CENG477 Recitation 1 - Math Review

Ahmet Oğuz Akyüz
IATEX by Kadir Cenk Alpay

October 12, 2018

Introduction

In Computer Graphics (CG), points, vectors, and matrices are used extensively.

- Points are used to represent object coordinates.
- Vectors are used to represent light propagation, orientation of surfaces, direction of light sources and cameras.
- Matrices are used to represent object transformations.

Vectors

- In CG, we deal with 2D, 3D and 4D vectors.
E.g: a 2 D vector in column notation: $n=\left[\begin{array}{l}3 \\ 2\end{array}\right]$

The same 2D vector in row notation: $n=\left[\begin{array}{ll}3 & 2\end{array}\right]^{T}$

- All three vectors are the same vector n.
- That is, a vector does not have a unique position in space.
- A vector can be seen as a line segment that connects two points.

$$
\begin{aligned}
p & =p_{2}-p_{1} \\
-p & =p_{1}-p_{2}
\end{aligned}
$$

Vector Properties

- Each vector has two fundamental properties: direction and magnitude.
- If $n=\left[\begin{array}{l}n_{x} \\ n_{y}\end{array}\right]$, then $|n|=\sqrt{n_{x}^{2}+n_{y}^{2}}$
- Remember the Pythagorean theorem:

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2} \\
& c=\sqrt{a^{2}+b^{2}}
\end{aligned}
$$

- Direction is determined by the relative relationship of a vector's components:

$$
\begin{aligned}
& \tan (\alpha)=\frac{1}{3} \quad \alpha=\tan ^{-1}\left(\frac{1}{3}\right) \\
& \text { or } \\
& \alpha=\cos ^{-1}\left(\frac{3}{|n|}\right) \quad \alpha=\sin ^{-1}\left(\frac{1}{|n|}\right)
\end{aligned}
$$

- Two vectors with the same direction and magnitude are the same vectors.

3D Vectors

$$
n=\left[\begin{array}{lll}
n_{x} & n_{y} & n_{z}
\end{array}\right]^{T} \quad|n|=\sqrt{n_{x}^{2}+n_{y}^{2}+n_{z}^{2}}
$$

- For the direction, we now have two angles $(\theta$ and $\phi)$.
θ is the angle on the $\mathbf{x}-\mathbf{z}$ plane.
ϕ is the angle on the $\mathbf{y}-\mathrm{z}$ plane.

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(n_{z} / n_{x}\right) \\
& \phi=\tan ^{-1}\left(n_{z} / n_{y}\right)
\end{aligned}
$$

Vector Operations

- Scalar multiplication: $n=\left[\begin{array}{l}3 \\ 4 \\ 5\end{array}\right] \quad, \quad 2 n=\left[\begin{array}{c}6 \\ 8 \\ 10\end{array}\right] \quad, \quad k n=\left[\begin{array}{l}k n_{x} \\ k n_{y} \\ k n_{z}\end{array}\right]$
- Scalar multiplication only changes the magnitude, but not the direction.
- Addition and subtraction: $p=\left[\begin{array}{l}p_{x} \\ p_{y} \\ p_{z}\end{array}\right] \quad, \quad q=\left[\begin{array}{l}q_{x} \\ q_{y} \\ q_{z}\end{array}\right] \quad, \quad p+q=\left[\begin{array}{l}p_{x}+q_{x} \\ p_{y}+q_{y} \\ p_{z}+q_{z}\end{array}\right]$
$p+q=q+p$ (commutativity)
- But note that $p-q \neq q-p$

Unit Vectors

- A unit vector has a magnitude of 1.
E.g. $i=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ and $|i|=1$
- Converting a vector into a unit form is called normalizing and is achieved by dividing a vector's components by its magnitude.
E.g. $\quad r=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad$ then $\quad|r|=\sqrt{x^{2}+y^{2}+z^{2}} \quad$ and $\quad \hat{r}=\frac{1}{|r|} \cdot r \quad$ (Note that $|\hat{r}|=1$)

Cartesian Vectors

- Cartesian vectors are unit vectors that are aligned with the axes of the Cartesian coordinate system.

$$
i=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad j=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad k=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Every 3D vector can be represented with a linear combination of \mathbf{i}, \mathbf{j}, and \mathbf{k}.
E.g. $\quad r=a . i+b . j+c . k, \quad$ this is the same as $r=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$
E.g:
$r=a i+b j+c k$
$s=d i+e j+f k$
$r \pm s=(a \pm d) i+(b \pm e) j+(c \pm f) k$

Vector Multiplication

Scalar (Dot) Product

- If we have two vectors \mathbf{r} and \mathbf{s}, the dot product is equal to: $\quad r . s=|r||s| \cos (\theta)$
where the θ is the angle between the vectors.
- Dot product is the multiplication of the magnitudes
 of two vectors that are projected onto each other.

