
Gene Level Concurrency in Genetic Algorithms

Onur Tolga Şehitoğlu and Göktürk Üçoluk

Computer Engineering Department, METU, Ankara, Turkey,
{onur,ucoluk}@ceng.metu.edu.tr

Abstract. This study describes an alternative concurrency approach
in genetic algorithms. Inspiring from implicit parallelism in a physical
chromosome, a vertical concurrency is introduced. Proposed gene process
model allows genetic algorithms work in encodings independent from the
gene position ordering in a chromosome. This feature is used to imple-
ment a gene reordering version of genetic algorithm. Further possible
models of flexible gene position encodings are discussed.

1 Introduction

Genetic algorithms mimic the evolution in the nature in order to search a solu-
tion space for non-trivial problems like optimization problems. They have been
successfully applied to many engineering and scientific problems where a poly-
nomial time deterministic algorithm does not exist. They efficiently explore of
the search space by using the global information gained during the exploration
in a population of individuals.

As genetic algorithms get widely used, parallel genetic algorithms became
a major study area. Cantú-Paz classifies parallel genetic algorithms in three
groups [1]: In global parallelism application of genetic operators and evaluation
of individuals are explicitly parallelized. In coarse grain and fine grain paral-
lelism population is distributed among the processors and only mating within
the subpopulations and among the neighbor populations are allowed. Also there
are some hybrid studies combining these approaches.

In this study a different approach to fine grain parallelism is discussed where
each process keeps track of a single gene value of the whole population. Crossover
and mutation operations can be done concurrently as single cycle operations
providing an implicit parallelism for genetic operators. In addition, operations
become independent from the gene ordering making more flexible chromosome
encodings possible [2,3].

In the following sections, first the gene process model where each process rep-
resents a gene position is introduced. Then application of this model with a gene
reordering genetic algorithm [4,3] is described. Then other possible encodings in
this model are discussed.

P1 P P P2 3 N

Control Process

Selection Process

Broadcast Control Channel

Data Channel
C

on
tr

ol
 C

ha
nn

el

Feedback C
hannel

Intergene Comm. Channels

Fig. 1. Architecture of the gene process model

2 Gene Process Model

In the proposed model, each gene position in the phenotype is executed by a
separate process. In each process an object keeps the specific genom data of the
whole population. These objects are connected to each other and to two other
special processes via communication channels. These two special processes are
the Control Process and the Selection Process. Architecture of the model is given
in Figure 1.

Execution of the entire model is based on message passing on order preserving
and lossless channels. All gene processes and the selection process execute a
receive message — do corresponding action loop. The control process initiates
and supervises the genetic algorithm.

If we represent the ith chromosome in the population as a vector of genes
as Γi = 〈g1, g2, . . . , gn〉 where n is the phenotype length, and the population
size is m, we can denote the whole population Γ as a vector of chromosomes. A
particular gene value in the population is then represented as Γi,j denoting the
jth gene of the ith chromosome.

In the proposed architecture, this representation is transposed into a collec-
tion of vertical gene vectors instead of a collection of chromosomes. A gene vector
Λi is the vector containing all gene values in the ith position of the chromosomes
of the pool Λi = 〈Γ1,i, Γ2,i, . . . , Γm,i〉.

All gene processes are identical objects defined by a set of attributes and
actions (methods). So a gene process Pi is a tuple:
Pi = 〈i, pos, Λ, newΛ, Broad, Inport,Outports,Actions〉
Where:
i: Position of the gene implemented by this process in the phenotype.
pos: Phenotype independent position information. It is used by variable per-

mutation representations and may contain any spatial or hierarchical
information. In simple GA implementation it is set to i.

Λ: Gene vector Λi of the current population.

newΛ: Gene vector Λi of the new generation.
Broad: Broadcast command channel to be listened
Inport: Private input channel of the process
Outports: A vector of output ports that this process uses to send data. It

includes the data channel flowing through the selection process, the
inter-gene channels and the broadcast channel. In simple GA imple-
mentations only the data channel is sufficient.

Actions: A set of actions. Each action is identified by a named tuple of any
arity. When a message of the same pattern is received the corresponding
action is executed by the gene process.

A gene process executes a very simple command sequence:
1) Wait for a message in Inport or Broad. 2) Execute the matching action. 3) Go
to step 1

Selection process S is similarly a tuple:
S = 〈Γ, newΓ, fitnesses, Inport,Outport, f, Actions〉
Where:
Γ: Data of the entire pool of the current generation.
newΓ: Data of the entire pool of the new generation.
fitnesses: Fitnesses calculated for the individuals in the pool
Inport: Input channel to be listened.
Outport: Feedback channel to send results of the selection.
f : Fitness function.
Actions: A set of actions. Similar to gene processes.

