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ABSTRACT

High dynamic range images may be created by capturing multi-
ple images of a scene with varying exposures. Images created in
this manner are prone to ghosting artifacts, which appear if there is
movement in the scene at the time of capture. This paper describes
a novel approach to removing ghosting artifacts from high dynamic
range images, without the need for explicit object detection and mo-
tion estimation. Weights are computed iteratively and then applied
to pixels to determine their contribution to the final image. We use
a non-parametric model for the static part of the scene, and a pixel's
membership in this model determines its weight. In contrast to pre-
vious approaches, our technique does not rely on explicit object de-
tection, tracking, or pixelwise motion estimates. Ghost-free images
of different scenes demonstrate the effectiveness of our technique.

Index Terms- Image generation, Pattern recognition

1. INTRODUCTION

The illumination of typical world scenes around us varies over sev-
eral orders of magnitude. Conventional sensors in image capture
devices are only able to capture a limited part of this range. In-
stead, spectrally weighted radiance of a scene may be captured more
accurately by spatially varying pixel exposures [1], using multiple
imaging devices, or devices that use special sensors [2]. These de-
vices are expensive and will not be affordable for the average con-
sumer for some years to come [2]. Meanwhile, there exist methods
of obtaining high dynamic range (HDR) images using conventional
devices [3, 4]. Such techniques require the user to take several im-
ages of the same scene at different exposures, and apply a weighted
average over these to compute radiance values of the scene.

Multiple exposure techniques have several disadvantages. For
instance, if there is any movement in the scene while the exposures
are being captured, the moving objects will appear in different lo-
cations in these exposures. Therefore, merging corresponding pixel
values from different exposures to produce an HDR image will cause
a ghosting effect (see Figure 3). As such, existing techniques are
only useful for creating HDR images of scenes that are completely
still. This is rather restricting as most scenes contain motion. With-
out a solution to this problem, we are unable to use multiple capture
techniques to produce HDR images of scenes that have any moving
objects, such as people, animals, and vehicles. This is especially
problematic in natural scenes where wind causes dynamic behavior
in leaves, trees, flowers, clouds, etc.

One solution to this problem is to track the movement of ob-
jects across exposures, and average pixel values according to this
movement. For instance, Bogoni [5] estimates an optical flow field
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between the different exposures, and warps these exposures such
that all scene features are in accurate alignment. Similarly, Kang
et al. [6] use gradient-based optical flow between successive frames
to compute a dense motion field, which is then used to warp pixels
in exposures so that the appropriate values may be averaged together
to generate a ghost-free HDR image. Techniques that use motion
estimation work as long as the motion estimation is accurate. Cur-
rently, there are no approaches to motion estimation that work reli-
ably for all kinds of movement. For instance, such techniques will
fail for scenes with effects such as inter-reflections, specularities, and
translucency [6]. Even for simple Lambertian objects, motion esti-
mation fails when objects appear in some exposures and not others
due to occlusion [7].

One solution that avoids motion estimation altogether, assumes
that ghosting occurs in regions where the dynamic range is low e-
nough to be represented accurately by a single exposure [2]. First,
regions in the image where ghosting is likely to occur are detected
by computing the weighted variance of pixel values for each loca-
tion in the image, and selecting regions where this variance is above
a threshold. Then, for each of these regions, a single exposure is se-
lected from the exposure sequence, and its values are used directly in
the HDR image. While this technique removes easily segmentable
ghosts well, it will fail to capture ghosting in regions where the ob-
ject color is similar to the background. Jacobs et al. [8] address
this issue by applying the threshold on a measure they derive from
entropy, which is invariant to the amount of contrast in the data.
Regions that are detected as possible ghost regions in this manner
are again replaced with values from single exposures. This solution
works well for many scenes, but fails when ghosting occurs in re-
gions where the dynamic range is high. This locally high dynamic
range may be due to the presence of features in the scene such as
windows, strong highlights, or light sources.

In this work, we present a novel approach to removing ghosts
from HDR images. Unlike previous techniques, the proposed ap-
proach does not require any intermediate representation, such as op-
tical flow or explicit detection. Instead, we generate an HDR image
directly from image information. Thus, our approach is not condi-
tional on the success of some intermediate process, such as optical
flow computation or object detection. We make an important devia-
tion from the standard HDR image generation process by iteratively
weighting the contribution of each pixel according to its chance of
belonging to the static part of the scene, (henceforth referred to as
background), as well as its chance of being correctly exposed. We
use a non-parametric model of the background, which enables us to
compute a pixel's membership in the model, and therefore its weight.
Since the model is non-parametric, we do not impose any restrictions
on the background. The only assumption we make is that the expo-
sure sequence predominantly captures the background, so that in any
local region in image space, the number of pixels that capture the
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background is significantly greater than the pixels that capture the
object. Given this assumption, the neighborhood of a pixel in image
space may serve as a reasonable representation of the background,
and the probability of the pixel's membership in this neighborhood
may serve as the weight for that pixel.

