
CEng 713 Evolutionary Computation, Lecture Notes

Introduction to Introduction to 
Evolutionary Evolutionary 
ComputationComputation



Evolutionary Computation

● Elements of Evolution:

– Reproduction

– Random variation

– Competition

– Selection of contending individuals from a 
population.

● Evolutionary computation: computational 
methods simulating evolution, mostly used to 
find a solution in a large search space.



Optimization

● Environment of an organism and its survival chance 
in the environment vs. evaluation of parameter to 
optimize for a solution candidate.

● Start from a random sample of solution candidates 
and simulate natural evolution, optimizing for an 
evaluation function (fitness of the individual).

● Classical methods: gradient descent, deterministic 
hill climbing, random search.

● Competitive problems: nonlinear, stochastic, 
temporal, or chaotic components with multiple local 
optima.



Robust Adaptation

● Problems with dynamic nature. Environment and 
parameters change in time.

● Adapting new environment by recombining the 
succesfull pieces from independent individuals.



Machine Intelligence

● Capability of a system to adapt its behavior to 
meet desired goals in a range of environments.

● Evolution of organisms  natural intelligence
● Evolutionary computation can be used to evolve 

the data in an artificial intelligence model.



Biology

● Using computation to simulate the evolution and 
understand the evolution of organisms.

● Rather using computation in biology then 
simulating biological evolution for computation.



History

● The idea of using simulated evolution to solve 
engineering and design problems have been around 
since the 1950’s.
– Bremermann, 1962

– Box, 1957

– Friedberg, 1958

● However, it wasn’t until the early 1960’s that we 
began to see three influential forms of EC emerge:
– Evolutionary Programming (Lawrence Fogel, 1962),

– Genetic Algorithms (Holland, 1962)

– Evolution Strategies (Rechenberg, 1965 & Schwefel, 1968),



● The designers of each of the EC techniques saw 
that their particular problems could be solved 
via simulated evolution.
– Fogel was concerned with solving prediction 

problems.
– Rechenberg & Schwefel were concerned with 

solving continous parameter optimization 
problems.

– Holland was concerned with developing robust 
adaptive systems.



● Each of these researchers successfully developed 
appropriate ECs for their particular problems 
independently.

● In the US, Genetic Algorithms have become the 
most popular EC technique due to a book by David 
E. Goldberg (1989) entitled, “Genetic Algorithms in 
Search, Optimization & Machine Learning”.

● This book explained the concept of Genetic Search in 
such a way the a wide variety of engineers and 
scientist could understand and apply.



● However, a number of other books helped fuel the growing 
interest in EC:

– Lawrence Davis’, “Handbook of Genetic Algorithms”, (1991),

– Zbigniew Michalewicz’ book (1992), “Genetic Algorithms + Data 
Structures = Evolution Programs”.

– John R. Koza’s “Genetic Programming” (1992), and 

– D. B. Fogel’s 1995 book entitled, “Evolutionary Computation: 
Toward a New Philosophy of Machine Intelligence”.

● These books not only fueled interest in EC but they also were 
instrumental in bringing together the EP, ES, and GA concepts 
together in a way that fostered unity and an explosion of new 
and exciting forms of EC.



History: The Evolution of EC

● First Generation EC
– Evolutionary Programming (Fogel)

– Genetic Algorithms (Holland)

– Evolution Strategies (Rechenberg, Schwefel)

● Second Generation EC
– Genetic Evolution of Data Structures (Michalewicz)

– Genetic Evolution of Programs (Koza)

– Hybrid Genetic Search (Davis)

– Tabu Search (Glover)



● Third Generation EC
– Artificial Immune Systems (Forrest)

– Cultural Algorithms (Reynolds)

– DNA Computing (Adleman)

– Ant Colony Optimization (Dorigo)

– Particle Swarm Optimization (Kennedy & Eberhart)

– Memetic Algorithms

– Estimation of Distribution Algorithms



Applications of EC

● Evolutionary Computation has been successfully 
applied to a wide range of problems including:

– Aircraft Design,

– Routing in Communications Networks,

– Tracking Windshear,

– Game Playing (Checkers [Fogel])

– Robotics,



– Air Traffic Control,

– Design,

– Scheduling,

– Machine Learning,

– Pattern Recognition,

– Job Shop Scheduling,

– VLSI Circuit Layout,

– Strike Force Allocation,



– Theme Park Tours (Disney Land/World)
– Market Forecasting,
– Egg Price Forecasting,
– Design of Filters and Barriers,
– Data-Mining,
– User-Mining,
– Resource Allocation,
– Path Planning,
– Etc.



EC in General
● An evolution function to 

optimize (fitness function).
 Usually: Multi-dimensional,
 multimodal,  discontinous.

● A sample of search space in
 a group of solution candidates
 (population)

● A generation procedure to determine the population 
for the next generation (selection, crossover, 
mutation)



● Pseudo code for a sample EC

t=0
population(t)=randomPopulation()
evaluate(population(t))
while (notDone)

parents(t)=selectfrom(population(t))
offsprings(t)=createfrom(parents(t))
evaluate(offsprings(t))
population(t+1)=selectfrom(parents(t),offsprings(t))
t=t+1

● In each generation, mean fitness of the 
population is expected to increase.



● EA's vary depending on:

– Representation/encoding of an individual
(binary, integer, floating point, or data 
structures,...)

– Population size and organization
(multiple populations, parallel evolving 
populations, single individual populations,...)

– The time of selection and selection procedure
(selection for recombination, selection for 
survival,...)

– Recombination, mutation procedures



● Advantage over gradient methods:

– Population represents a collected statistics about 
the search space.

– Exploring search space while exploiting the 
information gathered during the evolution.

– Suitable for discontinous functions, 
nondifferentiable, multimodal, noisy surfaces.

● Not suitable for linear, quadratic, strongly 
convex, unimodal, separable problems.

● No free lunch: there is no superior algorithm to 
solve all class of algorithms.



Types of EC

● Historical classification: EP, GA, ES.
● Genetic Programming is considered an additional 

class.
● Practically, there are many hybrid models not 

fitting any of the classes completely. Class 
distinction gets fuzzy.

● Many different names for many algorithms 
having similar general form.



Genetic Algorithms
● John Holland (1975)

– linear bitstring representation

– fitness proportional selection

– crossover
● Denotes the class of evolutionary algorithms having 

a linear array representation with a group of 
individuals, involving crossover, mutation and 
selection in each generation cycle.

● binary, integer, floating point representations, 
parent and offspring population size, selection 
strategy, crossover, mutation and different 
operators may vary.



Evolution Strategies

● `Evolutionsstrategie'
● Bienert, Rechenberg, Schwefel, T.U. of Berlin, 

1964.
● a single individual encoded as a real-vector.
● Vector is mutated by adding a normally 

distributed real vector with a variance.
● Contemporary approaches involve 

recombination, selection and adaptation of 
algorithm parameters during optimization.



Evolutionary Programming

● Lawrence J. Fogel, 1960.
● Evolving a population of finite state machines.
● Fogel's EP differs from GA that it does not 

involve crossover, it involves special mutation 
operations based on behavior, and its selection 
strategy.



Genetic Programming

● Evolutionary process to evolve computer 
programs.

● First experiments, Smith (1980), Cramer 
(1985).

● First comprehensive study, John Koza (1992)
● Tree structured encodings with specific 

recombination and mutation operations 
involved.

● Some variants choose linear encodings, i.e. 
program texts with a certain alphabet.