Ex:

$$
\begin{aligned}
r & =a i+b j+c k \\
s & =d i+e j+f k \\
r \cdot s & =(a i+b j+c k) \cdot(d i+e j+f k) \\
& =a i \cdot(d i+e j+f k)+b j \cdot(d i+e j+f k)+c k \cdot(d i+e j+f k) \\
& =a d(i \cdot i)+\underline{a e}(\mathbf{i} \cdot j)+\underline{a f}(\mathbf{i} \cdot \mathrm{k})+\underline{b d}(j \cdot \mathbf{j})+b e(j \cdot j)+\underline{\mathrm{b}}(\mathbf{j} \cdot \mathrm{k})+\operatorname{cd}(\mathrm{k} . \mathrm{i})+\operatorname{ce}(\mathrm{k} \cdot \mathrm{j})+c f(k \cdot k) \\
& =a d+b e+c f=|r \| s| \cos \theta
\end{aligned}
$$

What is $\mathrm{i} \cdot \mathrm{i}, \mathrm{j} \cdot \mathrm{j}, \mathrm{k} \cdot \mathrm{k} ?=1$
What is $\mathrm{i} \cdot \mathrm{j}, \mathrm{i} \cdot \mathrm{k}, \mathrm{j} \cdot \mathrm{k} ?=0$

- Note that the dot product of two vectors gives a scalar. Also note that r.s $=s . r$

Vector (Cross) Product

- Cross product of two vectors gives another vector; and this new vector is perpendicular to both vectors.

$$
r \times s=t \quad \text { such that } \quad|t|=|r \| s| \sin \theta
$$

- In other words, \mathbf{t} is perpendicular to the plane created by \mathbf{r} and \mathbf{s}.

Ex:

$$
\begin{aligned}
& r=a i+b j+c k \\
& s=d i+e j+f k
\end{aligned}
$$

$$
r \times s=(a i+b j+c k) \times(d i+e j+f k)
$$

$$
=a i \times(d i+e j+f k)+b j \times(d i+e j+f k)+c k \times(d i+e j+f k)
$$

$$
=\underline{a d}(i \times i)+a e(i \times j)+a f(i \times k)+b d(j \times i)+b e(j \times j)+b f(j \times k)+c d(k \times i)+c e(k \times j)+c f(k \times k)
$$

$\mathrm{i} \times \mathrm{i}=0, \mathrm{j} \times \mathrm{j}=0, \mathrm{k} \times \mathrm{k}=0$
$\mathrm{i} \times \mathrm{j}=\mathrm{k}, \mathrm{i} \times \mathrm{k}=-\mathrm{j}, \mathrm{j} \times \mathrm{k}=\mathrm{i}$ (assuming right hand rule)

$$
\begin{aligned}
& =a e k-a f j-b d k+b f i+c d j-c e i \\
& =(b f-c e) i+(c d-a f) j+(a e-b d) k
\end{aligned}
$$

- This result can be remembered using determinants.
- Note that $r \times s \neq s \times r$

Physical Meaning of Cross Product

$r \times s=t \quad$ where $\quad|t|=|r||s| \sin \theta$

- Area of the parallelogram formed by r and s :

$$
A=h .|s|=|r||s| \sin \theta
$$

$$
|h|=|r| \sin \theta
$$

Orthonormal Bases and Coordinate Systems

- Managing coordinate systems is one of the most important tasks of a CG program.
- Each object can be defined in its own coordinate system.
- Cameras, lights may be defined in other CS.
- Yet, everything has to work together somehow.
- An orthonormal basis is a basis made up of three perpendicular (ortho) unit (normal) vectors.
- Let's call these vectors u, v, w.
- This basis is right-handed provided that $w=u \times v$.

- Note that Cartesian vectors (i, j, k) form just one of infinitely many possible orthonormal basis.
- We call it the canonical or global basis.
- u, v, w vectors form a local basis.
- Note that u, v, w are defined in terms of i, j, k.

$$
\begin{array}{lc}
\text { E.g. } u=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \quad v=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \quad w=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
u=\frac{1}{\sqrt{2}} i+\frac{1}{\sqrt{2}} j \quad v=-\frac{1}{\sqrt{2}} i+\frac{1}{\sqrt{2}} j \quad w=k
\end{array}
$$

- Let's say vector a is stored in terms of the u, v, w CS. How can we find its coordinates in the canonical CS?

$$
a=\left[\begin{array}{l}
a_{u} \\
a_{v} \\
a_{w}
\end{array}\right], \quad \text { what is }\left[\begin{array}{c}
a_{i} \\
a_{j} \\
a_{k}
\end{array}\right] \text { ? }
$$

- Because u, v, w themselves are stored in the canonical CS, the expression $a_{u} \cdot u+a_{v} \cdot v+a_{w} \cdot w$ already gives a result in canonical CS.

$$
\text { E.g. Given } \quad a=\left[\begin{array}{c}
1 \\
2 \\
0.5
\end{array}\right] \quad \text { in } u, v, w \text { defined as } \quad u=\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \quad v=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right] \quad w=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

What are the coordinates of a in the global (canonical) XYZ coordinate system?

$$
1 \cdot\left[\begin{array}{c}
\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]+2 \cdot\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} \\
0
\end{array}\right]+0.5 \cdot\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{\sqrt{2}} \\
\frac{3}{\sqrt{2}} \\
\frac{1}{2}
\end{array}\right]
$$

- Now how can we do the opposite? How can we find the u, v, w coordinates of vector b stored in canonical CS?

