
SYSTEM PROGRAMMING:
SIGNALS

Onur Tolga Şehitoğlu

METU, CEng 536 Lecture notes
October, 2006

Signals System Programming: Signals

Signals

• Software interrupts

• The most primitive way of interprocess communication

• System generated, terminal interaction or process generated.

• A signal value is an integers in the range 1-32 or 1-64.(1..

CEng 536 Lecture Notes 2

Signals System Programming: Signals

Signal Explanation Default action
SIGALRM timer expired (alarm) terminate
SIGBUS hardware fault terminate+core
SIGCANCEL threads library internal use ignore
SIGCHLD change in status of child ignore
SIGCONT continue stopped process continue/ignore
SIGFPE arithmetic exception terminate+core
SIGHUP hangup terminate
SIGILL illegal instruction terminate+core
SIGINT terminal interrupt character terminate
SIGIO asynchronous I/O terminate/ignore
SIGKILL termination terminate
SIGLWP threads library internal use ignore
SIGPIPE write to pipe with no readers terminate
SIGPOLL pollable event (poll) terminate
SIGPROF profiling time alarm (setitimer) terminate
SIGPWR power fail/restart terminate/ignore
SIGQUIT terminal quit character terminate+core
SIGSEGV invalid memory reference terminate+core
SIGSTOP stop stop process
SIGSYS invalid system call terminate+core
SIGTERM termination terminate
SIGTRAP hardware fault terminate+core
SIGTSTP terminal stop character stop process
SIGTTIN background read from control tty stop process
SIGTTOU background write to control tty stop process
SIGUSR1 user-defined signal terminate
SIGUSR2 user-defined signal terminate

CEng 536 Lecture Notes 3

Handling a Signal System Programming: Signals

Handling a Signal

• Processes can alter default behaviour of signals (except SIGKILL). Pro-
cesses can register special functions called handlers in order to implement
their own action when a signal is received.

• #include<signal.h>
void (*signal(int signo, void (*func)(int)))(int);
returns the previos disposition or error.

• func value can be either SIG IGN, SIG DFL or a function address for
ignoring the signal, setting default behaviour for the signal and defining
the handler respectively.

• When the signal signo is received, execution is interrupted the corre-
sponding action is taken, then the execution may continue from where
it is left.

• Signal number is passed as the integer value to the handler function.

CEng 536 Lecture Notes 4

Handling a Signal System Programming: Signals

• System calls may be interrupted when they take too long (like terminal input).
Earlier systems return an error for the system call (EINTR). Current system
restart most of such system calls, so signal handling is almost transparent.

• Most signals are generated by the system. Also superuser processes and process
owners other process can generate/send signals: #include <signal.h>
int kill(pid t pid, int signo);
int raise(int signo);

• There are four different conditions for the pid argument to kill.

pid > 0 The signal is sent to the process whose process ID is pid.
pid == 0 The signal is sent to all processes whose process group ID equals the

process group ID of the sender
pid < 0 The signal is sent to all processes whose process group ID equals the

absolute value of pid
pid == -1 SVR4 and 4.3+BSD sends signal to all processes for superuser calls.

Otherwise all processes of the owner.

CEng 536 Lecture Notes 5

Alarm and Pause System Programming: Signals

Alarm and Pause

• Process set timers:
#include<unistd.h>
unsigned int alarm(unsigned int seconds);
int pause(void);

• alarm() Sets an alarm clock scheduled to send SIGALRM after seconds
seconds to current process.

• pause(void) waits until the current process receives a signal.

CEng 536 Lecture Notes 6

Reliable Signals System Programming: Signals

Reliable Signals

• Old Unix system signals were unreliable. Race conditions: getting an-
other signal while current signal is being handled?

• All signals were delivered, ignored, handled or lost.

• Current signal implementation is reliable and more functional. Signals
can be blocked. System keeps blocked signals in the pending state and
delivers them when signal is unblocked. Restart of the system calls can
be controlled.

CEng 536 Lecture Notes 7

Signal Sets System Programming: Signals

Signal Sets

• Bitset manipulation functions in order to deal signal sets:
#include <signal.h>
int sigemptyset(sigset t *set);
int sigfillset(sigset t *set);
int sigaddset(sigset t *set, int signo);
int sigdelset(sigset t *set, int signo);

int sigismember(const sigset t *set, int signo);

• sigemptyset initialize the set to emptyset, sigfillset initialize the
set to universal set (all signals included). sigaddset and sigdelset
adds signo to set and subtracts it from the set respectively. sigismember
is for member check.

CEng 536 Lecture Notes 8

Blocked Signals System Programming: Signals

Blocked Signals

• The set of blocked signals can be received and set by using sigprocmask
system call.
#include <signal.h>
int sigprocmask(int how, const sigset t * set,

sigset t * oset);

• how is either SIG BLOCK, SIG UNBLOCK, or SIG SETMASK. If curr is the
current set:
SIG BLOCK : curr=curr ||set
SIG UNBLOCK : curr=curr && ¬set
SIG SETMASK : curr=set

• In order to inspect but not change the current mask: set is given as
NULL.

• In order to change but not inspect old value: oset is given as NULL. If
both non-NULL, mask is changed then old mask returned.

CEng 536 Lecture Notes 9

Blocked Signals System Programming: Signals

• In order to get list of pending (blocked but received) signals: #include
<signal.h> int sigpending(sigset t *set);

• Fills the current set of pending signals into set.

• Pending signals are delivered as soon as the signal is unblocked.

CEng 536 Lecture Notes 10

Handling the signal System Programming: Signals

Handling the signal

• #include <signal.h>
int sigaction(int signo, const struct sigaction * act,

struct sigaction * oact);

• sigaction structure:

struct sigaction {
void (*sa_handler)(int); /* addr of signal handler, */

/* or SIG_IGN, or SIG_DFL */
sigset_t sa_mask; /* additional signals to block */
int sa_flags; /* signal options*/

};

CEng 536 Lecture Notes 11

Handling the signal System Programming: Signals

#include "apue.h"
Sigfunc * signal(int signo, Sigfunc *func)
{ struct sigaction act, oact;

act.sa_handler = func;
sigemptyset(&act.sa_mask);
act.sa_flags = 0;
if (signo == SIGALRM) {

#ifdef SA_INTERRUPT
act.sa_flags |= SA_INTERRUPT;

#endif
} else {

#ifdef SA_RESTART
act.sa_flags |= SA_RESTART;

#endif
}
if (sigaction(signo, &act, &oact) < 0)

return(SIG_ERR);
return(oact.sa_handler);

}

CEng 536 Lecture Notes 12

	Signals
	Handling a Signal
	Alarm and Pause
	Reliable Signals
	Signal Sets
	Blocked Signals
	Handling the signal