The remainder of this paper is organized as follows: We de-
scribe the standard HDR image generation process in Section 2, and
explain how we improve this process to remove ghosting artifacts.
In Section 3, we present images in which ghosts have been removed
using our technique, and compare these with results from previous
work.

2. ITERATIVE GHOST REMOVAL

A set of exposures of the same scene may be used to obtain the cam-
era response function g(.), of the capturing device, which is then
applied to the exposures to convert them to radiance maps. The in-
dividual radiance maps, normalized by their exposure time, are av-
eraged together to generate an HDR image [2]:

E(i, j)

ZR 1I w(Zr(i j)) (g ( r(ii)))

Er=1 W ( Zr (i,j))
(1)

where E(i, j) is the radiance at location (i, j) in the image, r denotes
the exposure, R is the total number of exposures, Z, (i, j) is the
value of the pixel at location (i, j) in the r'h exposure, (ranging
from 0 to 255) and A t, is the exposure time of the rth exposure.
Note that the above is a weighted average of the radiance in each
exposure. w(.) is typically chosen to diminish the contribution of
pixel values that are under- or over-exposed. This weight is small
for pixel values that are close to 0 and 255. The above equation is
typically evaluated thrice for each pixel, for the red, green, and blue
channels [2, 8]. However, since the three channels are correlated for
typical natural images, a single weight for a pixel is necessary to
preserve the original information [5].

We make an important improvement to this process by comput-
ing weights that are determined not only by their probability of being
correctly exposed, but also by the probability that they capture the
background. Unlike the first attribute, which is determined by the
pixel's value, there is no existing method to find the probability that
a pixel captures part of a moving object. The object may be of any
color, shape, or size, and its movement may be slow or fast, rigid or
non-rigid. These features make it difficult to model the background,
and to assign weights to pixels accordingly. Given a set of R ex-
posures, each of size I x J, our objective is to compute a set of
I x J x R weights, that will be used to determine the contribution
of each pixel in the exposure sequence.

We equate this problem to that of finding the probability that
a pixel belongs to the background. We use a non-parametric esti-
mation scheme to determine this probability so as to impose as few
restrictions on our data as possible. Such estimation schemes give a
high probability of membership to elements that lie in densely popu-
lated regions of the distribution's feature space. In particular, we use
the kernel density estimator to compute this probability [9, 10]. To
find the probability that a vector x belongs to a class F, an estimate
can be computed:

where M is the number of vectors in the class, Ym is the m'h vector
in the class, H is a symmetric, positive definite, d x d bandwidth
matrix, and

KH(X) =H2HK(H- x), (3)

where K is a d-variate kernel function. The d-variate Gaussian den-
sity is a common choice for the kernel K:

KH(X) = |H| 2(27) 2exp(--xH lx).
2 (4)

and we use this kernel function in our implementation.
We represent each pixel by a vector in a feature space such that

Xijr C R5, i = 1,2,...1, j = 1,2,... J, r = 1,2,...R. Three dimensions
represent color, and two represent the location of the pixel in image
space. We use the decorrelated Lo4? color space to represent each
pixel's color values in the feature space, as this color space is per-
ceptually uniform to a first approximation [11]. Our use of spatial
information exploits dependencies between proximal pixels.

For a vector Xir, the background is represented by a p x q x
s neighborhood, N, around the vector. Thus, for each Xijr F =
{Ypqs (p, q, s) C N(Xijr), (p, q) :7 (i, j), and s = 1,2,...R}, (see
Figure 1). This representation of the background remains the same
for all the r pixels at location (i j).

J

R

Exposure 1

Exposure R-1

Exposure R

Fig. 1. The arrays represent images of the same scene taken at R
different exposures. For each vector xij, (the white elements shown
in the centers of the arrays), Ypqs consists of a p x q neighborhood
around (i, j) in all the R exposures (shown as the dark gray region
around the center elements). p and q equal three in the above dia-
gram. Note that the representation of the background is identical for
all pixels at location (i j).

