - ' " l l  
, o ~  tL,.,,,, q [ E X C E P T  Ill 

\ ALL / 

will set its active operands into their system default values. 

The STATUS statement 

,_,,. I-,,.ll 
will print out the status of its active oDerands. 

It is hoped that these statements will greatly enhance flag 

manipulation in REDUCE. 

The implementation of the following extensions is also proposed. 

i) GLUE, a n-ary concatenation operator of the form 

GLUE ( al, a2 .... an) 

where 

al, a2 .... an are identifiers which alone or after concatenation 

may evaluate to other identifiers. GLUE will concatenate the latest 

value the operands have evaluated themselves into. If. this combi- 

nation itself evaluates into another expression, that value will 

be returned 

2) SEPARATE, an operator to separate an expression relative to 

a binary operator, of the form 

SEPARATE ( S,op, ARR ) 



where S is an expression which is to be separated into terms 

with respect to the binary operator op. ARR is an identifier 

which becomes an array, its 0 element containing the number 

of terms to which S has been separated, its further elements 

containing successive terms into which S has been separated 

from left to right. 

3) ARG, to return individual arguments of an prefix operator, 
th 

of the form ARG(pop,n). It returns the n argument of the 

prefix operator pop. 

4) Another operator NAME (argument) where the argument must 

evaluate to a prefix operator returns the name of this o- 

perator. 

5) In REDUCE, a built in function C~EFF is available for ex- 

tracting the coefficients of a polynomial. C@EFF takes three 

arguments (e, v, name), e is the polynomial, v is a kernel. 

Coefficients of its powers in e are to be separated by C~EFF. 
.th 

name is an identifier. If it is an array, its i element 
i 

contains the coefficient of v in e. If it is a non-array 

identifier, new atoms namel , name2 [ namei are created 
1 

namei contains the coefficient of v 

In many problems, the highest power of v in e may not be 

known in advance and one may still wish to place the coeffi- 

cients in an array. The operator K~EFF (e, v, name) is pro- 

posed exactly for this purpose. The identifier name is auto- 

matically generated as an array of the proper dimensionality. 

6) N~NC~MMUTE and C~MMUTE declaratioDs are proposed to implement 

noncommuting algebra. 

The former 

N ~ N C ~ M M U T E  ~ , ~ ,  • - • , ~  

where Vl,V 2 .... V n are variables, declares these variables to be 

noncommuting. This declaration is cancelled by the declaration 

C C M M U T E  ~ ,  ~ ,  - . . , v  k 

Variab]es that are declared to be noncommuting are placed in 

a special set. Any variable in this set is treated as noncom- 

muting with all other variables in the set. For example, if one 

declares N@NC~UTE A,B , A and B do not commute with each 

other~further declaration N~NC~t,~.IUTE C,D will now cause D to 

be noncommutative with A,B and C, A to be noncommutative with 

B,C and D. 

7) R@@T, to calculate the numerical approximations to roots of a 

polynomial. It has the form R@@T (P, Vi, ARR) where P is a 

polynomial of the variable Vl with complex coefficients which 

must evaluate to complex numerical expressions at the time of 

the call to R@~T. ARR will become an array containing the roots 

of P. 



Since LISP is not suitable for numerical work, interfacing to 

a FORTRAN, or ~ routine is needed. Such an interfacing will 

necessarily involve Operating System facilities such as checkpoint/ 

restart,interrupt, priviledged instruction, supervisor call 

dynamic runstream modification and return. All modern Operating 

systems contain such facilities. However, the precise form of these 

facilities and their availability to LISP and F~RTRAN (or PL/I) 

will differ from computer to computer. Hence, the details of 

implementation will be different for every system. In spite 

of this difficulty, the availability of this facility, or a more 

general facility enabling interfacing between REDUCE and a 

F~RTRAN program, is extremely useful, since it will enable blending 

of symbolic and numerical compuatation. 

The implementation of the operator for the UNIVAC ii00 system 

is based on the checkpoint/restart feature and the CSF command 

enabling execution of certain EXEC-8 Job Control Commands in 

UNIVAC REDUCE. The coefficients of the polynomial are written 

in F~RTRAN compatible form into a file, REDUCE exits to the 

supervisor which then calls a F@RTRAN routine to evaluate the roots 

by a CERN library routine numerically. Control is then returned 

to REDUCE with the array ARR containing the numerical values of 

the roots. 

