
A Study ofStationary, Axially Symmetri Spae-time GeometriesSatisfyingModi�ed Double Duality EquationsUsingthe Exterior Calulus Pakage XTR for REDUCE
T. Dereli�y, G. �U�oluk zInstitut f�ur Theoretishe Physik,Universit�at KarlsruheD-7500 Karlsruhe 1, F. GermanyApril 1989AbstratA stationary, axially symmetri metri is used to redue the modi�ed double self dual urvature equa-tions to a system of oupled ordinary di�erential equations. Algebrai manipulations are performed bythe XTR exterior alulus pakage for REDUCE.

�A. von Humbold-Foundation FellowyPermanent address: Department of Physis, Faulty of Sienes, Ankara University, Ankara, TurkeyzPermanent address: Department of Physis, Middle East Tehnial University, Ankara, Turkey1



1 IntrodutionVarious types of gravitational theories that generalize Einstein's theory were being disussed duringthe reent years. A generalization that reeived a lot of attention was due to Stephenson, Kilmister,Yang and several others.[1, 2, 3℄ In this theory the gravitational ation is written in analogy with Yang-Mills type gauge theories, so that the �eld equations are obtained by varying a quadrati urvatureinvariant. In a perturbative approah to �eld quantisation this theory leads to a renormalisable, al-beit in general, non-unitary quantum gravity.[4℄ Even at the lassial level the theory has some seriousproblems. Namely, it admits non-physial solutions [5, 6℄. Therefore, in an attempt to onstrain thequadrati theory further it was suggested to add on the Einstein-Hilbert ation.[7℄ If it is further al-lowed to add a osmologial onstant, then some remarkable simpli�ations follow. For a de�nite valueof the osmologial onstant, there is a set of modi�ed double dual urvature equations whose integra-bility onditions give preisely the variational �eld equations.[8, 9℄ Thus, stati spherially symmetrigeometries with dynamial torsion are determined by solving the modi�ed double duality equations.[10℄We now wish to study stationary, axially symmetri solutions to the modi�ed double dualityequations.[11℄ We also start from the Kerr-de Sitter metri, however, we aim in partiular to deter-mine geometries that in the limit of vanishing rotation parameter would go to the stati, spheriallysymmetri solutions given in referene [8℄. Those redued equations are given below. The long andtedious algebrai manipulations that led to this system of oupled ordinary di�erential equations areperformed using the exterior alulus pakage XTR for REDUCE we developed independently.2 The XTR pakageExterior algebra is gaining importane as a omputational tool in various branhes of theoretialphysis. XTR is a pakage whih enables omputations in this formalism in the algebrai simpli�ationlanguage REDUCE 3[12℄. The implementation language has been hosen to be REDUCE beause of itswidespread use and availability. XTR has build-in failities for omputations in gravitational and gauge�eld theories. There already exist some systems whih perform omputations in the same formalism.May be the most well-aquainted system that exists up to this time is EXCALC[13℄, whih is also apakage developed for REDUCE, and now is distributed along with it.XTR is short in ode and fast in omputation. It uses a di�erent syntax whih we believe is moreoherent with the general idea behind REDUCE. XTR should be regarded as an open-ode rather thanbeing a omputational blak-box. As an example, XTR enables delaration of form valued funtions atuser level and provides a handle to aess the form-degree(s) of the argument(s) as well as the abilityto delare the way to ompute the funtion's form-degree. Another example, XTR avoids the impliitassumption of summation onvention over repeated indies; in order to give exibility to the user forpossible oding of eÆient algorithms spei� to a problem. It is worthwhile to mention the failitybuild in XTR for solving dimensional redution problems whih will not be possible using EXCALC.The tehnique of dimensional redution an be desribed as:1. There exists an n-dimensional manifold Mn with a topology Mn1 �Mn2 .2. The physial quantities (like onnetion 1-forms, urvature 2-forms, the urvature salar, et.)are alulated for Mn.3. Similar physial quantities are alulated independently for Mn1 and Mn2 .4. Using those results the physial quantities for Mn are tried to be expressed in terms of thephysial quantities of Mn1 and Mn2 only. 2