Thus far, we have assumed that all vectors Ypqs are equally a
part of the background. In practice, we know that many of these
vectors represent pixels that are under- or over-exposed, and there-
fore do not represent the background well. These should not be con-
sidered a part of the background. Also, some vectors represent pix-
els that capture the moving object, and are also not a valid part of
the background. Initially, while we do not know which vectors rep-
resent the moving object, we may reduce the effect of under- and
over-exposed vectors by weighting their contribution in kernel den-
sity estimation [12]. The weights assigned to each vector Ypqs are
based on a simple hat function [2] shown in Figure 2. This function
is computed as follows:

m

P(xlF) = M-1 , KH(X -Y,)
m= I

(2) w(Z) =1 (2.2 5
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Fig. 2. Initial weights assigned to each pixel as a function of pixel
value.

where Z represents pixel values.
This produces three weights for each pixel. The final weight,

wpqs, is an average of these three. Using these weights, the proba-
bility that a vector xij, belongs to the background, now becomes:

P(XijrIF) = p,q,sEN(xijr) WpqsKH(Xjr -Ypqs) (6)

Ep,q,seN(xij,) Wpqs

If our assumption holds and the neighborhood around each pixel
predominantly represents the background, vectors which capture the
moving object will get lower probabilities than vectors that capture
the background. Therefore, once the probabilities have been com-
puted for each vector Xir, these can be used as weights of the cor-
responding pixels in HDR image generation. An HDR image created
using these weights will show diminished ghosting as compared to
an image generated using the initial weights, which are determined
only by absolute pixel values.

Now that we have a better set of weights for each pixel, we can
repeat the above process of kernel density estimation, this time the
initial weights of the vectors Ypqs will be the ones computed in the
previous iteration of kernel density estimation as shown below:

Wpqs,t+l = W(Z, (p, q)) P(xpqs F) (7)

where w (Z, (p, q)) is the initial weight for the pixel at location (p, q)
with exposure s, P(xpqs IF) is the weight of the pixel as determined
by kernel density estimation, and Wpqs,t+l is the weight that will be
used in kernel density estimation in iteration t + 1. As before, we
want to diminish the probability of pixels that are under- or over-
exposed, and we multiply the newly computed weights with the ini-
tial weights obtained from the hat function before using them in den-
sity estimation. Now, even in cases where the distribution around a
pixel is predominantly composed of under- or over-exposed pixels,
they do not get high weights, as their initial weights are low.

3. RESULTS AND CONCLUSIONS

We used a Nikon D2X camera to capture all the exposures required
to create HDR images. We used completely manual settings, dou-
bling only the exposure time between consecutive captures of the
same scene. A tripod was used to keep the camera stable during
image capture. All HDR images shown in this paper have been
tonemapped with the Photographic tonemapping operator [13]. Our

Fig. 3. The left column shows the second, fifth, and seventh expo-
sure of a sequence in which people are walking across the scene.
The right column shows tonemapped HDR images that are gener-
ated using (top) weights determined only by absolute pixel values,
(middle) weights that were estimated with a single iteration of our
algorithm, (bottom) weights that were estimated after nine iterations
of our algorithm.

algorithm requires the user to specify the size of the neighborhood
around a pixel, which we have kept at a constant 3 x 3 for all the
results that we show in this section. The user is also required to
specify the matrix H = diag(hx, hy7 hL, h,, ha), which we kept
as the identity matrix for our runs. Figure 3 shows our algorithm ap-
plied to a scene in which people are walking by. In this sequence, the
amount ofmovement is large, and ghosting occurs in most of the im-
age as a result. In Figure 4, ghosting is more localized, but involves
the movement of a highlight (on the edge of the green book), which
implies that the ghosting region has high dynamic range. Successive
iterations of our algorithm remove both instances of ghosting from
the HDR images.

We have compared our results with the approach described in
[2], using Photosphere. Figure 5 shows results generated from a set
of nine exposures of a flame. Due to air movement, and the high
contrast of a flame with its background, this is a notoriously diffi-
cult scene to capture. The method in [2] does not correctly identify
ghosting artifacts in this scene. In addition, replacing parts of a flame
scene with a single exposure, as proposed in [2], would yield a low
dynamic range result in an area of the image that is inherently high
dynamic range. As shown, our method overcomes these limitations,
and produces a plausible result.

In the future, we intend to study the application of our algorithm
in creating artifact free HDR images from exposures captured with a
hand-held (unstable) camera, as well as exposures that contain noise.
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Fig. 5. The first two images in the top row show two of the nine expo-
sures used to generate the HDR images. The third image shows the
tonemapped HDR image created without using any ghost removal
algorithm. The bottom row shows tonemapped HDR images that
were generated using (left) the ghost removal technique as proposed
by [2], (middle) two iterations of our algorithm, and (right) ten iter-
ations of our algorithm.
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