Selection process executes the same loop with the gene processes:
The pool data is received from the gene processes. Then the fitness calculation
and the selection action is initiated by a message coming from the control process.
The selection information is sent back to the control process via the feedback
channel.

The control process executes the genetic algorithm loop by sending genetic
operator messages to all gene processes, than the fitness calculation message and
the selection message to the selection process, in each iteration. Repeating this
iteration for many generations will make genetic algorithm work.

3 Simple GA Implementation

In a simple GA implementation a gene process implements the following mes-
sages:

init(M) Initializes the gene vector Λ randomly

Λi ← random() for all i = 1, ..,M

mutate(prob) All genes in the new population newΛ is mutated with a prob-
ability of prob.

newΛi(t+1)←
{

mutated(newΛi(t)) if random([0, 1]) ≤ prob
newΛi(t) otherwise for all i = 1, ..,M

crossover(cp, p1, p2) Parents p1 and p2 in the current population are
crossovered to produce two new offsprings in the new population. cp is the
crossover point where offsprings switch parents. (• is used to denote the
append operation)

newΛ← newΛ • 〈gA, gB〉 where 〈gA, gB〉 =
{
〈Λp1, Λp2〉 if pos ≤ cp
〈Λp2, Λp1〉 otherwise

uniformcrossover(p1, p2,[prob]) In uniform crossover, offspring value is
taken from one of the parents, probabilistically.

newΛ← newΛ•〈gA, gB〉 where 〈gA, gB〉 =
{
〈Λp1, Λp2〉 if random([0, 1]) ≤ prob
〈Λp2, Λp1〉 otherwise

senddata() This messages initiates the sending of the gene information to
the selection process so that it could make calculations on this global data.
senddatachannel(data(i, newΛ))

select(List) The control process sends a list of chromosome identifiers to
be selected via this message.

Λ← 〈newΛk | k ∈ List〉 ; newΛ← 〈 〉

Similar to the gene processes, selection process implements a set of messages
as actions. Those messages are received over the same channel from gene pro-
cesses or control process. This messages are data(i,L), for getting the data of
the ith gene process, setfitnesses() for calculating fitnesses over the popu-
lation, select(K) to select K element for crossover in the next generation by
applying any selection mechanism, sendselected() to send the list of selected
individuals to the control process back.

After this definitions of messages (or actions) control process executes the
following loop:

send broadcast(init(M))
DO { REPEAT (CrossoverRatio × M) times {

A, B ← random(1,M) ; CP ← random(1, N)
send broadcast(crossover(CP, A,B)) }

send broadcast(mutate(MutateProb),senddata())
send selection(setfitnesses(),select(M),sendselected(M))
receive feedback(selected(List))
send broadcast(select(List))

} WHILE Maximum number of generations is not reached

Most of this communication can be done asynchronously. Only places requir-
ing synchronization are the fitness calculation and the selection process.

4 Gene Reordering GA

Gene reordering genetic algorithm is introduced in [4,3]. It is a linkage learn-
ing method and empirically shown to improve online performance of genetic
algorithms in deceptive problems.

In gene reordering GA, a single global permutation is considered during the
computation. This permutation maps a gene number to a position value in the
chromosome encoding. Crossover operations are based on this mapping instead
of the original gene ordering in the representation. During the evolution of the
genetic algorithm, this global permutation is readjusted by means of statistical
analysis on neighboring genes in the population.

Let Γ be the encoding of the problem and Γi represent the value of the ith

feature in a chromosome. We define a permutation function p : {1, . . . , n} 7→
{1, . . . , n} so that Γi will be considered in the p(i)th position for crossover oper-
ation and Γp−1(i) and Γp−1(i+1) values are neighbor gene values with respect to
p.

We define a neighbour-affinity function for neighbour gene positions in the
permutation in its most general form as: Ap

i : {〈Γp−1(i), Γp−1(i+1)〉}pool 7→ [0, 1]
Ap

i function is based on a statistical analysis of the pool and maps the neigh-
bour values from the pool to an affinity value. The type of the statistical analysis
used depends on the problem representation. Examples can be hamming distance
for binary encoding and variance for other numerical encodings.

