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a b s t r a c t

Rendering high contrast scenes on display devices with limited dynamic range is a challenging task.
Two groups of algorithms have emerged to take up this challenge: tone mapping operators (TMOs) and
more recently exposure fusion (EF) techniques. While several formal evaluation studies comparing TMOs
exist, no formal evaluation has yet been performed that compares EF techniques with each other or
compares them against TMOs. Moreover, with the advancements in hand-held devices and program-
mable digital cameras it became possible to directly capture and view high dynamic range (HDR) content
on these devices which are characterized by their small screens. However, currently very little is known
about how to best visualize a high contrast scene on a small screen. Thus the primary goal of this paper is
to provide answers to both of these questions by conducting a series of rigorous psychophysical
experiments. Our results suggest that the best tone mapping algorithms are generally superior to EF
algorithms except for the reproduction of colors. Furthermore, contrary to some previous work, we find
that the differences between algorithms are barely perceptible on small screens and therefore one can
opt for a simpler solution than a more complex and accurate one.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Reproducing high contrast scenes on mediums with low
dynamic range (LDR) has been a difficult problem. Limitations of
digital cameras as well as display devices pose serious challenges.
However, to some extent, the techniques of HDR imaging that
were developed over the last two decades made it possible to
overcome these limitations [1,2].

Among these, two specific types of algorithms are of interest to
this paper. These are tone mapping operators and exposure fusion
algorithms (EFAs). Tone mapping (TM) refers to the notion of
controllably reducing the dynamic range of an HDR image to
reproduce it as accurately as possible on a medium of lower
dynamic range [3]. The input to a TMO is an HDR image and the
output is an LDR one. Exposure fusion, on the other hand, takes a
sequence of LDR images as input where each image has a different
exposure. By extracting and merging the information from such a
sequence, it attempts to create a detail-rich single LDR image. For
both types of algorithms multiple solutions have been proposed
(Sections 2.1 and 2.2).

The question of which algorithm provides the best solution is an
important one, and several studies were conducted in an attempt to

answer it (Section 2.3). However a clear picture has not yet emerged
and more work is needed to reach reliable conclusions. This is also
necessitated by the fact that new algorithms are being proposed on
a continuous basis which are not covered by earlier experiments.
Furthermore, most earlier work focused on validating TMOs;
rigorous evaluations of EFAs and studies that compare EFAs with
TMOs are lacking. Thus, the first goal of this paper is to provide a
deeper insight into these issues.

Secondly, until recently, creating HDR images has been a
tedious process where the individual exposures captured by a
digital camera through manual- or auto-bracketing were com-
bined into an HDR image offline on the computer [4]. However, we
can assume that this laborious workflow is going to be replaced by
an automatic approach where HDR image generation takes place
exclusively inside capture devices. Such devices will have to
provide instant feedback to the user by depicting the captured
scene as accurately as possible. In fact, in-camera HDR feature has
already been integrated into several commodity products such as
Pentax K-7, as well as iPhone and Android smart phones. A recent
patent filed by Canon Inc. [5] also describes a technology that
allows in-camera generation of HDR images through individually
varying pixel exposures [6].

However, we hypothesize that while digital cameras may allow
direct capture of HDR imagery soon, small camera screens are less
likely to support direct display of HDR content in near future.
Therefore, the second goal of this study is to answer an important
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question that will arise during this transition: how to best display
HDR content on a small screen which is characterized by smaller
angular pixel size and inferior display characteristics?

2. Related work

In this section, we briefly review the previous work on tone
mapping and exposure fusion by putting more emphasis on the
methods that were evaluated in this study. We then discuss the
previous evaluation studies and highlight the differences of
our work.

2.1. Tone mapping

Tone mapping is the process that is commonly employed to
visualize HDR content on LDR displays. Many TMOs have so far
been proposed with different properties. TMOs are generally
classified as global and local, intensity domain and frequency
domain, based on human visual system, and those that are not
based on any perceptual phenomena [1].

Among the most commonly used operators is the photographic
TMO [7]. This operator belongs to the class of sigmoidal tone
reproduction operators. It comes in two flavors, namely the global
and local operator. In the current study, we evaluated the global
version of this operator. Another commonly used operator is the
multi-scale decomposition based algorithm of Li et al. [8]. This
operator follows an analysis-synthesis framework where the input
image is separated into multiple subbands which are compressed
independently using different gain factors. The compressed sub-
bands are recombined in the synthesis phase.

A more recent operator is Mantiuk et al.'s display adaptive
operator [9]. By modeling the human visual system and taking into
characteristics of a target display, this operator attempts to
minimize the visibility of contrast distortions. The most recent
operator that we included in this study is the linear windowed
TMO [10]. It operates by first determining local constraints in small
overlapping windows, and then integrating them to solve a global
optimization problem. While the method is local, it is found to be
resistant against common artifacts such as contrast reversals.

There exist many other notable tone mapping operators,
although a comprehensive review is beyond our scope (see [1,2]
for excellent reviews). Our motivation for focusing on these four
operators can be explained as follows. The photographic TMO [7]
has performed very well in earlier validation studies [11–16]. Thus
determining its performance against EFAs and in multiple display
conditions is valuable. Display adaptive TMO [9], on the other
hand, was selected because of its ability to adjust itself for
different display conditions. Because we had two different display
conditions, including this operator was also essential. Finally, Li
et al.'s [8] and Shan et al.'s [10] methods were selected due to the
overall high quality of their results and their implementations
being publicly available by the original authors.

