
A New Approach for Reactive Web Usage Data Processing

Murat Ali Bayir, Ismail H. Toroslu, Ahmet Cosar
Department of Computer Engineering,

Middle East Technical University,
Ankara, 06531 Turkey

{ali.bayir, toroslu, cosar }@ceng.metu.edu.tr

Abstract— Web usage mining exploits data mining
techniques to discover valuable information from navigation
behavior of World Wide Web (WWW) users. The required
information is captured by web servers and stored in web
usage data logs. The first phase of web usage mining is the
data processing phase. In the data processing phase, first,
relevant information is filtered from the logs. After that,
sessions are reconstructed by using heuristics that select and
group requests belonging to the same user session. If we are
processing requests after they are handled by the web server,
this technique is called "reactive" while in "proactive"
techniques the same (pre)processing occurs during the
interactive browsing of the web site by the user. Reactive
session reconstruction uses "time" and "navigation"
oriented heuristics. We propose to combine these heuristics
with "site topology" information in order to increa se the
accuracy of the reconstructed sessions. In this work, we have
implemented an agent simulator, which models behavior of
web users and generates web user navigation as well as the
log data kept by the web server. By this way we know the
actual user sessions and we can accurately evaluate and
compare the performances of alternative session
reconstruction heuristics (which will use only the web server
log data). To the best of our knowledge, this paper is the first
work that uses such an agent simulator, and therefore, is
able to accurately evaluate different session reconstruction
heuristics. By using the agent simulator, we attempt to show
that our new heuristic discovers more accurate sessions than
previous heuristics.

Index Terms— Web mining, web usage mining, session
reconstruction, agent simulator and web topology.

1. Introduction

As in classical data mining, in web mining [5] the aim is
to discover and retrieve useful and interesting patterns
from a large dataset. In web mining, this dataset is the
huge web data. Web data contains different kinds of
information, including, web documents data, web
structure data, web log data, and user profiles data. All of
these data can be mined mainly in three different
dimensions, which are; Web content mining, Web
structure mining, and Web usage mining.

In web content mining, web documents, such as text and
multimedia, are used. Web content mining is similar to
other text mining problems. Categorization or
classifications of documents are typical applications.
These systems are usually built on top of existing search
engines and facilitate the web users’ search for
information.

In web structure mining, web structure data, such as
HTML and XML tags are used. Web structure data
describes the organization of the content on the web.
Inter-page relationships are the most important data
related to web structure. Also in web structure mining,
the graph structure of the web is analyzed in order to
discover the model underlying the link structure of the
web. This information could be used to calculate
organization and/or popularity of web pages and present
the web users with intelligent guidance, or for directing an
advertiser to web sites that are more likely to be visited by
potential customers.

Web usage mining (WUM) [5, 13] can be defined as the
application of data mining techniques to web log data in
order to discover user access patterns. Web usage mining
has various application areas such as web pre-fetching,
link prediction, site reorganization and web
personalization. Most important phases of WUM are the
reconstruction of user sessions by using heuristics
techniques, and discovering useful patterns from these
sessions by using pattern discovery techniques like
apriori or similar ones. WUM data is related to mainly
users’ navigation on the web. The most common action of
the web user is navigation through web pages by using
hyperlinks. A web page can be accepted as related to
another web page if they are accessed in the same user
session; also, similarity expectation increases if two pages
are accessed in the same session of a user. However, since
HTTP protocol is stateless and connectionless,
discovering the user sessions from server logs is not an
easy task. For reactive strategies, all users behind a proxy
server will have the same IP number and will be seen as a
single client machine and all of these users’ log records
will contain the same IP number in the web log data. Also,

caching performed by the clients’ browsers and proxy
servers will make web log data even less reliable. These
problems can be handled by proactive strategies by using
cookies and/or java applets. However, cookies and applets
could have been disabled by some clients for privacy and
security considerations. In this case such solutions for
proactive strategies would also become unusable. In
previous works on reactive strategies, mainly sessions are
reconstructed by using page access timestamps and
navigation constraint heuristics [2].