The underlying topology of the manifold reets in the oordinate hart xM that it is partitioned as(x�; ym) where the indies run as �=0;1;:::;n1�1 and m=n1;:::;n. This idea of index separation is easilyhandled with the failities XTR provides. It is possible to de�ne the dimensional redution spaes,delare forms to exist in any of them, or to have ontributions to both of the spaes. Furthermore, itis also possible to delare indexed forms to have a lifestyle aording to their symboli indies. As itwould be expeted, failities, that de�ne the way the indies shall split while the dimensional redutionis arried out, are present.A manual, whih will be provided upon request, gives a full desription of XTR assuming the userhas a very limited knowledge of REDUCE and automated symboli omputation. Detailed inforamtionon the inner struture of the pakage whih will aid the advaned user for possible extensions, is alsoprovided.It is very ommon that the operations performed in exterior alulus fall into one of the two lasses,namely the one in whih the operations are antiderivations, therefore the distribution rule is:4(q ^ r) = 4q ^ r + (�)deg(q) q ^4rand the one in whih the operations are derivations, so the distribution rule is:2(q ^ r) = 2q ^ r + q ^2rXTR has build in failities to delare operators with these distribution rules. Also it is possible to havemultilinear operations.Among the apabilities of the pakage are:� Setting the dimensions and signature of the form spae.� Delaration of variables and REDUCE operators to be forms of any degree.� Performing the basi operations of exterior alulus, namely:{ Exterior (wedge) produtXTR knows the followings:� The ommutation rule, p ^ q = (�)deg(p) deg(q) � q ^ p� A wedge produt whih ontains a form in two di�erent plaes will ause the produt to be zero if this is anodd-degree-form.� Any wedge produt that sums up to a higher degree than the spae dimension in degrees is zero.� The wedge produt of two zero forms is the ordinary multipliation of them.{ Exterior di�erentiation� It ats as an antiderivative type of operator over the wedge produt.� Is nilpotent.� Ats as the ordinary di�erentiation if applied to zero-forms.� It is possible to ontrol the expansion into partial derivatives if it is a funtion that is subjet to the operation.{ Interior produt� It ats as an antiderivative type of operator over the wedge produt.� Is nilpotent.� It is possible to fore the system to leave the interior produts, whih an not be expliitely alulated, as theyare.{ Hodge duality� If the vierbein and the signature is provided then the system is able to arry out the substitution for the hodgeoperation.� It is known how multi hodges simplify.In addition to these apabilities XTR is also able to arry out the alulations in an orthonormal base,if it is provided with the vierbein/vielbein. The user has also ontrol over the exterior operations bysetting some ags of the pakage ON or OFF.It is worth to mention about the faility build in XTR for \Dimensional Redution".3



3 Exterior Calulus: Notation and ConventionsThe modi�ed double duality equations are�(Rab + �2 ea ^ eb) = �(Rab + �2 ea ^ eb)� (1)where � is an arbitrary real parameter. (ea) are the orthonormal oframes in terms of whih the metrig = �ab ea 
 eb (2)We take �ab = diag( � + + + ). Together with the onnetion 1-forms (!ab) the oframes satisfy thestruture equationsdea + !ab ^ eb = T a (3)d!ab + !a ^ !b = Rab (4)Here T a = T ab; eb ^ e are the torsion 2-forms and Rab = 12R ad; b e ^ ed are the urvature 2-forms ofspae-time. A � to the left of a form desribes its Hodge dual, de�ned so that the invariant volumeelement�1 = e0 ^ e1 ^ e2 ^ e3 = 14! �abd ea ^ eb ^ e ^ ed (5)A � to the right of a 2nd rank antisymmetri tensor denotes its dual. For instane,R�ab = 12!� dab Rd (6)The modi�ed double duality equations may also be written in the form�Rab +R�ab = � �(ea ^ eb) (7)4 Stationary, axisymmetri double dual urvaturesWe onsider solutions desribed by the Kerr de Sitter metri [14℄g = � Ærr2 + a2 os2 � "dt� a sin2 �d'1� 13ka2 #2 (8)+(r2 + a2 os2 �)(dr2Ær + d�21� 13ka2 os2 �)+sin2 � 1� 13ka2 os2 �r2 + a2 os2 � !"adt� (r2 + a2)d'1� 13ka2 #2expressed in terms of Boyer-Lindquist oordinates (t; r; �; ').[15℄ We de�ne the following for lateronveniene:(Z1)2 4= 1� k3a2(Z2)2 4= r2 + a2�2(Z3)2 4= 1� k3a2�2M2 4= 1� �2(Ær)2 4= k3 (r4 + a2r2) + r2 � 2mr + a2 4