2.2. Exposure fusion

Exposure fusion is an alternative technique to tone mapping
(assuming that one has access to individual exposures). It involves
directly creating a contrast-rich LDR image from a set of bracketed
exposures. It is typically formalized as

Hðx; yÞ ¼ ∑
N

i ¼ 1
Wiðx; yÞIiðx; yÞ ð1Þ

where Ii are the input images,Wi are the weight maps, and H is the
fused image. Different EFAs are distinguished by their computation
of weight maps and blending strategies.

For instance, Goshtasby partitions the image into tiles of uni-
form size and computes entropy for each tile [17]. The tiles with
the maximum entropy are selected for the fusion process. Blending
is performed via rational Gaussians [18]. Mertens et al. [19], on the
other hand, operate on individual pixels and weight pixels based
on their saturation, contrast, and well-exposedness. Blending is
performed via Laplacian pyramids [20].

In a more recent algorithm, Zhang and Cham [21] propose to
use gradient magnitudes as an indicator of the exposure quality.
The rationale is that in detail-rich regions gradient magnitude will
be high and it will tend toward zero for under- and over-exposed
regions. The weight maps calculated based on the gradient
magnitudes are refined using cross-bilateral filtering [22] and
blending is performed by using multiresolution splines [23].

In this study, we included Goshtasby's [17], Mertens et al.'s [19],
and Zhang and Cham's [21] EFAs. Goshtasby's and Mertens et al.'s
methods were included as being two of the pioneering works in
exposure fusion. Zhang and Cham's method was included due to
the high quality of its results despite being a simple algorithm.

2.3. Subjective quality evaluation

Evaluating image quality is a challenging task in computer
graphics. To date, the most reliable method remains to be
subjective evaluation which is based on collecting responses from
human observers [1]. However, subjective evaluation is tedious
and time consuming, and require meticulously designed experi-
ments. Many subjective evaluation studies for comparing tone
mapping operators have hitherto been conducted. These include
pairwise comparison without a reference [24], with HDR display
reference [14], and with real-world scene reference [25]. Direct
ranking or rating experiments of several algorithms with and
without reference were also performed [13,26,15,27] as well as
experiments using non-photographic stimuli [28].

In another subjective evaluation, the observers were asked to
modulate several TMO parameters such as contrast, brightness,
and saturation [29]. The results of this study were later used for
developing generic [30] and display adaptive tone mapping
operators [9]. More recently, Urbano et al. conducted an experi-
ment using small-screen devices and found that humans’ pre-
ference for TMOs is different for these devices than for desktop
monitors [16].

Our study is partially inspired by the work of Urbano et al.,
although there are important differences. In that study, only TMOs
were compared whereas in ours we compare TMOs and EFAs.
Urbano et al.'s study did not include recent notable tone mapping
operators such as [8–10]. Finally, their evaluation was conducted
on a low resolution PDA device, whereas we used a Canon
EOS550D dSLR camera to simulate a more realistic HDR image
capture scenario.

3. Experimental design and analysis

Various experimental designs have been used in previous tone
mapping evaluation studies. These include rating [11,13], ranking
[26], and pairwise comparisons with or without reference
[14,28,16]. Each method have their inherent advantages and
disadvantages. For instance, rating experiments require the obser-
vers to make accurate judgements on a continuous or discrete
scale. Making such judgements is difficult for naïve observers
especially if there is no reference. Ranking studies, on the other
hand, require the observer to order the stimuli according to a
given criteria. Their difficulty arises from the fact that the observer
needs to compare multiple stimuli at the same time and put
an order on items which may not be ordered due to circular
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preferences known as triads. The paired comparison design
circumvents these drawbacks as only two items are shown at a
time, simplifying the observer's task, and allowing for the possi-
bility of detecting triads. However, it takes the longest time as each
stimulus needs to be compared with each other. More importantly,
comparison designs cannot assess how close the compared images
are to their real world counterparts.

In this study, we opted for the method of paired comparisons in
our experimental framework mainly because it produces the
smallest measurement variance and produces the most accurate
results [31]. This method involves presenting pairs of images to
observers and recording their judgement for each pair. If there are
t algorithms to compare the total number of judgements amounts
to T ¼ ðt2Þ. Each observer's judgements are recorded in a preference
matrix. In this matrix, a value of 1 in cell (i,j) indicates that the
method in row i is preferred over the method in column j.

3.1. Kendall's ζ

The method of paired comparisons has certain benefits over a
rating or ranking experiment, albeit it takes longer to execute.
First, the task is easier for observers as they only need to judge the
items two at a time instead of making a decision for all of them at
once. Secondly, it allows for triads, i.e. circular preferences, to
occur. For instance, an observer's preference for three items may
be A-B, B-C, and C-A. While this might suggest that the
observer is not capable of making a reliable judgement, i.e. the
observer is inconsistent, it may also mean that the evaluated items
cannot be linearly ordered. In general, one can deduce that if all
observers are inconsistent the items are either too similar or
impossible to judge in a linear order. However, if only a few
subjects are inconsistent, they can be deemed to be poor judges
and their data can be discarded. The consistency can be computed
by using the following formula [32]:

ζ¼
1� 24c

t3�t
if t is odd;

1� 24c
t3�4t

if t is even;

8>><
>>: ð2Þ

where c is the number of triads.

3.2. Differences among algorithm scores

As in analysis of variance (ANOVA), one first needs to deter-
mine whether there are significant differences between the scores
of the algorithms as a whole before partitioning them into
similarity subgroups. To this we used the least significant differ-
ence method [33]. If we denote the total score of each algorithm
by ai where i¼ 1;2;…; t and the desired significance level by p, this
method involves comparing

D¼ 4 ∑
t

i ¼ 1
a2i �

1
4
tn2ðt�1Þ2

" #
ntð Þ= ð3Þ

with the upper 100p% point of the χ2 distribution with ðt�1Þ
degrees of freedom where n is the number of subjects. The null
hypothesis that all algorithms are equal can be rejected if D value
is greater than the critical χ2 value. In our experiments we set
p¼0.05 following the common practice.