The data source for web usage mining can vary with
respect to the methods used. In proactive strategies [11,
9], the raw data is collected when client requests are being
processed by web server,. Proactive strategies are more
appropriate for dynamically created server pages. Also, in
proactive strategies, association of an agent with a session
is determined during the interaction of user with web site.
However, in reactive strategies [12, 6, 7], the available
raw data is mainly server logs containing information
about client requests. In this work, we only consider
reactive strategies because mining a huge collection of
access data captured by web server can be more
convenient after the interaction since it doesn’t add extra
load on the web server while it is busy serving client
requests. Comparison of reactive approaches with
proactive ones is not meaningful because of different
input sets they use. Since web server logs are used for
reactive processing, raw data has the same advantages and
disadvantages for reactive heuristics.

When a user agent (Internet Explorer, Mozilla, Netscape,
etc.) hit an URL in a web server’s domain, the
information related to that operation is recorded in that
web server’s access log file. An access log file contains its
information in Common Logfile Format (CLF) [4]. In
CLF, each client request for any URL corresponds to a
record in access log file. Each CLF record is a tuple
containing seven attributes that are given below:

• Client machine’s IP address
• Access date and time
• Request method (GET or POST),
• URL of the page accessed
• Transfer protocol (HTTP 1.0, HTTP 1.1,)
• Success of return code
• Number of bytes transmitted

For the session reconstruction, IP address, request time,
and URL are the only information needed from the user
web access log in order to obtain users’ navigation paths.
Therefore, other attributes from the log data are ignored.

Reactive strategies are mostly applied on static web
pages. Because the content of dynamic web pages changes
in time, it is difficult to predict the relationship between
web pages and obtain meaningful navigation path
patterns. Therefore we restrict our work to static web
pages.

As mentioned above, previously designed reactive
strategies [2] for session reconstruction use two types of
heuristics. In time-oriented heuristics [12, 6], session data
is reconstructed by analyzing the session duration time or
the time between consecutive web page requests (page
stay time). In navigation-oriented approach, session
reconstruction is performed by analyzing the hyperlinks
among the pages user requested [6, 7]. This heuristic must
estimate (speculate) browser movements by providing
path completion. In this work, we propose a novel
approach, which combines time-oriented and navigation
oriented approaches in order to obtain more accurate
sessions and do this more efficiently. As in navigation-
oriented heuristic, our technique also uses the web site
topology and includes path completion with a different
method. It is a reactive strategy designed for discovering
user session patterns on static web pages. Because we
assume a static web, the target web site to be mined can
be easily modeled as a static web graph [1, 8, 10]. The
adjacency matrix of this graph represents the relationships
among the web pages. We compare our heuristics with all
three previously studied reactive strategies. We don’t
perform any comparison with proactive strategies as they
would definitely use more information (e.g. cookies)
instead of using only the web log data, and any
comparison would be unfair to reactive strategies.

This paper is organized as follows. The next section
summarizes previously proposed reactive strategies,
namely time and navigation oriented heuristics. Section 3
introduces our heuristic technique for session
reconstruction. Section 4 introduces the agent simulator
that we have developed in order to evaluate and compare
different session reconstruction heuristics. Section 5
compares the performance of our new heuristic, with
respect to previous heuristics. Finally, we give
conclusions.

2. Previous Heuristics for Session Reconstruction

2.1 Time-oriented heuristics

Time oriented heuristics [12, 6] are based on time
limitations on total session time or page-stay time. There
are two types of time-oriented heuristics. In the first one,
the duration of a discovered session cannot be greater
than a predefined upper bound, δ. The upper bound δ is

usually accepted as 30 minutes according to [3]. Any page
requested with timestamp ti can be appended to the
current session under consideration if the time difference
between the requested page’s timestamp and the
timestamp of the first page t0 of that session is smaller
than δ (ti - t0 ≤ δ). The first page with a timestamp greater
than t0 + δ becomes the first page of the next session. In
other words, if [WP1, WP2, …., WPN] are web pages
forming a session (in increasing order of access time),
then access_time (WPN) – access_time (WP1) ≤ δ.

 Table 1: An example web page request sequence.

Page P1 P20 P13 P49 P34 P23
Timestamp 0 6 15 29 32 47

By using a δ value of 30 minutes, we obtain two sessions
from the web page request sequence given in Table 1; the
first session is [P1, P20, P13, P49] and the second session is
[P34, P23].