For some u_{b}, v_{b}, w_{b} we know that $u_{b} u+v_{b} v+w_{b} w=b$

Take the dot product of both sides: $\left(u_{b} u+v_{b} v+w_{b} w\right) \cdot u=b \cdot u$
$u_{b}=b \cdot u$ that is, to get u_{b} take the dot product of u with b.
So, $\quad b_{u, v, w}=\left[\begin{array}{l}b \cdot u \\ b \cdot v \\ b \cdot w\end{array}\right]$ (e.g reverse the example above)

Constructing a Basis from a Single Vector

- Given a, we want w to point in the same direction as a.
$w=\frac{a}{|a|} \quad u=\frac{t \times w}{|t \times w|} \quad v=w \times u$

Matrices

- Matrices are especially used for transformations in CG. So, we need to know their properties.
- A matrix is an array of numeric elements that follow certain arithmetic rules.

$$
\text { E.g. } A=\left[\begin{array}{ccc}
1.7 & -1.2 & 4.2 \\
3.0 & 4.5 & -7.2
\end{array}\right] \quad A \text { is a } 2 \text { by } 3 \text { matrix. }
$$

Matrix Arithmetic

Multiplication by a Scalar: $2 \cdot\left[\begin{array}{cc}1 & -4 \\ 3 & 2\end{array}\right]=\left[\begin{array}{cc}2 & -8 \\ 6 & 4\end{array}\right] \quad, \quad k \cdot\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}k a & k b \\ k c & k d\end{array}\right]$
Matrix Addition: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]+\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a+e & b+f \\ c+g & d+h\end{array}\right]$
Matrix Multiplication: $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] \cdot\left[\begin{array}{ll}e & f \\ g & h\end{array}\right]=\left[\begin{array}{ll}a e+b g & a f+b h \\ c e+d g & c f+d h\end{array}\right]$

Two matrices can only be multiplied if the number of columns of the left matrix is equal to the number of rows of the right matrix:

$$
A_{m \times n} \cdot B_{n \times k}=C_{m \times k}
$$

Matrix-Vector Multiplication: We can think of an dimensional vector as an $n \times 1$ matrix:

$$
\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
a x+b y+c z \\
d x+e y+f z \\
g x+h y+i z
\end{array}\right]
$$

You can think of this as:

$$
x\left[\begin{array}{l}
a \\
d \\
g
\end{array}\right]+y\left[\begin{array}{l}
b \\
e \\
h
\end{array}\right]+z\left[\begin{array}{l}
c \\
f \\
i
\end{array}\right]
$$

Identity Matrix: An identity matrix is a square matrix whose elements are all zeros except the diagonal elements which are all 1.

$$
I_{2 \times 2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \quad I_{3 \times 3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Matrix Inverse: The inverse of a matrix A is denoted as A^{-1} and it has the following property:

$$
A \cdot A^{-1}=I
$$

Note that only square matrices have inverses.
Also note that $(A B)^{-1}=B^{-1} A^{-1}$. How about $(A B C)^{-1}$?

Matrix Transpose: Transposing a matrix changes the columns with the rows:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6
\end{array}\right]^{T}=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] \quad(A B)^{T}=B^{T} A^{T} \quad \text { (similar to the inversion) }
$$

The Determinants

The determinant of two 2-D vectors is equal to the signed area of the parallelogram formed by these vectors.

$$
\begin{aligned}
& \text { Area }=|a| \cdot|b| \cdot \sin \theta \\
& M=\left[\begin{array}{ll}
a_{x} & b_{x} \\
a_{y} & b_{y}
\end{array}\right], \quad|M|=\text { Area }=a_{x} b_{y}-a_{y} b_{x}
\end{aligned}
$$

In 3 D , the determinant of three $3-\mathrm{D}$ vectors is equal to the signed volume of the parallelepiped defined by the vectors.

$$
\begin{array}{r}
M=\left[\begin{array}{lll}
a_{x} & b_{x} & c_{x} \\
a_{y} & b_{y} & c_{y} \\
a_{z} & b_{z} & c_{z}
\end{array}\right] \\
|M|=\text { Volume }=\begin{array}{r}
a_{x}\left(b_{y} c_{z}-b_{z} c_{y}\right)- \\
b_{x}\left(a_{y} c_{z}-a_{z} c_{y}\right)+ \\
c_{x}\left(a_{y} b_{z}-a_{z} b_{y}\right)
\end{array}
\end{array}
$$

There is a trick for computing cross-product using the determinant:

$$
\begin{aligned}
& r=a i+b j+c k \\
& s=d i+e j+f k
\end{aligned}
$$

$r \times s:$
$\left|\begin{array}{lll}i & j & k \\ a & b & c \\ d & e & f\end{array}\right|=i(b f-c e)-j(a f-c d)+k(a e-b d)=i(b f-c e)+j(c d-a f)+k(a e-b d)$