where � = os �. m shows the Shwarzshild mass, a the rotation, and k is a real parameter. We takethe orthonormal o-framese0 = Ær(Z1)2Z2 dt� aM2Ær(Z1)2Z2 d' (9)e1 = aMZ3(Z1)2Z2 dt� MZ3(a2 + r2)(Z1)2Z2 d'e2 = Z2Ær dre3 = Z2MZ3 d�Then the Levi-Civita onnetion 1-forms are found as follows:_!01 = arMZ3(Z2)3 e2 + a�Ær(Z2)3 e3 (10)_!02 = 1(Z2)5Ær [a2�2(3a2�2Ær �Ær�r + ka2r3 � 3a2r + 3kr5 + 3r3) + 3mr4 � 3a2r3 + kr7℄ e0+ 3MZ1ar(Z2)3 e1_!03 = a2�MZ3(Z2)3 e0 � a�Ær(Z2)3 e1_!12 = �arMZ3(Z2)3 e0 + rÆr(Z2)3 e1_!13 = a�Ær(Z2)3 e0 + �3MZ3(Z2)3 [ka2(�2(Z2)2 �M2r2)� 3(a2 + r2)℄ e1_!23 = a2�MZ3(Z2)3 e2 � rÆr(Z2)3 e3We will onstrut solutions suh that the full onnetion 1-forms are of the following form:!01 = 
1e2 +
2e3 (11)!02 = 
3e0 +
4e1!03 = 
5e0 +
6e1!12 = 
7e0 +
8e1!13 = 
9e0 +
10e1!23 = 
11e2 +
12e3After manipulating the struture equations we get:�R01 +R�01 = S1 e0 ^ e1 + S2 e2 ^ e3 (12)�R02 +R�02 = S3 e0 ^ e2 + S4 e0 ^ e3 + S5 e1 ^ e2 + S6 e1 ^ e3�R03 +R�03 = S7 e0 ^ e2 + S8 e0 ^ e3 + S9 e1 ^ e2 + S10 e1 ^ e3�R12 +R�12 = �S10 e0 ^ e2 + S9 e0 ^ e3 � S8 e1 ^ e2 + S7 e1 ^ e3�R13 +R�13 = S6 e0 ^ e2 � S5 e0 ^ e3 + S4 e1 ^ e2 � S3 e1 ^ e3�R23 +R�23 = S2 e0 ^ e1 � S1 e2 ^ e3The funtions S1; : : : ; S10 will be given expliitly below. In terms of these funtions the modi�eddouble duality equations (7) readS2 = �S6 = S9 = � (13)5