In the second time-oriented heuristic, the time spent on
any page is limited with a threshold of ρ. This threshold
value is accepted as 10 minutes according to [3]. If tj is
the timestamp of the most recently accessed page PJ, and
tJ-1 is the timestamp of page PJ-1 accessed immediately
before page PJ, then, tJ – tJ-1 ≤ ρ must be satisfied.
Otherwise this new request becomes the first page of the
new session. In other words, if [WP1, WP2, …, WPK,
WPK+1, … ,WPN] are pages forming a session, then, 1 ≤ K
< N access_time(WPK+1) – access_time(WPK) ≤ ρ.

By using ρ as 10 min, we obtain three sessions from the
web page request stream given in Table 1; these sessions
are [P1, P20, P13], [P49 , P34], and [P23].

In time-oriented approaches, it is very challenging to mine
session data correctly, since they do not consider the web
page connectivity. In real life, most of the web users
request a web page from another one having a hyperlink
to it. Also a web page referring to another page can be
accepted as related. Thus, it is better to group these pages
in the same session. On the other hand, it is better to put
two pages into two different sessions if the first one
accessed does not have any links to the next one even
though the second one is accessed immediately after the
first one. Most probably these pages will be unrelated to
each other.

2.2 Navigation-oriented heuristic

Navigation-oriented approach [6, 7] uses web topology,
based on graph models [1, 8, 10] constructed using the

hyperlinks among web pages, in order to discover
sessions. However, in a session, it is not necessary to have
a hyperlink between every two consecutive web pages.
For every page WPK (except the initial page WP1) in a
session there must be at least one page WPJ with a
hyperlink to WPK in the same session, having a smaller
timestamp than WPK. In other words, if [WP1, WP2, …,
WPJ, …, WPK, … , WPN] are pages forming a session,
then, ∀K ∃J such that, access_time(WPK) >
access_time(WPJ) and there exist a hyperlink from PJ to
PK. If there are several pages having hyperlinks to WPK
with smaller timestamps, then, among these pages, the one
with the largest timestamp, WPJmax, is assumed to be used
for accessing the page WPK. Therefore, during the session
reconstruction, backward browser movements until page
WPJmax with a hyperlink to WPK are appended to that
session.

During the construction of a new session, if [WP1, WP2,
…, WPN] is the current session and WPN+1 is a new page,
then, the page WPN+1 can be added to this session as
follows:
• If WPN has a hyperlink to WPN+1, new session

becomes [WP1, WP2, …, WPK, WPK+1, … , WPN,
WPN+1] .

• If WPN does not have a hyperlink to WPN+1, and
WPKmax is the nearest (with the largest timestamp
smaller than the timestamp of WPN+1) page having a
hyperlink to WPN+1, then, the new session becomes
[WP1, WP2, …, WPK, WPK+1, … , WPN, WPN-1,
WPN-2, ..., WPKmax, WPN+1]. The subsequence
represented in bold has been added to represent the
backward browser movements which are normally
served from the browser’s local cache.

P13 P1

P49

P20 P23

P34

Figure 1. An example web topology graph.

Consider again the Table 1 that shows a sample web page
requests sequence of an agent in increasing timestamp
order, and Figure 1 representing the web topology graph
between the requested pages, where each page is a node
and each directed edge represents the hyperlink from the
referring page to the target page. The process used for

evaluation of the final session is given in Table 2.
Backward browser movements are given in bold.

 Table 2: Evaluation of the example session for Table 1
by using navigation oriented heuristic.

Curent Session Condition New Page
[] – P1

[P1] Link[P1, P20] = 1 P20
[P1, P20] Link[P20, P13] = 0

Link[P1, P13] = 1
P13

[P1, P20, P1, P13] Link[P13, P49] = 1 P49
[P1, P20, P1, P13, P49] Link[P49, P34] = 0

Link[P13, P34] = 1
P34

[P1, P20, P1, P13, P49,
P13, P34]

Link[P34, P23] =1 P23

[P1, P20, P1, P13, P49,
P13, P34, P23]

– -

In navigation-oriented approach artificially inserting
backward browser movements is a major problem, since
although the rest of the session always corresponds to
forward movements in web topology graph, backward
movements represent movements in reverse direction of
the edges, and it is difficult to interpret patterns obtained
in this manner. Another problem is the length of sessions.
Sessions tend to become much longer due to insertion of
backward movements, and if a navigation-oriented
heuristic is used without any time limitation, it is possible
to obtain very long sessions. Lastly, discovering useful
patterns from these resulting longer patterns becomes
more difficult and inefficient.