Since similar features also exist in other REDUCE systems, a 

similiar implementation should be feasible in other systems. 

An illustrative example is given in Appendix III. Further illus- 

trative examples and source codes can be obtained from the authors 

upon written request. 
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Scientific and Technical Research Council is also acknowledged. 



A P P E N D I X  I 

The algorithm Used in MATFUNC is the following. 

Let F be any Taylor expandable function of a nxn matrix M, 

of the form 

F ( M )  : aol  + a i M  ÷ a 2 M 2 +  . - - *  a k M k ÷  . -  • (1) 
M satisfies its own characteristic equation, so that pn (M) = 0 

where pn is a n th degree polynomial. Hence we can write 

= % M  2 M "-1 M n ~ * c|M ÷ ÷ " • " + C n _  1 
(2) 

and using this relation repeatedly, all powers of M k with k ) n 

can be expressed in terms of Mklk ( n. Hence, without loss of 

generality, we may truncate (i) as 

F(M) = % 1 .  biM • ~M2....* b M k'1 
k-1 (3) 

Eq(3) is satisfied by the eigenvalues of the matrix, ~i,~2, ,~n 

Hence, if there is no degeneracy, we have the following system 

of n equations to determine the n coefficient bo, bl...bn_l. 

F(X  k) % b,X k b 2x2k* " ~ "  = + ÷ " ' ' ÷  bn-1 k k.1,2, , .  (4)  

This gives for the unknown coefficients the following formula 
° 

% 
51 

I 

° 

1 1 "" 1 

~i  ~ 2  "" ~n 
2 

= ~1 ~ 2  - -  '~n 

.-1 I -I 
9~1 -- , 

-1 [F(X.)I 
iF(h) I 

(5) 

If M is degenerate and hence has only k ( n independent eigenvalues, 

the above procedure must be slightly modified. It can be shown 

that M now satisfies a polynomial equation of degree k, and hence 

all powers of M greater than or equal to k may be reduced. Thus 

F(M) may be written as 

= * • • • b M "'! F ( M )  %1 + b i M  b 2 M 2 +  + .-I 

(6) 

and the k independent eigenvalues furnish k equations for determining 

b o, b I .... bk_ 1 and hence F(M). 

i0 



A P P E N D I X  I I  

B A C K U S  N O R M A L  FORM 

D E F I N I T I O N S  OF 

E X T E N S I  ONS TO R E D U C E  

FOR FLAG H A N D L I  NGS 

<sdec list> ::= <If list> I <lf list> don/off list> I don/off list> 

<on/off list> ::= ON <sdec list> I OFF <sdec list> 

<If list> : := <l-id> <sep> <if list> I <f--id> <sep> <if list> J <l-id> I <f-id> 

<l-id> ::=did> 

<f-id> ::= <flag> 

<s-id> : := did> 

<st-id> : :=did> 

<sep> : : = I , 

<tm> ::= ; I 

<alf list> ::= ALL <if list> 

<a.lfst list> ::= <s-id> I <s-id> <sep> <alfst list> I <all list> I <st-id> I 
<st-list> <sep> <alfst list> 

<state statement> ::= STATE <s-id> : <sdec list> <tm> 

<common statement tail> ::= <a.lf list> <tm> I <all list> EXCEPT <If list> <tm, 

<label statementm ::= LABEL <l-id> : <common statement tail> 

<idle statement> : := IDLE <common statement tail> 

<store statement> ::= STORE <st-id> : <common statement tail> I 
STORE <common statement tail> 

<status statement> ::= STATUS <common statement tail> 

<restore statement> ::= RESTORE <alfst list> <tm> l 

RESTORE <alfst list> EXCEPT <if list> <tm> 

ii 



A P P E N D I X  I I I  

ABOGAZICI*OURREDUCE.REnUCE,~I.REDUCEXTEND" AL!SPSPF.LISP BOGAzI 
EXTENDED REDUCE IFEB-2-82) ~. .  