3.3. Test of equality of two pre-assigned treatments

Determining a statistically significant D value indicates that
there are indeed differences between the evaluated methods that
are not likely due to chance. The question then becomes how to
determine which methods are significantly different from each

other. This can be answered by using the test of equality of two
pre-assigned treatments [33]:

mc ¼ ⌈1:96ð0:5ntÞ0:5 þ 0:5⌉ ð4Þ
Any score difference not less than mc can then be considered as
statistically significant.

4. Experiments

Having described the details of our experimental design and
analysis, we now focus on the specifics of our study. We included
the following algorithms in our evaluation. The labels in parenth-
esis serve as their identifiers in the rest of the text. The motivation
for selecting them as well as their main advantages and disad-
vantages were discussed in Section 2.

� Tile-based fusion [17] (A).
� Subband TMO [8] (B).
� Display adaptive TMO [9] (C).
� Exposure fusion [19] (D).
� Photographic TMO [7] (E).
� Linear windowed TMO [10] (F).
� Gradient-directed fusion [21] (G).

4.1. Stimuli

We used images of four different scenes captured with a Canon
EOS 550D camera using exposure bracketing. For all scenes, we
used 9 exposures captured in the camera RAW format which is
known to be quantimetrically linear with respect to sensor
irradiance [34,35]. We validated the linearity of our own camera
by capturing a color checker at different exposure levels and
manually comparing the pixel values of various patches. All scenes
together with their false color visualizations and log relative
luminance histograms are shown in Fig. 1. Note that the images
were not calibrated up to an absolute scale and therefore these
visualizations are only meaningful for each image separately
(i.e. the same color may map to different luminance for each
image). The dynamic ranges of each image are reported in Table 1.
As can be seen from this table, most images had similar dynamic
ranges except for the toys image which had a lower dynamic
range. The lamp image had the highest dynamic range especially
after excluding 1% of the darkest and lightest pixels.

The reason for using the RAW format as opposed to JPEG
output can be explained as follows. Exposure fusion algorithms do
not require the knowledge of the camera response function (CRF).
They simply fuse the input images in the non-linear color space in
which they were originally recorded. Tone mapping algorithms, on
the other hand, take as input HDR images which need to be
created from linearized exposures using the inverse CRF. As several
CRF recovery methods exist, with each producing potentially
different response curves [36], using one of these algorithms
would make our results liable to the accuracy of that algorithm.
Therefore, we started with RAW images and converted them to
JPEG format using the non-linear mapping defined in the sRGB
standard [37]. These images were directly used as input for
exposure fusion algorithms.

As for tone mapping, we first created the HDR images using [1]

Ij ¼ ∑
N

i ¼ 1

f�1ðpijÞwðpijÞ
ti

�
∑
N

i ¼ 1
w pij
� �

; ð5Þ

where N is the number of exposures, pij is the value of pixel j in
image i, f is the camera response function (inverse sRGB gamma,
in this case), w is a weighting function used to attenuate the
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contribution of poorly exposed pixels [38], and ti is the exposure
time. We then tone mapped the HDR images using the evaluated
algorithms with their default parameters (see Table 2). The tone
mapped images were output in the sRGB color space as well.
As such, both fused and tone mapped images were stored in the
same color space to make them comparable with each other.

As for producing the final stimuli, we used bicubic interpola-
tion to match the original resolution of the images (5184�3456)
to that of the target display devices (1920�1200 for the desktop
display and 720�480 for the camera display). The aspect ratio
was preserved during resizing. We opted for bicubic interpolation
as it produces fewer artifacts than bilinear and nearest neighbor
interpolation. However, we did not conduct further experiments
to investigate the effect of the interpolation strategy on the final
results.

4.2. Experiment one: color, contrast, and detail

Our first experiment was aimed at evaluating naturalness of
colors, reproduction of contrast, and visibility of details. To
evaluate algorithms with respect to these three criteria we used
images of 3 real world scenes. These included an outdoor day
scene (trail), an outdoor night scene (lamp), and an indoor scene of
closeby objects (ametyst). The algorithms’ outputs for all three
scenes are shown in Fig. 2 (the fourth scene, toys, is used in the
second experiment).

The experimental procedure was the method of paired com-
parisons. The participants were presented with two images in
random order from the stimuli. They could switch between the
images to analyze their differences. Once they indicated their
decision, a neutral gray screen was shown for a brief period
followed by a new pair of random images. The observers first
judged all pairs for the attribute of color, then contrast, and finally
detail. Going through the entire sequence once for each attribute
instead of interleaving the attributes appeared to be an easier task
as the observers did not have to constantly change their criteria of
decision.

All stimuli were shown on a NEC SpectraView Reference 241W
monitor calibrated to the sRGB profile using an X-Rite i1Display
Pro colorimeter. The peak display luminance was set to 80 cd/m2

for full sRGB compliance. The black level was measured as 0.5 cd/m2.
The participants viewed the display in a dark room approximately
from 70 cm, although no head mounting was used to avoid dis-
comfort. At this distance, the angular size of a center pixel was
approximately 0.0221 in both dimensions.

A gender balanced set of 15 naïve observers between the ages
20 and 35 with normal or corrected to normal color vision took
part in this part of the experiment. The duration of the experiment
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Fig. 1. The images that we used in our experiments together with their false color representations and histograms.

Table 1
The dynamic ranges of the images we used in our experiments. DR represents the
order of magnitude difference between the maximum and minimum luminances.
DR1 represents the dynamic range after excluding 1% of outliers from both ends.