3. A New Reactive Strategy for Session Reconstruction

In our method we propose solutions to the deficiencies of
time and navigation oriented heuristics by combining both
of these heuristics and by using the site topology in a way
that eliminates the need for inserting the backward
browser movements of navigation-oriented heuristic,
which will mean increased efficiency with shorter
sequences.

We propose a method, called as Smart Session
Reconstruction Algorithm (Smart-SRA) with two phases.
In the first phase, shorter request sequences are
constructed by using overall session duration time and
page-stay time criteria. A sub-session constructed by
using these two criteria corresponds to a session formed
according to the time-oriented heuristic using both
limitations. In the second phase, sessions are partitioned
into maximal sub-sessions satisfying both the time and the
topology rules. That means each session [P1, … Pi, Pi+1,
… Pn] satisfies the following two conditions:

• Timestamp Ordering Rule: The request time of the
first page in each consecutive page pair must be
smaller than the request time of the second page
(Timestamp(Pi) < Timestamp(Pi+1)), guaranteeing
that the web page sequence is in the increasing order
of web page request timestamps, and the access time
difference between two consecutive pages is less than
a predefined limit(page-stay time).

• Topology Rule: Between each consecutive page pair
in a session there must be a hyperlink from the first
page to the second page (i.e., ∀i ≤ n, there is at least
one hyperlink from Pi to Pi+1).

Notice that, the overall session duration time limit is
already guaranteed after performing the first phase. The
second phase adds referrer constraints, while still ensuring
the satisfaction of the second time constraint and
eliminating the need for inserting backward browser
moves. The second phase of the following algorithm
extracts these sequences.

Session Reconstruction Algorithm (Smart-SRA)
Input: Page request sequence of a user, given in
timestamp order, and named as UserRequestSequence.
The web topology graph including only the nodes
appearing in UserRequestSequence, and represented with
the adjacency matrix, called Link.
Output: The set of reconstructed sessions.
Phase 1: Construct candidate sessions from
UserRequestSequence by using both of the time-oriented
heuristics. Whenever time difference between two page
accesses exceeds the page-stay threshold (10 minutes),
UserRequestSequence is broken between these two pages
into two separate session candidates. Also, if the
difference between the current page and the first page in
session candidate exceeds the session duration threshold
(30 minutes), the current session candidate is terminated,
and a new session candidate is started. That means for
each candidate session constructed, both the total duration
of the whole session and the time spent on each page in a
session will be within the given thresholds. The set of sub-
sessions constructed in this step is called as
CandSessionSet.
Phase 2: Construct sessions from each candidate session
in CandSessionSet, by using the web topology. First, the
web pages without any referrers are determined in the
candidate session (Step I). Second, these pages are
removed from CandSessionSet (Step II) and then, they are
appended to the previously constructed sessions, if there
is a hyperlink from the last page of a session to new web
pages (Step III). Iterations terminate when all pages in the
candidate session have been processed. This algorithm is
given in Figure 2.

Procedure: Session Reconstruction (Phase 2)
ForEach CandSession in CandSessionSet

NewSessionSet := { }
While CandSession ≠ { }

TSessionSet := { }
// Step I
TPageSet := { }
ForEach Pagei in CandSession

StartPageFlag := TRUE
ForEach Pagej Where j>i in CandSession

If (Link[Pagej, Pagei]=1) AND
 (TimeDiff(Pagej, Pagei) ≤ 10) Then

StartPageFlag := FALSE
If StartPageFlag = TRUE Then

TPageSet := TPageSet U {Pagei}
// Step II
CandSession:= CandSession – TPageSet
If NewSessionSet = { } Then // Step III-a