S1 = S3 = S4 = S5 = S7 = S8 = S10 = 0These funtions lassify into two distint sets. Six of them, namely S1; S2; S4; S5; S8; S9 are of thegeneri form:1(Z2)3 nMZ3(a2�+ (Z2)2��)
A + Ær(r + (Z2)2�r)
B + (Z2)3[
C
D +
E
F +
G
H +
I
J ℄oThe atual expressions we give as a table:A B C�D E�F G�H I�JS1 �1 2 8 � 9 �7 � 10 6 � 3 �5 � 4S2 �11 12 8 � 3 �7 � 4 �6 � 9 5 � 10S4 9 �4 �8 � 1 �7 � 12 �6 � 11 5 � 2S5 3 10 �8 � 11 7 � 2 6 � 1 5 � 12S8 �7 �6 4 � 11 �3 � 2 �1 � 10 �12 � 9S9 5 �8 �4 � 1 �3 � 12 2 � 9 �11 � 10Table 1The �rst horizontal line in the table means:S1 = 1(Z2)3 n�MZ3(a2�+ (Z2)2��)
1 + Ær(r + (Z2)2�r)
2 + (Z2)3[
8
9 � 
7
10 +
6
3 � 
5
4℄oThe other expressions an be similarly written out.The seond set of funtions S3; S6; S7; S10 are of the generi form1(Z2)3Z3 f MZ3[�rÆr + (Z2)2�r(Ær) + (Z2)2Ær�r℄
B +[�(13kr2a2(2�2 � 1)� (r2 + a2) + 13ka4�4) +M2(Z3)2(Z2)2��℄
A ++2aMZ3[�Ær
C + rMZ3
D℄ + (Z2)3Z3[
E
F +
G
H +
I
J +
K
L℄ gThe atual expressions are read from the following table:A B C D E�F G�H I�J K�LS3 4 9 �3 �10 8 � 2 �7 � 11 6 � 12 5 � 1S6 10 �3 �9 4 �8 � 12 �7 � 1 6 � 2 �5 � 11S7 6 �7 �5 8 �4 � 12 �3 � 1 2 � 10 �11 � 9S10 �8 �5 7 6 �4 � 2 3 � 11 �1 � 9 �12 � 10Table 2Their solutions will be disussed elsewhere.[16℄5 ConlusionThe new developed exterior alulus pakage, XTR, for REDUCE is introdued. Besides its open odedesign philosophy whih enables exibility in speial appliations, this pakage provides additionalomputational abilities for the dimensional redution tehnique that makes it unique. In the futurethe pakage will be further developed to inlude� Ability to handle Lie algebra valued forms.� Automati simpli�ation of indexed quantities.6
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APPENDIXXTR extended REDUCE program for the problem desribed in the preeding setions.% Kerr-de Sitter metri in Boyer-Lindquist oordinates ver 2.1;COORDINATE TI,PHI,R,MU;OPERATOR T2,T3,M,DELR;OPERATOR CONNECTION, DCONNECTION;ANTISYMMETRIC CONNECTION, DCONNECTION;% T1 has no R,MU dependeny;LET T2 = T2(R,MU),T3 = T3(MU),M = M(MU),DELMU = T3(MU)*M(MU),DELR = DELR(R);LET DF(T2(R,MU),R) = R/T2,DF(T2(R,MU),MU) = AA**2*MU/T2,DF(T3(MU),MU) = (T1**2-1)*MU/T3,DF(M(MU),MU) = -MU/M,DF(DELR(R),R) = (2/3*K*R**3 + (2-T1**2)*R - MASS)/DELR;INTEGER PROCEDURE ETA(I); %Used for index raising and loweringIF I=0 THEN -1 ELSE 1;PROCEDURE W(A,B)$ Definition of how to obtain the1/2*(ETA(B)*(A .*. D E B) + onnetion one-forms.ETA(A)*(B .*. D E A) +FOR C:= 0 : 3 SUM(A .*. (B .*. D E C)*ETA C *E C)$MATRIX VIERBEIN(4,4), INVIERBEIN(4,4);VIERBEIN(1,1) := DELR/T1**2/T2 $VIERBEIN(1,2) := -AA*M**2*DELR/T1**2/T2 $VIERBEIN(2,1) := AA*M*T3/T1**2/T2 $VIERBEIN(2,2) := -M*(R**2+AA**2)*T3/T1**2/T2 $VIERBEIN(3,3) := T2/DELR $VIERBEIN(4,4) := T2/DELMU $% Below we define the inverse vierbein, infat, this ould be left ;% to the system by alling GENERATE as GENERATE(T) but the result ;% is not as ompat as the one below due to the matrix inversion ;% routines of REDUCE itself ;INVIERBEIN(1,1) := T1**2*(R**2+AA**2)/T2/DELR $INVIERBEIN(1,2) := -T1**2*AA*M/T2/T3 $INVIERBEIN(2,1) := T1**2*AA/T2*DELR $INVIERBEIN(2,2) := -T1**2/T2/T3/M $INVIERBEIN(3,3) := DELR/T2 $INVIERBEIN(4,4) := DELMU/T2 $ON DEREXP;GENERATE();ON INBASE; % We want the results in terms of the orthonormal oframes ;FACTOR E 0&E 1&E 2, E 0&E 1&E 3, E 0&E 2&E 3, E 1&E 2&E 3,E 0&E 1, E 0&E 2, E 0&E 3, E 1&E 2, E 1&E 3, E 2&E 3,E 0, E 1, E 2, E 3;OFF UNKINPRD$ % No unknown interior produt shall remain;8



% First ompute the onnetions and store the result into CONNECTION;FOR A := 0 : 3 DOFOR B:= A+1 : 3 DOCONNECTION(A,B) := W(A,B)$% Now ompute the D's of the onnetions;FOR A := 0 : 3 DOFOR B := A+1 : 3 DODCONNECTION(A,B) := D W(A,B)$% Compute the riemann 2-formS ;OPERATOR RIEMANN;ANTISYMMETRIC RIEMANN;FOR A := 0 : 3 DOFOR B := A+1 : 3 DORIEMANN(A,B) := DCONNECTION(A,B) +FOR C := 0 : 3 SUMETA(C)*CONNECTION(A,C) & CONNECTION(C,B);% PROMETEUS will ontain The modified double duality equations;FOR A := 0 : 3 DOFOR B := A+1 : 3 DOPROMETEUS(A,B) := RHODGE RIEMANN(A,B) + # RIEMANN(A,B);REMCOORDINATE TI,PHI,R,MU; % Just to speed up;LET T1**2 = 1 - K/3*AA**2,T2(R,MU)**2 = R**2 + AA**2*MU**2,T3(MU)**2 = 1-K/3*AA**2*MU**2,M(MU)**2 = 1-MU**2,DELR(R)**2 = K/3*(R**4+AA**2*R**2)+R**2-2*MASS*R+AA**2;% The outputting of the results;FOR A := 0 : 3 DO FOR B := A+1 : 3 DOCONNECTION(A,B) := CONNECTION(A,B);FOR A := 0 : 3 DO FOR B := A+1 : 3 DODCONNECTION(A,B) := DCONNECTION(A,B);FOR A := 0 : 3 DO FOR B := A+1 : 3 DORIEMANN(A,B) := RIEMANN(A,B);FOR A := 0 : 3 DO FOR B := A+1 : 3 DOPROMETEUS(A,B) := PROMETEUS(A,B);
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