Dynamic range Ametyst Lamp Toys Trail

DR 4.27 4.51 2.99 4.33
DR1 2.40 3.75 2.08 2.46

Table 2
Parameters of the algorithms used in our experiments. For all TMOs we used
a gamma value of 0.45 and did not perform post tone mapping saturation
adjustment.

Alg. Parameters

A d¼160, s¼ 160, Δ¼ 32
B α¼ 0:2, γ ¼ 0:6
C Eamb ¼ 10, Lmin ¼ 0:5, k¼0.01, Lmax ¼ 80
D ωC ¼ 1, ωE ¼ 1, ωS ¼ 1
E α¼ 0:18, Lwhite ¼ 1e20
F ϵ¼ 0:1, κ¼ 0:05, window size¼ 3, β1 ¼ 0:6, β2 ¼ 0:2, β3 ¼ 0:1, s¼1
G l¼9, τ¼ 0:9
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did not exceed 30 min for each observer. Participants did not
appear to have difficulty in understanding the meaning of the
evaluated attributes. Therefore, no pre-experiment training was
conducted. The participants’ instructions for experiment one are
given in Appendix A for reference.

4.3. Experiment two: similarity

The second experiment was similar to the first one except that
we measured similarity of the resulting images to the real world
scenes. In addition to the NEC monitor, we introduced a second

Ametyst Lamp Trail Toys
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Fig. 2. The output of all algorithms for all images.
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display device namely the LCD screen of a Canon EOS 550D
camera. The maximum luminance and the black level of the
camera's LCD screen were measured as 125 cd/m2 and 0.5 cd/m2

respectively. The screen was 3 in. diagonally and had a resolution
of 720�480. The viewers held the camera at approximately 30 cm
from their eye point which resulted in an angular pixel size of
0:0171 in both dimensions. About 15 observers participated in
the second experiment. Only one observer participated in both
experiments.

As the display conditions changed for the second experiment,
we adjusted the parameters of the display adaptive TMO accord-
ingly. To this end, we set Lmax ¼ 125 for the camera screen and
Eamb ¼ 250 when the room lights were turned on (only for the toys
scene).

Due to difficulties in programmatically controlling the camera's
LCD screen, a manual approach was adopted for recording the
observers’ answers. To this end, all of the randomly selected image
pairs from the stimuli were uploaded to the camera's memory
card. Between each pair a neutral gray image was inserted to mark
the boundary between different stimuli. The participants could
switch between the images within a pair using the camera's
control buttons. The participants indicated their answers verbally
to the experimenter by specifying the overlaid file name
(e.g. IMG_1001, IMG_1002, and so on). These answers were
decoded after the experiment to create the preference matrices.

Only two scenes were used in the second experiment. The first
one was the ametyst image from the first experiment and the
second one was a set of toys under standard fluorescent office
lighting (Fig. 3). The instructions for the second experiment are
given in Appendix B for reference.

5. Results and analysis

The accumulated preference matrices for both experiments are
reported in Tables 3 and 4 respectively. In these tables, each block
represents the accumulated preferences of all observers for a given
scene and attribute condition. The bottom blocks (labeled as Total)
demonstrate the aggregated preferences across all scenes. Sim.-d
and Sim.-c denote the similarity results for desktop and camera
viewing conditions.

Before creating these matrices, we measured the consistency of all
observers. As can be seen from Table 5, most observers attained a high
degree of consistency. As none of the observers appeared to be making
random decisions (i.e. inconsistencies were not by chance), we did not
discard any observer's data in the following analysis. An interesting
observation was that the color attribute on average received a lower
consistency score than contrast and detail suggesting that it was
harder to make judgements for color than the other two.

Next, we performed the significance analysis. As can be seen
from Table 6, there were statistically significant differences for
each scene and attribute combinations. Therefore we proceeded
with separating the algorithms into statistical similarity groups.

At this point, it is necessary to note that this experiment
produced a large amount of data which is impossible to discuss
in entirety in this paper. Therefore, we conducted most of the
following analysis based on the total scores. The full set of results
are provided in the supplementary materials.

As can be seen from Fig. 4, EFAs were judged to produce more
natural colors compared to TMOs. Based on the score rankings,
three of the first four operators were found to be EFAs. Zhang and
Cham's method [21] received the highest score; however, it was
not statistically better than Mertens et al.'s algorithm [19]. The
highest scoring TMO was Mantiuk et al.'s display adaptive operator
[9], which performed significantly better than the other TMOs.

As for contrast and detail, Li et al.'s operator [8] outperformed
all other methods. It stood out as statistically better than the other
methods for detail, but was found to be in the same significance
group with Mertens et al. [19] for contrast. Based on these, we can
argue that if Li et al.'s TMO is augmented with a post tone mapping
color correction step it can prove to be a very effective TMO.
However, it is also worth noting that this operator is not free of
halo artifacts as shown in Fig. 5. This appeared to be the main
reason for why this operator received low scores in the similarity
experiment discussed below.

Let us make a few more observations before discussing the
second experiment. It appeared that Shan et al.'s linear windowed
TMO received low scores for all three attributes. We believe that this
could be due to: (1) the algorithm in general produced darker
images, and (2) it gave rise to lower color saturation. It is interesting
to note that while Li et al.'s method was not preferred due to
production of over-saturated images, Shan et al.'s method was not
preferred for the opposite reason. This, again, underlines the impor-
tance of correct color management in tone mapping. Secondly,
Mertens et al.'s EFA performed consistently well in all three attri-
butes. As such, it stood out as a balanced and effective algorithm.