ForEach Pagei in TPageSet
TSessionSet := TSessionSet U {[Pagei]}

Else // Step III-b
ForEach Pagei in TPageSet

ForEach Sessionj in NewSessionSet
// If the last element of current session has a link to
// current page and satisfies time requirements
If (Link[LastElement(Sessionj), Pagei] = 1)
AND (TimeDiff(Pagej, Pagei) ≤ 10) Then

TSession := Sessionj
TSession.mark := UNEXTENDED
TSession := TSession ● Pagei // Append
TSessionSet := TSessionSet U {TSession}
Sessionj.mark := EXTENDED

EndIf
EndFor

EndFor
EndIf
ForEach Sessionj in NewSessionSet

If Sessionj.mark ≠ EXTENDED Then
TSessionSet := TSessionSet U { Sessionj}

 NewSessionSet := TSessionSet
EndWhile

EndFor

Figure 2. Phase 2 of the session reconstruction algorithm.

Notice that only maximal sequences are kept through the
iterations and thus, there is no redundant session
construction. Moreover, if the web topology graph
contains vertices corresponding to web pages that do not
appear in the candidate session being processed, these
vertices and their incident edges must be removed from
the graph prior to the execution.

Table 3: Example web page request sequence

Page P1 P20 P13 P49 P34 P23

Timestamp 0 6 9 12 14 15

Consider Table 3 that shows a sample web page requests
sequence of an agent obtained by using the first phase of
the above algorithm, and the web topology is as given in
Figure 1. The application of the inner loop (while loop) of
the second phase of the session reconstruction algorithm
is given in Table 4. For this example, Smart-SRA
discovers the following maximal sessions satisfying both
timestamp ordering and topology conditions:
1. [P1, P13, P34, P23]
2. [P1, P13, P49, P23]
3. [P1, P20, P23]

4. Agent Simulator

It is not possible to use real user navigation data for
evaluating and comparing different web user session
reconstruction heuristics since all of the actual user
requests cannot be captured by processing server side
access logs. Especially the sessions containing access
requests served from a client’s and/or proxy’s local cache
cannot be accurately determined. Therefore, we have
developed an agent simulator that generates web agent
requests by simulating an actual web user.

Our agent simulator first randomly generates a typical
web page topology and then simulates a user agent that
accesses this domain from its client site and navigates in
this domain like a real user. In this way, we will have full
knowledge about the sessions beforehand, and later we
can use a heuristic to process user access log data to
discover the sessions. Then, we evaluate how successful
that heuristic was in reconstructing the known sessions.
While generating a session, our agent simulator eliminates
web user navigations provided via a client’s local cache.
Since the simulator knows the full navigation history at
the client side, it can determine navigation requests that
are served by the web server.

 Agent simulator will produce an access log file at server
side containing requests provided by web server. The
sessions discovered by the heuristics are compared with
the original complete session file. For example consider
an agent with complete page sequences of [P1, P13, P34]
and [P1, P20] generated by the agent simulator, which are
the real sessions. However, in the produced web server
log this sequence can appear as [P1, P13, P34, P20] because
browser provides the movement from P34 to P1 through
P13 using its local cache, meaning these last two
movement will not be sent to the web server. We execute
heuristics on the server side log data and produce
candidate session sequences. These candidate sequences
are compared with real session sequences in order to
determine the accuracy of evaluated heuristics.

 Table 4: Evaluation of example session.

Iteration 1 2
Candidate
Session

[P1, P20, P13, P49,
P34, P23]

[P20, P13, P49, P34,
P23]

New Session
Set (before)

 [P1]

Temp Page
Set

{P1} {P 20, P13}

Temp Session
Set

 [P1] [P1,P20]
[P1,P13]

New Session
Set (after)

 [P1] [P1,P20]
[P1,P13]

Explanation P1 is the start
page.