% MATFUNC EXAMPLE ; 

MATRIX H ; 
M 1 :  HAT((I,O,~) , (D,COS X,SIN X) , (O,-SIN 
FOR ALL X.Y LET 

LOG( x**Y ) : Y.LOS X p 
LO~(I /X**T) : -y'LUG X , 
~IN X : ( ~ * * ( I * X )  - E * * ( - I * X ~ ) / P / I  

• CoS X : { L * * ( I * X )  ~ E * * ( - l * X ~ } / 2  ; 
% ~ERE WE INTRODUCE THE EIGE~VALUES : " 
EIuENVALUE M, E * * ( I * X ) , E * * { - I * X ) , I  : 
%~ATFUNC TAK{S THE LOG OF N ! : 
~ATFUNC (LOG,B) I 

MAT(I,1) := 0 

MAT(l,2) :-- 0 

MAT(I,3) : :  0 

MAT(2,1) := 0 

MAT(2,2) := 0 

MAT(2,3) :: X 

MAT(~t] ) : :  0 

MAT(3p2) :: - X 

MAT(3'3) : :  0 

x,cOS 

OF DINR,DINC~UNITwTyPEUNIT ; ~EXAMPLES 
DIMR M ; 

3 
DIMC M ; 

~NIT 2 | 

MAT(I ' I )  : :  1 

MAT(I'2) : :  0 

MAT(2fl) : :  0 

HAT(2t2) := I 

%A SHORT STATEMENT WHICH CALCULATES THE 
CH RACIERIST C POLTNOM AL F MATRIX M 

CHRPOL := DEe( M - [A~DA.TYPEUN~T(M? } I 

cHRPOL : :  (E(2*X*I)*LAMDA2 - EI2*X*II*LAMDA _ E 

E(X*I).LAMDA ~ _ E(X*I}.LA~DA ÷ 

E(X* i )  - (X* I }  "~ LAMDA 2 LAMDA )/E 

X)) 

IX* I ) 
.LAMDA 3 

12 



LET US TAKE ANY ARBITRARY ~AYLOR 
EXPANDABLE FUNCTION IF OF ~ GENERAL 

X 2 MATRIX wITH ENTRIES A( IPJ}  
MATRIX M(2t2) ; 

EIGENVALUE M ,Et,E2 ; 
OPERATOR A ~F " 
FOH I : : I : 2  00 FOR J : : I : 2  DO M ( I , J ) : : A ( I , J )  ; 
MATFUNC(F,M) ; 

HAT(I,1) := ( A ( I , I ) * F ( E I )  - A ( I , ] ) * F ( E 2 )  - F(EI)*E2 + F ( E 2 ) * E I ) / ( E I  - E2) 

MAT(I,2) := ( A ( I ' 2 ) * ( F ( E 1 )  - F ( E 2 ) ) ) / ( E I  - E2) 

MAT(2,1) := ( A ( 2 , 1 } * ( F ( E I )  - F (E2) ) ) / (E1  - E2) 

MAT(2,2) := (A (2 ,2 ) *F (E I )  - A(2,2)*F(E2)  - F(EI)~E2 4 F ( E 2 ) * E I ) / ( E I  - E2) 

• LET US TAKE ASSUME THAT F I~  AN TAILOR 
XWENDARLE FUNC~TUN WE OEGLARE T~ 

XS AN OPERATOR, AS LJSOAL, BUt GIVE 
NO SPESI~IC DEFINITION FOR I • t 
OPERATOR F I 
~LET US DEFINE A MATRIX AS ; 
M .= MAT(( X , 3 - X ) , ( 2 + X ' I - X }) $ 

• ~ M DECLAREn MATRIX 
~LLT US TAKE ~ oF M .. 
r~ATFUNC (F,M) 

MAT( i , t )  : :  (F(3)*X ~ 2.F(3)  - P ( ( - 2 ) ) * X  + 3 ~ F ( ( - 2 ) ) } / 5  

NAT(I,2) : :  ( - F (3) .X  + 3.F{3) + F( ( -2 )~*X  - 3 " ~ ( ( - 2 ) ) ) / 5  

MAT(2,1) : :  (F(3)*X , 2.F(3)  - F ( ( - 2 ) ) * X  - 2 . F ( ( - 2 ) ) ) / 5  

NAT(2,2) := ( - F (3) .X  + 3.F[3)  + F( ( -2 )~*X ~ 2 . ; ( t - 2 ) ) ) / 5  

%EXAMPLES FOR SEPARATE,GLUE,ARGUMENT,NAM ; 
OPERATOR ANY ; 
S :-- ANY(AI,A2,A3,Aq) ; 