As for similarity, Mantiuk et al.'s operator [9] outperformed all
others for both desktop and camera conditions. We attribute this to
two factors: (1) as this operator includes a model of the human
visual system it could be expected that it computes images that are
more similar to human perception, and (2) as this operator takes
the display conditions into account such as peak luminance, black
level, and ambient illumination it can adapt to changing display
conditions while other operators cannot without parameter tuning.

Finally, five of the seven operators attained very similar pre-
ference scores for the camera display condition. This suggests that
the limited form factor of the camera display hides any significant
differences between different algorithms. As such, it may be
acceptable to opt for a simpler approach than seeking out
complicated and more accurate algorithms when it comes to tone
mapping for the small screen.

Another interesting finding for this case was that Zhang and
Cham's gradient directed EFA [21] received very low similarity
scores. Deeper analysis reveals that this is mainly caused by its
very dark reproduction of colors for the toys scene. As this scene is
characterized by large uniform regions with small gradients, it
may have posed a worst case scenario for this operator.

6. Discussion

The overall findings of this study are three-fold: (1) Li et al.'s
TMO [8] is better in reproducing contrast, detail, and Mantiuk

Fig. 3. Our experimental setup for the similarity experiments.
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Table 3
The accumulated preference matrices of all observers for the first experiment.

Algorithm Color Contrast Detail

A B C D E F G T A B C D E F G T A B C D E F G T

Ametyst
A 0 12 3 2 5 7 2 31 0 3 11 8 14 14 9 59 0 0 9 11 9 6 13 48
B 3 0 2 5 3 6 5 24 12 0 12 8 15 15 14 76 15 0 15 13 14 15 15 87
C 12 13 0 10 10 9 11 65 4 3 0 5 13 15 9 49 6 0 0 10 5 5 13 39
D 13 10 5 0 6 8 10 52 7 7 10 0 14 14 13 65 4 2 5 0 7 4 15 37
E 10 12 5 9 0 9 11 56 1 0 2 1 0 5 2 11 6 1 10 8 0 8 12 45
F 8 9 6 7 6 0 5 41 1 0 0 1 10 0 3 15 9 0 10 11 7 0 13 50
G 13 10 4 5 4 10 0 46 6 1 6 2 13 12 0 40 2 0 2 0 3 2 0 9

Lamp
A 0 7 9 5 11 11 3 46 0 10 5 4 5 13 8 45 0 0 8 3 8 15 10 44
B 8 0 9 6 13 8 4 48 5 0 6 4 7 14 8 44 15 0 14 14 14 15 14 86
C 6 6 0 4 12 6 3 37 10 9 0 12 9 13 10 63 7 1 0 4 5 15 13 45
D 10 9 11 0 14 10 5 59 11 11 3 0 6 13 11 55 12 1 11 0 10 15 15 64
E 4 2 3 1 0 4 3 17 10 8 6 9 0 13 11 57 7 1 10 5 0 15 11 49
F 4 7 9 5 11 0 3 39 2 1 2 2 2 0 2 11 0 0 0 0 0 0 1 1
G 12 11 12 10 12 12 0 69 7 7 5 4 4 13 0 40 5 1 2 0 4 14 0 26

Trail
A 0 12 8 9 10 10 5 54 0 3 2 0 10 10 2 27 0 1 10 0 7 10 4 32
B 3 0 3 0 3 5 2 16 12 0 10 12 14 14 13 75 14 0 15 14 15 14 15 87
C 7 12 0 7 8 9 4 47 13 5 0 5 10 13 11 57 5 0 0 0 3 10 0 18
D 6 15 8 0 10 10 9 58 15 3 10 0 14 13 11 66 15 1 15 0 12 14 13 70
E 5 12 7 5 0 11 4 44 5 1 5 1 0 9 3 24 8 0 12 3 0 12 3 38
F 5 10 6 5 4 0 4 34 5 1 2 2 6 0 2 18 5 1 5 1 3 0 1 16
G 10 13 11 6 11 11 0 62 13 2 4 4 12 13 0 48 11 0 15 2 12 14 0 54

Total
A 0 31 20 16 26 28 10 131 0 16 18 12 29 37 19 131 0 1 27 14 24 31 27 124
B 14 0 14 11 19 19 11 88 29 0 28 24 36 43 35 195 44 0 44 41 43 44 44 260
C 25 31 0 21 30 24 18 149 27 17 0 22 32 41 30 169 18 1 0 14 13 30 26 102
D 29 34 24 0 30 28 24 169 33 21 23 0 34 40 35 186 31 4 31 0 29 33 43 171
E 19 26 15 15 0 24 18 117 16 9 13 11 0 27 16 92 21 2 32 16 0 35 26 132
F 17 26 21 17 21 0 12 114 8 2 4 5 18 0 7 44 14 1 15 12 10 0 15 67
G 35 34 27 21 27 33 0 177 26 10 15 10 29 38 0 128 18 1 19 2 19 30 0 89

Table 4
The accumulated preference matrices of all observers for the second experiment. Sim.-d and Sim.-c denote the similarities for desktop and camera display conditions.