Both P20 and P13 are
reachable from P1

Iteration 3 4
Candidate
Session

[P49, P34, P23] [P23]

New Session
Set (before)

[P1,P20]
[P1,P13]

[P1,P13,P34]
[P1, P13, P49]
[P1, P20]

Temp Page
Set

{P49, P34} {P 23}

Temp Session
Set

[P1,P13,P34]
[P1, P13, P49]

[P1, P13, P34, P23]
[P1, P13, P49, P23]
[P1, P20, P23]

New Session
Set (after)

[P1,P13,P34]
[P1, P13, P49]
[P1, P20]

[P1, P13, P34, P23]
[P1, P13, P49, P23]
[P1, P20, P23]

Explanation Both P49 and P34
are reachable
from P13, but not
from P20

P23 is reachable from
P34, P49 and P20

An important feature of our agent simulator is its ability to
represent dynamic behaviors of a web agent. It simulates
four basic behaviors of a web user. These behaviors can
be used to construct more complex navigation sequences
in a single session. These four basic behaviors
constructing complex navigations are given below:

1. A Web user can start a new session with any one of
the possible entry pages of a web site: Most of the time
a web user can enter a web site from external domains via
links or users can directly type in the web page address in
their browser. Regardless of the entrance type, in each
web site there are starting pages such as “index.html”.
These pages can be the starting page of many web agents
with a high probability.

For static pages, of course all pages can be typed in
address bar and accessed directly. However, not all of the
pages are likely to take the first hit from the web users
with very high probability. So, most of the pages cannot
be accepted as a session starting page. While agent
simulator creates site topology, it also determines the

starting pages for the topology. When a user starts a
session, the fist page of session is randomly selected from
the set of these starting pages. Also, during the navigation,
web user can request a new starting page, which cannot be
accessible from previous pages. User may type the web
page address in the address bar. In this case this new page
becomes the first page of a new session. We are going to
use the example web topology given in Figure 3 to
illustrate this type of behavior. In this example, gray
pages represent starting pages of the domain. Since P1 and
P49 are the starting pages of this topology, the only
possible real session list of any agent are in the form of
[P1, …] or [P49, …]. While a web user is navigating after
starting at some start page, s/he can jump to another start
page, which is not accessible from any other previously
visited page. In this case the current session terminates
and a new session starts. For example, for the navigation
of user illustrated in Figure 3, if the current session is [P1,
P20] and user requests P49 and P23 consecutively,
immediately agent simulator creates a new session [P49,
P23] starting with P49, and ends the session [P1, P20].

Figure 3. An example navigation of behavior type 1.

2. A Web user can select a new page having a link
from the most recently accessed page: This is the most
typical behavior of a web user. When a user is browsing a
page, most probably s/he selects one of the links on that
page to go to the next one. In order to generate web user
navigation, agent simulator first finds pages having links
from the current page. Then, one of them is randomly
chosen and appended to the end of the current session.
This behavior is illustrated in Figure 4. If [P1, P13] is the
current session and the user is browsing page P13, since
P13 has links to P34 and P49, the next page can be one of
these two pages. After one of them is selected and a page

P13 P1

P20 P23

P34

1

S1

P49

2

S2

 Start page

New request from server

S1 Session I

S2 Session II

is appended to the current session, the user navigation
sequence becomes [P1, P13, P34] or [P1, P13, P49]. In Figure
4 web user select P34 and session becomes [P1, P13, P34].

Figure 4. An example navigation of behavior type 2.

3. A Web user can select as the next page a page
having a link from any one of the previously browsed
pages (i.e., pages accessed before the most recently
accessed one): This behavior is provided by a web
browser. Agent simulator generates browser movements
on the client site. However, it also eliminates these
movements on the server site while generating log data.
By using the web browser, web user can use “back” and
“forward” buttons or a link on the current page in order to
navigate back to a previously browsed page from the local
cache, which has been previously obtained from the web
server. A number of movements towards target page can
be provided from the browser cache. Then, user can
request a new page through web server from target page.
In this case, agent simulator selects one of the previously
accessed pages that have a link to one of the new pages
not accessed before. For example, if the current session is
[P1, P13, P34], user can return to page P1 then navigate to
P20. In this case the user’s requests are: [P1, P13, P34, P13,
P1, P20], bold movements are provided by browser. Agent
simulator eliminates such browser movements and, it adds
a new session starting from previous page having link to
the next page. New real session sequences become [P1,
P13, P34] and [P1, P20]. Notice that agent simulator
generated sessions will guarantee that Pi refers to Pi+1.
This type of behavior is illustrated in Figure 5.

