
Attribute Grammar

• An attribute grammar is a CFG in which the grammar symbols have
attributes associated with them.

Later on, we’ll see that this actually extends the power beyond context-
freeness, but the form of the grammar is similar to CFGs in the sense
that there is still one symbol on the LHS (in general, this is called a
phrase structure grammar).

• AGs help define form-meaning correspondences.

ex: A calculator (this is syntax-directed evaluation)



CF rule semantic action
-------- -------------------

A -> A+T {A0.val = add(A1.val,T.val)}

F -> num {F.val = num.val}

ex: a decorated (annotated) parse tree for 5+3



A |A.val=A.val+T.val

��
���

���
��

HH
HHH

HHH
HH

A |A.val=T.val

T |T.val=F.val

F |F.val=num.val

num.val=5

+ T |T.val=F.val

F |F.val=num.val

num.val=3

• In what order the information is passed?

From RHS to LHS: synthesized attributes



From LHS to RHS: inherited attributes

• Synthesized: X.a → Y1.a · · ·Yn.a

X.a is a function of Yi.a

• Inherited: X.a → Y1.a · · ·Yn.a

Yk.a is a function of X and Yi.a, i 6= k

ex: synthesized vs. inherited derivation of numbers

Num -> Digit {num.val=digit.val}
Num -> Num Digit {Num1.val=Num2.val*10

+Digit.val}



Num -> Digit {Num1.val=Num1.val
+Digit.val}

Num -> Digit Num {Num2.val=(Num1.val
+Digit.val)*10}

assume initially num.val=0

423=

num.val=423

�
���

���
��

H
HHH

HHH
HH

num.val=42

���
���

HHH
HHH

num.val=4

digit.val=4

digit.val=2

digit.val=3



num.val=0

���
���

���

HHH
HHH

HHH

digit.val=4 num.val=40

�
���

���

H
HHH

HHH

digit.val=2 num.val=420

digit.val=3
num.val=423

• Composition of semantics reflects the underlying parsing strategy as
well.

ex: checking the declaration of variables in top-down parse (assume



D.dl=nil initially)

P -> D S {S.dl = D.dl}

D -> var V ; D {D2.dl=addlist(V.name,D1.dl)}

D -> null {}

S -> V := E ; S {check(V.name,S1.dl);
S2.dl=S1.dl}

V -> id {V.name=id.val}

At what time do we execute the semantic action? In above convention,
dependency of one attribute over another tells you when to execute
(after D is recognized in 1st rule)



But, the time of semantic action can be made explicit by putting it in a
position where it can be evaluated

P -> D {S.dl = D.dl} S

The latter convention is known as the translation scheme. It is a spe-
cial case of syntax-directed definition in which rule evaluation and at-
tribute evaluation use the same order and strategy.

But, in general, syntax-directed definitions can separate rule and at-
tribute evaluation by dependency graphs.

• S-attributed grammars: only synthesized attributes



L-attributed grammars: All inherited attributes in a rule are a function
only of symbols to their left

• if L-valued, a grammar can be used to parse top-down depth-first.

If not, leftmost derivations are unable to evaluate Yj for some j > k.

• YACC uses synthesized attributes

• antLR can do both: tree parsing

• Tree parsing decouples parsing strategy and semantic composition by



building Abstract Syntax Trees (AST), which can be traversed in any
order to maintain the attribute dependency.