Algorithm Sim.-d Sim.-c

A B C D E F G T A B C D E F G T

Ametyst
A 0 9 6 6 7 8 7 43 0 4 12 7 7 10 9 49
B 6 0 4 7 8 9 11 45 11 0 13 10 12 12 12 70
C 9 11 0 4 9 10 8 51 3 2 0 3 7 11 5 31
D 9 8 11 0 12 10 10 60 8 5 12 0 10 12 9 56
E 8 7 6 3 0 8 6 38 8 3 8 5 0 10 7 41
F 7 6 5 5 7 0 8 38 5 3 4 3 5 0 6 26
G 8 4 7 5 9 7 0 40 6 3 10 6 8 9 0 42

Toys
A 0 15 2 11 10 5 14 57 0 14 3 10 7 4 13 51
B 0 0 0 2 2 2 4 10 1 0 1 2 3 0 6 13
C 13 15 0 12 13 9 15 77 12 14 0 14 12 7 14 73
D 4 13 3 0 6 2 14 42 5 13 1 0 4 2 15 40
E 5 13 2 9 0 1 14 44 8 12 3 11 0 3 14 51
F 10 13 6 13 14 0 13 69 11 15 8 13 12 0 13 72
G 1 11 0 1 1 2 0 16 2 9 1 0 1 2 0 15

Total
A 0 24 8 17 17 13 21 100 0 18 15 17 14 14 22 100
B 6 0 4 9 10 11 15 55 12 0 14 12 15 12 18 83
C 22 26 0 16 22 19 23 128 15 16 0 17 19 18 19 104
D 13 21 14 0 18 12 24 102 13 18 13 0 14 14 24 96
E 13 20 8 12 0 9 20 82 16 15 11 16 0 13 21 92
F 17 19 11 18 21 0 21 107 16 18 12 16 17 0 19 98
G 9 15 7 6 10 9 0 56 8 12 11 6 9 11 0 57
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et al.'s TMO [9] is better in preserving similarity to the actual
scenes when the images are presented on a desktop display;
(2) exposure fusion algorithms tend to be better in color repro-
duction; (3) the differences between the operators are largely
subdued when the images are viewed on a camera screen. In this
section, we will attempt to provide possible explanations for each
of these findings.

Before interpreting these findings it may be worthwhile to
consider whether these two types of algorithms (EFAs and TMOs)
can be considered as part of a common framework. First, one
should note that the input to an EFA is a set of bracketed exposures
that are stored in the non-linear color space of a digital camera.
TMOs, on the other hand, take as input an HDR image that is
ideally stored in a linear color space. At this point, two extra pieces
of information have already been used in the tone mapping
pipeline: (1) the camera response function for linearizing the
input exposures and (2) the exposure times used for normalizing
the exposures. Thus, one can argue that a TMO has a more
complete view of the scene that is being reproduced. Theoretically,
as part of its processing pipeline, a TMO can reproduce the
individual exposures from the given HDR image and perform a
task similar to exposure fusion. An EFA, on the other hand, is
designed to work without the knowledge of the CRF nor the
exposure times. Thus, compared to TMOs, EFAs have a more
limited view of the scene being processed. From this point of
view, TMOs appear to have an advantage over EFAs.

However, an alternative interpretation is also possible. EFAs
directly combine the input exposures that are stored in the non-
linear color space of a digital camera. This color space is often
optimized to look appealing to most human observers. Because
the processing is done directly in this space, the fused image
exhibits its characteristics as well. In theory, a TMO can also output
images in a carefully designed color space that is appealing to

humans. However, in practice most TMOs focus on luminance
compression rather than optimizing the tone curves.

What makes some TMOs' contrast and detail reproduction
better? We offer the following explanation. EFAs work by comput-
ing a weight map for each exposure based on various criteria
(e.g. well-exposedness, saturation, contrast, etc.). This weight map
guides which pixel in which proportion will contribute to the
fused result. However, in order to reduce the seams between
pixels coming from different images, the computed weight maps
are blurred prior to fusion. This results in blending between pixels
that are not necessarily well-exposed which may cause loss of
small details in high frequency image regions. As for contrast, EFAs
take the best exposed regions from multiple photographs. While
this minimizes the presence of under- and over-exposed regions it
can also reduce the amount of contrast between dark and light
regions. Both of these effects are demonstrated using an artificial
bipartite luminance distribution in Fig. 6.

As for color reproduction, it is well-known that tone mapping
algorithms distort colors because of the non-linear luminance
compression that they employ. In general, they compress high
luminances more than medium and low luminances leaving the
chromaticities intact. However, according to the Hunt effect, the
colorfulness of a stimulus depends on its luminance [39]. There-
fore changing only the luminance and leaving the chromaticities
intact do not preserve color appearance. A few ad hoc solutions
exist to tackle this problem. Among these, the most commonly
used one is to adjust the saturation by

Co ¼
Ci

Li

� �s

Lo; ð6Þ

where Ci ¼ ðRi;Gi;BiÞ represents the input color, Co represents the
output color, and Li and Lo represent the input and output
luminances respectively. The problem of this approach is that
there is no principled way of setting the correct value for the
saturation parameter, s.

More recently, Mantiuk et al. [40] proposed a color correction
method for TMOs based on psychophysical experiments. Their
method allows one to determine the value of the saturation
parameter based on the degree of the luminance compression.
However, the proposed method is only applicable if the dynamic
range compression function can be represented as a power curve.
As local operators do not comply with this requirement this
correction method cannot be applied for them.

Table 5
Consistency values of all observers. Note that the similarity experiment was performed by a different set of observers except observer 15 who participated in both
experiments.