The next step is to modify the permutation mapping by looking at the results
of neighbour-affinity value calculations from the individuals in the current pop-
ulation. We will be calling these values Ap

i . All Ap
i values will be calculated with

some period of generation. If an Ap
i value is found to be less then a threshold

value τ , these neighbour genes will be considered not to contribute solution well
together and the permutation will be changed to separate them. Actually there
exist 4 possible affinity cases for each gene position:

1. Affinity is greater then τ for both neighbours so current ordering is fine. The
gene position in the permutation kept unaltered.

2. Affinity with left gene is greater than τ but it is less than τ for the right
gene. So left neighbour is fine but we should separate it from the right. So
it exchanges position with the left neighbour.

3. Affinity with left gene is less than τ but it is greater than τ for the right
gene. Similarly it exchanges position with the right neighbour.

4. Both affinities are less than τ . Gene is moved to a random position in the
permutation.

In this way, modifications in the permutation mappings are kept to be as
local as possible.

5 Gene Reordering Genetic Algorithms and Gene Level
Concurrency

In gene reordering genetic algorithms global ordering of genes with respect to
crossover operator is changed by the local decisions to maximize affinity values
among the gene positions.

In gene level concurrency, crossover operation is based on the pos attribute
of each gene process. So moving a gene in the global permutation is just simply

updating the pos values of the gene processes. Since the affinity calculations are
done among the neighboring genes, they can be calculated by means of local
communications. In this way simple genetic algorithm implementation can be
extended into gene reordering genetic algorithm with a few additions.

In the gene reordering genetic algorithm, in addition to simple GA, a gene
process includes LeftAffinity and RigthAffinity attributes. Furthermore, Outports
includes private ports to the other gene processes.

The new gene process is the following tuple:
Pi = 〈i, pos, Λ, newΛ, Broad, Inport,Outports, f, aff,Actions, LeftAff,RightAff〉
Only affinity values to the left and right neighbor processes and the user de-
fined affinity function aff are added. This neighborhood is defined as to possess
consecutive pos attribute values.

New message and actions are required to calculate and process affinities.
Affinity calculation requires the data of the two processes. So each process sends
its data to the left neighbor. Left neighbor calculate and set the right affinity
and sends it to the right so that it can update the left affinity. When this cycle
is completed all affinity values would be known for all gene processes.

The next step is to update the positions based on the affinities obtained.
Since the position updates are local in the implementation of the gene reordering
genetic algorithm, this decision is left to the gene process. In the sequential
implementation this is done deterministically in a linear scan of the permutation.
In the concurrent version this is done probabilistically.

Following messages are introduced in order to implement gene reordering
GA:

sendtoleft() This initiates the gene vector exchange among the neighbors.
Each gene process sends its Λ to the left neighbor (having pos-1 position) in
a data(...) message.

sendgene(pos−1)(data(i, Λ))

data(k,NeighΛ) Data is available from the right neighbor (having pos+1
position). The gene calculates and updates the right affinity by calling a user
defined aff function and sends back the calculated value to its neighbor.

RightAff ← aff(Λ, NΛ)
sendgene(pos+1)(setaff(i, RightAff))

setaff(k,v) Left neighbor is sending the calculated affinity. Just set the Left-
Aff to the value sent.

LeftAff ← v

moveme(k,currpos,topos) This messages is received by all processes via the
broadcast channel since order change of a process may affect positions of all
genes. After this change the gene process listens to the channel of its new

position. The gene requesting the move, simply updates its position.

pos←


topos if currpos = pos
pos− 1 if currpos < pos and topos > pos
pos + 1 if currpos > pos and topos < pos
pos otherwise

Only sendtoleft(...) is initiated by the control process. data(...) and
setaff(...) is generated among the gene processes as a consequence of this
message. moveme(...) on the other hand is a probabilistically generated mes-
sage. After a gene process completes a select(...) request, it probabilistically
(with a probability of 1

t for an expected period of t (generations) makes a move-
ment decision and sends a moveme(...) message to the broadcast channel.

This decision is based on its left and right neighbor affinities and a threshold
value τ , of them. If gene process have good affinities with both neighbors it will
not send any message and retain its existing position. If any of the neighbour
affinity is below the threshold, it sends a command to move itself into a local or
a random position according to the decision specified in Section 4.

After introducing these messages into the gene processes, the only additional
update required for the control process is to have a sendtoleft(...) message
to initiate the affinity calculation in the main loop.

