
CEng 713 Evolutionary Computation, Lecture Notes

Introduction to Introduction to
Evolutionary Evolutionary
ComputationComputation

Evolutionary Computation

● Elements of Evolution:

– Reproduction

– Random variation

– Competition

– Selection of contending individuals from a
population.

● Evolutionary computation: computational
methods simulating evolution, mostly used to
find a solution in a large search space.

Optimization

● Environment of an organism and its survival chance
in the environment vs. evaluation of parameter to
optimize for a solution candidate.

● Start from a random sample of solution candidates
and simulate natural evolution, optimizing for an
evaluation function (fitness of the individual).

● Classical methods: gradient descent, deterministic
hill climbing, random search.

● Competitive problems: nonlinear, stochastic,
temporal, or chaotic components with multiple local
optima.

Robust Adaptation

● Problems with dynamic nature. Environment and
parameters change in time.

● Adapting new environment by recombining the
succesfull pieces from independent individuals.

Machine Intelligence

● Capability of a system to adapt its behavior to
meet desired goals in a range of environments.

● Evolution of organisms natural intelligence
● Evolutionary computation can be used to evolve

the data in an artificial intelligence model.

Biology

● Using computation to simulate the evolution and
understand the evolution of organisms.

● Rather using computation in biology then
simulating biological evolution for computation.

History

● The idea of using simulated evolution to solve
engineering and design problems have been around
since the 1950’s.
– Bremermann, 1962

– Box, 1957

– Friedberg, 1958

● However, it wasn’t until the early 1960’s that we
began to see three influential forms of EC emerge:
– Evolutionary Programming (Lawrence Fogel, 1962),

– Genetic Algorithms (Holland, 1962)

– Evolution Strategies (Rechenberg, 1965 & Schwefel, 1968),

● The designers of each of the EC techniques saw
that their particular problems could be solved
via simulated evolution.
– Fogel was concerned with solving prediction

problems.
– Rechenberg & Schwefel were concerned with

solving continous parameter optimization
problems.

– Holland was concerned with developing robust
adaptive systems.

● Each of these researchers successfully developed
appropriate ECs for their particular problems
independently.

● In the US, Genetic Algorithms have become the
most popular EC technique due to a book by David
E. Goldberg (1989) entitled, “Genetic Algorithms in
Search, Optimization & Machine Learning”.

● This book explained the concept of Genetic Search in
such a way the a wide variety of engineers and
scientist could understand and apply.

● However, a number of other books helped fuel the growing
interest in EC:

– Lawrence Davis’, “Handbook of Genetic Algorithms”, (1991),

– Zbigniew Michalewicz’ book (1992), “Genetic Algorithms + Data
Structures = Evolution Programs”.

– John R. Koza’s “Genetic Programming” (1992), and

– D. B. Fogel’s 1995 book entitled, “Evolutionary Computation:
Toward a New Philosophy of Machine Intelligence”.

● These books not only fueled interest in EC but they also were
instrumental in bringing together the EP, ES, and GA concepts
together in a way that fostered unity and an explosion of new
and exciting forms of EC.

History: The Evolution of EC

● First Generation EC
– Evolutionary Programming (Fogel)

– Genetic Algorithms (Holland)

– Evolution Strategies (Rechenberg, Schwefel)

● Second Generation EC
– Genetic Evolution of Data Structures (Michalewicz)

– Genetic Evolution of Programs (Koza)

– Hybrid Genetic Search (Davis)

– Tabu Search (Glover)

● Third Generation EC
– Artificial Immune Systems (Forrest)

– Cultural Algorithms (Reynolds)

– DNA Computing (Adleman)

– Ant Colony Optimization (Dorigo)

– Particle Swarm Optimization (Kennedy & Eberhart)

– Memetic Algorithms

– Estimation of Distribution Algorithms

Applications of EC

● Evolutionary Computation has been successfully
applied to a wide range of problems including:

– Aircraft Design,

– Routing in Communications Networks,

– Tracking Windshear,

– Game Playing (Checkers [Fogel])

– Robotics,

– Air Traffic Control,

– Design,

– Scheduling,

– Machine Learning,

– Pattern Recognition,

– Job Shop Scheduling,

– VLSI Circuit Layout,

– Strike Force Allocation,

– Theme Park Tours (Disney Land/World)
– Market Forecasting,
– Egg Price Forecasting,
– Design of Filters and Barriers,
– Data-Mining,
– User-Mining,
– Resource Allocation,
– Path Planning,
– Etc.

EC in General
● An evolution function to

optimize (fitness function).
 Usually: Multi-dimensional,
 multimodal, discontinous.

● A sample of search space in
 a group of solution candidates
 (population)

● A generation procedure to determine the population
for the next generation (selection, crossover,
mutation)

● Pseudo code for a sample EC

t=0
population(t)=randomPopulation()
evaluate(population(t))
while (notDone)

parents(t)=selectfrom(population(t))
offsprings(t)=createfrom(parents(t))
evaluate(offsprings(t))
population(t+1)=selectfrom(parents(t),offsprings(t))
t=t+1

● In each generation, mean fitness of the
population is expected to increase.

● EA's vary depending on:

– Representation/encoding of an individual
(binary, integer, floating point, or data
structures,...)

– Population size and organization
(multiple populations, parallel evolving
populations, single individual populations,...)

– The time of selection and selection procedure
(selection for recombination, selection for
survival,...)

– Recombination, mutation procedures

● Advantage over gradient methods:

– Population represents a collected statistics about
the search space.

– Exploring search space while exploiting the
information gathered during the evolution.

– Suitable for discontinous functions,
nondifferentiable, multimodal, noisy surfaces.

● Not suitable for linear, quadratic, strongly
convex, unimodal, separable problems.

● No free lunch: there is no superior algorithm to
solve all class of algorithms.

Types of EC

● Historical classification: EP, GA, ES.
● Genetic Programming is considered an additional

class.
● Practically, there are many hybrid models not

fitting any of the classes completely. Class
distinction gets fuzzy.

● Many different names for many algorithms
having similar general form.

Genetic Algorithms
● John Holland (1975)

– linear bitstring representation

– fitness proportional selection

– crossover
● Denotes the class of evolutionary algorithms having

a linear array representation with a group of
individuals, involving crossover, mutation and
selection in each generation cycle.

● binary, integer, floating point representations,
parent and offspring population size, selection
strategy, crossover, mutation and different
operators may vary.

Evolution Strategies

● `Evolutionsstrategie'
● Bienert, Rechenberg, Schwefel, T.U. of Berlin,

1964.
● a single individual encoded as a real-vector.
● Vector is mutated by adding a normally

distributed real vector with a variance.
● Contemporary approaches involve

recombination, selection and adaptation of
algorithm parameters during optimization.

Evolutionary Programming

● Lawrence J. Fogel, 1960.
● Evolving a population of finite state machines.
● Fogel's EP differs from GA that it does not

involve crossover, it involves special mutation
operations based on behavior, and its selection
strategy.

Genetic Programming

● Evolutionary process to evolve computer
programs.

● First experiments, Smith (1980), Cramer
(1985).

● First comprehensive study, John Koza (1992)
● Tree structured encodings with specific

recombination and mutation operations
involved.

● Some variants choose linear encodings, i.e.
program texts with a certain alphabet.