Obsv. Ametyst Lamp Trail Toys

Color Contrast Detail Sim.-d Sim.-c Color Contrast Detail Color Contrast Detail Sim.-d Sim.-c

1 0.786 1.000 1.000 0.643 0.857 0.929 1.000 0.929 0.929 1.000 1.000 0.643 0.786
2 0.429 0.857 0.643 0.571 1.000 1.000 1.000 1.000 0.929 0.929 0.929 0.643 0.929
3 0.571 0.786 0.714 0.643 1.000 0.929 0.929 0.929 0.714 1.000 1.000 0.286 1.000
4 0.714 0.929 0.714 0.571 0.714 1.000 1.000 1.000 0.714 0.929 1.000 1.000 1.000
5 0.714 0.857 0.929 0.643 0.929 0.643 0.857 0.714 0.500 0.571 0.571 1.000 1.000
6 1.000 1.000 1.000 0.357 0.929 0.758 0.786 0.929 0.714 0.714 0.571 0.786 0.786
7 0.571 0.786 0.929 0.357 0.857 0.643 1.000 0.929 0.714 0.929 1.000 0.714 1.000
8 0.286 1.000 1.000 0.714 1.000 0.929 1.000 0.857 1.000 1.000 1.000 0.929 0.929
9 0.571 0.786 0.929 0.286 0.714 0.758 0.857 1.000 0.929 0.643 0.857 1.000 0.214

10 0.714 0.857 0.643 0.857 0.929 0.643 0.857 1.000 0.714 0.929 0.929 0.857 0.929
11 0.286 0.929 0.929 0.500 0.786 0.429 0.857 0.768 0.571 1.000 0.857 0.929 1.000
12 1.000 0.500 1.000 0.429 0.929 0.571 1.000 1.000 0.857 0.929 1.000 0.929 1.000
13 0.571 1.000 0.929 1.000 0.929 0.571 0.786 0.857 0.786 1.000 1.000 0.929 0.714
14 0.786 0.929 0.714 0.929 1.000 0.571 0.929 0.857 0.857 1.000 0.929 0.929 0.857
15 0.571 0.857 0.714 1.000 1.000 0.857 0.857 1.000 1.000 0.857 1.000 1.000 0.857

Avg. 0.638 0.872 0.852 0.633 0.905 0.749 0.914 0.918 0.795 0.895 0.910 0.838 0.867

Table 6
D values for the first experiment (Section 3.2). At significance level of p¼0.05 and
6 degrees of freedom, values greater than 12.59 are statistically significant.

Scene Color Contrast Detail Sim.-d Sim.-c

Ametyst 46.63 139.20 121.68 14.78 51.20
Lamp 63.47 66.67 165.94 – –

Trail 57.37 113.83 162.21 – –

Toys – – – 145.52 134.63
Total 77.54 222.88 315.94 82.23 29.93
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Due to this immature state of color management in tone
mapping, in this study we opted to avoid any ad hoc or limited
solutions. Our results indicate that without color correction, TMOs
are surpassed by EFAs in color reproduction.

Finally, we discuss the subdued differences between the algo-
rithms in the camera display condition. As reported in Section 4,
we measured the angular size of the central pixel for the desktop
display and the camera screen as 0:0221 and 0:0171 respectively.
This corresponds to approximately 45 and 59 cycles per degree
respectively. It is well-known that the human visual system has an
inverted U shaped contrast sensitivity with respect to spatial
frequency. The contrast sensitivity function (CSF) proposed by
Mannos and Sakrison is defined as [41]

Aðf Þ ¼ 2:6ð0:0192þ 0:114f Þexpð�0:114f 1:1Þ; ð7Þ
where f represents the spatial frequency. As we can see from Fig. 7,
the CSF makes a peak around f ¼ 8 cycles per degree and
decreases for higher frequencies. In particular, it can be seen that
the sensitivity at the spatial frequency of the camera screen is
lower than that of the desktop monitor. Therefore, it may be
argued that some of the high frequency content that influences the
observers’ decisions are not visible on the camera display which in
turn results in subdued differences between the algorithms.

As in most psychophysical experiments, our study also has
several caveats. First, in our experiments, we did not attempt to
match the pixel angular size between the two display conditions.
Our goal was to evaluate the performance of the algorithms under

typical viewing distances. However, it would be interesting to
conduct further research to study the impact of this parameter.
Secondly, we emphasize that all of the tested algorithms have
several parameters and our results are only valid for those
parameter values that we used in our experiments (Table 2). As
in all TMO validation studies, the rankings of the operators could
have been different for different sets of parameters. Finally, in our
experiments, we used a total number of four images. While this
number is not atypical for TMO validation studies, one should be
careful about generalizing the results to a diverse set of real-world
environments.

7. Relationship to earlier TMO validation studies

In order to reach reliable conclusions about how various
algorithms actually perform, it is important to compare and
contrast results of different validation studies. Unfortunately, this
is a difficult task as neither all studies evaluate the same algo-
rithms nor they ask the same research questions. However, we will
attempt to provide a brief analysis to elucidate our findings in light
of the earlier work.

In previous studies, there appeared to be a general agreement
that the photographic TMO [7] performed among the best opera-
tors [11–16]. It was sometimes accompanied by other operators
such as bilateral filtering [42], histogram adjustment [43], iCAM
[25], and gradient domain compression [44] although they were
less consistent.

Among these notable algorithms we only included the photo-
graphic TMO in our experiments as a leading operator. Our
findings, however, suggest that the newer TMOs such as the
subband method [8] and the display adaptive TMO [9] generally
outperform the photographic TMO. Shan et al.'s linear windowed
operator [10], on the other hand, could surpass the photographic
TMO only for the similarity task but not in the color, contrast, or
detail tasks. Also most EFAs appeared to perform better than the
photographic TMO.

8. Conclusions

Our study reveals several interesting findings. First, we found
that the best TMO has outperformed the best EFA for preserving
contrast, detail, and similarity. However, all TMOs fall short when
it comes to accurate reproduction of colors. This emphasizes

Fig. 4. Significance groups based on the total scores for each attribute. The algorithms underlined by the same line segment are statistically similar. EFAs are shown in bold.

Fig. 5. Halo artifacts produced by Li et al.'s subband TMO [8].