6 Conclusion and Other Possible Architectures

Gene reordering GA is not the only possible architecture that can be imple-
mented in the gene level concurrency model. Since the model eliminates the
requirement for a linear fixed order, any non-linear and/or variable topology
can be implemented by using it.

For example a matrix notation can be suitable to represent 2-D spatial chro-
mosome encodings (Figure 2(b)). Image processing is a good example for such
an application area. The only change required is to have a tuple for the pos at-
tribute. The crossover point is going to be any shape in the 2-D representation.
This shape will separate the chromosome into two partitions. So the crossover
will decide about a particular gene of a chromosome, considering which partition
it belongs to.

So resulting gene process tuple will be:

Pi = 〈〈ix, iy〉, 〈posx, posy〉, Λ, newΛ, Broad, Inport,Outports,Actions〉

Any shape description which divides the matrix into two partitions is suitable.
It can be a line or any arbitrary shape as long as a function returning a binary
choice partition : Shape×Position→ {0, 1} can be defined. Than the crossover
can be based on this function.

For example if the shape is a line passing from two points 〈ax, ay〉 and 〈bx, by〉
the partition function can be defined as:

partition(〈ax, ay〉, 〈posx, posy〉) =

{
if posy <

by − ay

bx − ax
(posx − ax) + ay , 0

otherwise , 1

/.-,()*+
/.-,()*+ttjjjjjjjjjjj

/.-,()*+������

P1

/.-,()*+��
P2

/.-,()*+��?
??

?

P3

/.-,()*+��
/.-,()*+������

P4

/.-,()*+��
P5

a)

/.-,()*+��?
??

?

P6

Intermediate Processes/.-,()*+++WWWWWWWWWWWWWWW

. . .

. . .

/.-,()*+������

PN−2

/.-,()*+��
PN−1

/.-,()*+��?
??

?

PN

Control Process P〈∗,1〉 P〈∗,2〉 . . . P〈1,K〉

P〈1,∗〉 /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+
P〈2,∗〉 /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

. . . /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+
P〈L,∗〉 /.-,()*+ /.-,()*+ /.-,()*+ /.-,()*+

b) ..
..
..
..
..
..
.
..

..
..

...........................
..
..
..
..
.

crossover boundary

Fig. 2. Possible chromosome representations a) hierarchical representation. b)
mesh representation

Another possible extension of the method is the hierarchical chromosome
representation shown in (Figure 2(a)). Instead of a single level orientation of
gene processes an intermediate level of processes can be inserted between the
control process and the gene processes. These processes capture the incoming
control messages and generate modified messages through their child processes.
This allows different levels of genetic operator and building block interactions
possible similar to [5].

In summary, this study describes an alternative way of realizing the implicit
concurrency within a physiological chromosome and considering each genotype
a separate processing identity. The resulting implementation has an implicit
parallelism. This parallelism has been combined with the encoding flexibility of
the proposed model. Gene reordering genetic algorithm is an example of this
flexibility work. This idea of having each gene position a separate entity can be
further expanded to have alternative approaches to genetic algorithm.

References

1. Cantú-Paz, E.: A summary of research on parallel genetic algorithms. Technical
Report 95007, IlliGAL (1995)

2. Sehitoglu, O.T.: A concurrent constraint programming approach to genetic algo-
rithms. In Ryan, C., ed.: Graduate Student Workshop, San Francisco (2001) 445–448

3. Şehitoğlu, O.T.: Gene Reordering and Concurrency in Genetic Algorithms. PhD
thesis, Computer Engineering Dept, METU, Ankara (2002)

4. Sehitoglu, O.T., Ucoluk, G.: A building block favoring reordering method for gene
positions in genetic algorithms. In Spector, L., Goodman, E., eds.: Proc. of the
Genetic and Evolutionary Computation Conference (GECCO-2001), San Francisco,
Morgan Kaufmann (2001) 571–575

5. Pelikan, M., Goldberg, D.E.: Escaping hierarchical traps with competent genetic
algorithms. In Spector, L., Goodman, E., eds.: Proc. of the Genetic and Evolutionary
Computation Conference (GECCO-2001), San Francisco, Morgan Kaufmann (2001)
511–518

6. Holland, J.: Adaptation in Natural and Artificial Systems. MIT Press (1975)
7. Harik, G.: Learning Gene Linkage to Efficiently Solve Problems of Bounded Diffi-

culty Using Genetic Algorithms. PhD thesis, University of Michigan (1997)

	Gene Level Concurrency in Genetic Algorithms
	Onur Tolga Sehitoglu cl@@auth, Göktürk Üçoluk