S := ANY(Ai,A2,A3,AA} 
A2 := ANOTIAERTHING ; 

~RM:: ANOTHERTHING 
{S) ; 

ANY 
ARGUMENT (S, 2) ; 

AN_OTHERTHING 
ARGUMENT(S,3) ; 

A3LET US SEPARATE TH AOO E CA T T E V , LCULA ED 
CHAR~ACR.~R~ISTIC POt:YNOMIA[ , CHRPOL 

N := SEPARATE(CH m-'UL~÷,HORSE~ $ 

N := 8 
% R N ABOVE CONTAINS THE NUMBER OF TERMS ; 
FO I : : I ; N  DO WRITE HORSE(1) := HORSE(I} ; 

(X . I )  2 
HORSE(I) : :  E W'LANF~A 

(X - I )  HORSE(2) :: - E *LAMDA 

HORSE(3) :: - LAMDA 3 

HORSE(q) : :  i_AMD A2 
HORSE(5) := - LAMDA 

HORSE(G) := 1 

2 (X . I )  
HORSE(?) : :  LAMoA /E 

IX, I ) 

%LET US.SET DONALD TO A ; 
DONALD . :  A ; 

DONALD :: A 
GLUE (DONALD, 2) l 

ANOTHERTHING 
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% AN EXAMPLE FOR NONCOMMUTE ; 
NONCOMMUTE XI,X2,X3 ; 
(Xl ÷ X2}*(X2 - X3) ~ (X3 - X1)*~2 t 

%THIS RESULT IS UIFFER[NT IN THE 
COMqUTING XI,X2,X3 AS FOLLOWS i 

COMMUTE XlI{~,X3x~ 
(Xl ÷ X21~ - ) ~ (X3 - X1) . .2  i 

XI 2 * Xi~X2 - 3,XI*X3 + X22 - X2,X3 • X32 

% NOW EXAMPLES FOR ELAG FACILITY STATEMENTS . 
sTATUS GCD,MCDPNATPuIv I 

GCD IS OFF 
MCD S ON 
NAT ~S ON 

ON GCD,DIV ~ OFF NAT I 
IDLE GCD,NAT ; 
~TATUS GCD,NAT,qIV I 
DIV IS OFF 
GC~ IS OFF 
NAI ~S ON 

~WE MAY REFERE TO A GROUP nF FLAGS BY 
LABEL DESY . GCD,DIVpFLOAT ; 
%ANOTHER ONE l 
LABEL TRICK ! ALL EXCEPT DESY ,FORT : 
STATUS DESY z 
DIV IS ON ~ i~  ~ F  . _ 
,Now ANOT.ER sTATEMENT • STALE ' 
STATE . I G . .  oN DEsY OfF Moo , 
~so.E oNE CAN S~VF THE CURRENT STATUS 

OF ANY GROUN OF FLAGS BY ; 
sTORE LIST ,DESY ; 

L T OFF 
[ i ~  s~REO As OFF 
GC~ STORED AS OFF 
DI v STORED AS ON 
%1N THE ABOVE STATEMFNT~£~ THE TEMPORARY 

t STORAGE W~SRAf~UME~ . . 
LE US HAVE A HE MA ENT STORAGE ; 
STORE DUCK t DES Y EXCEPT GCD ; 
FL9AT STOREO AS OFF 
DUSK DECLARED STATE, HOLDING CURRENCIES : 
DIV AS ON 
FL'~AT AS OFF 
iDLE ALL I 
~WL ~4AY RESTORE ALL THE ABOVE STORED 

STATUSES BY I 
RESTORE DUCK ; 

DIV RESTORED AS ON 

Mc~ RESTORED AS OFF 

%THE INFORMATIVE PRINTING CAN BE SUPRESSED ; 
RESTORE D u c k  , 

QUIT I 

END OF LISP 

14 