A. Oğuz Akyüz et al. / Computers & Graphics 37 (2013) 885–895 893



Author's personal copy

the importance of addressing color issues for tone mapping.
Our second finding was that rankings of operators indeed change
between small screen and large screen devices confirming the
results of earlier experiments [16]. However, we also found that
most operators have comparable performance when their results
are viewed on a small screen which may be attributed to the
reduced contrast sensitivity of the human eye at increased spatial
frequencies. This suggests that when it comes to tone mapping
for the small screen one may get away with simpler and more
efficient algorithms.

Appendix A. Instructions for experiment one

In this experiment, you will be presented with multiple image
pairs. For each pair, you will be asked to choose the image that you
prefer according to three different criteria, namely:

1. Naturalness of colors.
2. Sensation of contrast.
3. Visibility of details.

For (1), choose the image whose colors appear more natural to
you. For (2), choose the image that appears to have more contrast.
For (3), choose the image where details are more visible.

The experiment should take about 30–40 min assuming that
you spend 10–15 s on each image pair. To avoid fatigue, do not
spend too much on each stimulus. Note that you can terminate the
experiment if you feel any discomfort.

Thank you for your participation. You can ask the experimenter
should you have any questions.

Appendix B. Instructions for experiment two

In this experiment, you will be presented with multiple image
pairs in two different display devices. For each pair, you will be
asked to choose the image that you think is more similar to its real
world version.

For the desktop monitor, switch between the images using the
keys “1” and “2” on the numpad. When you make your decision,
press the “enter” key to continue with the next pair.
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Fig. 7. The contrast sensitivity function modeled by Mannos and Sakrison [41].
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Fig. 6. The comparison of the two imaging pipelines. A high contrast scene is captured using two exposures (short and long) where one half of the scene is well-exposed in
each exposure. In both pipelines weight maps are generated for each exposure. However, while the weight maps are blurred in the EF pipeline to avoid seams during
blending of exposures, no blurring occurs in the TM pipeline (see Eq. (5)). Due to this blending, the small scale details may be lost in the EF pipeline. Also because the best
exposed regions are taken from the input exposures, the contrast between the light and dark regions may be subdued in the EF pipeline.
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For the camera LCD monitor, switch between the images using
the camera's “left” and “right” buttons. When you make your
decision, tell the name of that image to the experimenter. You can
then move on to the next pair (each pair is separated by a gray
image).

The experiment should take about 15–20 min assuming that
you spend 10–15 s on each image pair. To avoid fatigue, do not
spend too much on each stimulus. Note that you can terminate the
experiment if you feel any discomfort.

Thank you for your participation. You can ask the experimenter
should you have any questions.

Appendix C. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org.10.1016/j.cag.2013.07.004.
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[15] Cǎdík M, Wimmer M, Neumann L, Artusi A. Image attributes and quality for
evaluation of tone mapping operators. In: Proceedings of the 14th Pacific
Conference on Computer Graphics and Applications. Taipei, Taiwan; 2006,
p. 35–44.

[16] Urbano C, Magalhães L, Moura J, Bessa M, Marcos A, Chalmers A. Tone
mapping operators on small screen devices: an evaluation study. Computer
Graphics Forum 2010;29(8):2469–78, http://dx.doi.org/10.1111/j.1467-8659.
2010.01758.x.

[17] Goshtasby AA. Fusion of multi-exposure images. Image and Vision Computing
2005;23(6):611–8, http://dx.doi.org/10.1016/j.imavis.2005.02.004.

[18] Goshtasby A. Design and recovery of 2-d and 3-d shapes using rational
Gaussian curves and surfaces. International Journal of Computer Vision
1993;10(3):233–56.

[19] Mertens T, Kautz J, Van Reeth F. Exposure fusion. In: 15th Pacific conference on
computer graphics and applications, PG'07; 2007. p. 382–90. http://dx.doi.org/
10.1109/PG.2007.17.

[20] Burt P, Adelson E. The Laplacian pyramid as a compact image code. IEEE
Transactions on Communications 1983;31(4):532–40, http://dx.doi.org/
10.1109/TCOM.1983.1095851.

[21] Zhang W, Cham WK. Gradient-directed composition of multi-exposure
images. In: IEEE conference on computer vision and pattern recognition
(CVPR); 2010. p. 530–6. http://dx.doi.org/10.1109/CVPR.2010.5540168.

[22] Paris S, Durand F. A fast approximation of the bilateral filter using a signal
processing approach. In: Leonardis A, Bischof H, Pinz A, editors. Computer
vision—ECCV 2006. Lecture notes in computer science, vol. 3954. Berlin/
Heidelberg: Springer; 2006. p. 568–80 ISBN 978-3-540-33838-3.

[23] Burt PJ, Adelson EH. A multiresolution spline with application to image
mosaics. ACM Transactions on Graphics 1983;2(4):217–36.

[24] Drago F, Martens WL, Myszkowski K, Chiba N. Design of a tone mapping
operator for high dynamic range images based upon psychophysical evalua-
tion and preference mapping. In: IS&T SPIE electronic imaging 2003. The
human vision and electronic imaging VIII conference; 2003. p. 321–31.

[25] Kuang J, Johnson GM, Fairchild MD. icam06: a refined image appearance
model for HDR image rendering. Journal of Visual Communication and Image
Representation 2007;18(5):406–14, http://dx.doi.org/10.1016/j.jvcir.2007.06.003
Special issue on High Dynamic Range Imaging, URL: 〈http://www.sciencedirect.
com/science/article/pii/S1047320307000533〉.

[26] Ashikhmin M, Goyal J. A reality check for tone-mapping operators. ACM
Transactions on Applied Perception 2006;3(4):399–411.
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