4. A Web user can terminate the session: This is a
typical behavior. Users can close a browser window, or a
time out event could force the session to be terminated
invalidating browser links, or user can switch to a new
site. In Figure 6 a user terminates his/her session in P23.

Figure 5. An example navigation of behavior type 3.

P13 P1

P49

P20 P23

P34

2

1

3

4

5

6

Figure 6. An example navigation of behavior type 4.

Agent simulator also uses time considerations while
simulating the behaviors described above. In the second
and the third behaviors, the time difference between two
consecutive page requests is smaller than 10 minutes.
Also, in these behaviors, time differences of access time
of next page and current page obeys normal distribution.
In addition, the median value is taken as 2.12 minutes
(from [2]), and the standard deviation is taken as 0.5
minutes. The generated time differences set for each type
of these behaviors constitute a normal distribution.

Four primitive basic behaviors given above are
implemented in our agent simulator. Also, the following

P13 P1

P49

P20 P23

P34

2

1

3

4

5

 Start page

From cache

New request from server

P13 P1

P49

P20 P23

P34

2

1

3

4

5

 Start page

From cache

New request from server

 Start page

From cache

New request from server

probability parameters are used for simulating navigation
behavior of web user.

• Session Termination Probability (STP): It is the

probability of terminating the current session at any
page. The probability of terminating a session should
increase as the number of requests of a session
increases. The probability of terminating a session
until nth request is determined as (1 - (1-STP)n). STP
is given between (0, 1). For example if STP=0.5 the
probability of terminating a session at the 2nd request
is 0.75.

• Link from Previous pages Probability (LPP): LPP

is the probability of referring next page from previous
pages except the most recently accessed one. This
parameter is used to allow the generation of
backward movements from browser. LPP can be
given between [0,1).

• New Initial page Probability (NIP): NIP represents

the probability of selecting one of the starting pages
of a web site during the navigation. New Initial page
Probability (NIP) is provided by the user to control
this probability.

Simulating a sequence of web page requests of an agent is
done by the simple algorithm given in Figure 7.

Procedure: Agent Simulator
EndSession := FALSE
NewPage := SelectInitialPage() // Select an initial page
PageSequence := { }
AllSeqOfAgent := { }
For Each Request While (EndSession = FALSE) do
 CurrentPage :=NewPage
 PageSequence := PageSequence ● CurrentPage // Append
 If (STP> random()) Then
 EndSession := TRUE
 Else If (NIP> random()) Then
 // Select a new, un-accessed initial page
 NewPage := SelectInitialPage()
 AllSeqOfAgent := AllSeqOfAgent U PageSequence
 PageSequence := { }
 Else If (LPP> random()) Then

// One of the previous pages reachable from current one
 CurrentPage := SelectPreviousPage(CurrentPage)
 NewPage := SelectPage(CurrentPage)
 Else // Reachable from current page
 NewPage := SelectPage(CurrentPage)
EndWhile

Figure 7. Agent Simulator.

5. Performance Evaluation

We claim that sessions generated by our heuristic Smart-
SRA are more accurate than the sessions constructed by
the previous heuristics. For this purpose, we first define a
method to calculate the accuracy of a reconstructed
session, and then compare the accuracies of Smart-SRA
with previous heuristics.

5.1 Accuracy Metric

An accurate session must satisfy both the timestamp and
the topology rules explained in previous sections. The
sessions generated by agent simulator satisfy both of these
rules. Comparisons of session reconstruction heuristics
are performed with respect to 3 parameters, namely STP,
LPP and, NIP. The accuracy of a heuristic is defined as
the ratio of correctly reconstructed sessions over the
number of real sessions generated by the agent simulator.

In order to evaluate session reconstruction heuristics, first,
our agent simulator produces simulated sessions and a
corresponding web log file containing client requests for
web pages. Then, we use each of the four heuristics
discussed previously, to process this log file and generate
candidate sessions. After that, the accuracies of the
heuristics are calculated. These four heuristics are:
• Time oriented heuristic (total time ≤ 30 min) (heur1)
• Time oriented heuristic (page stay ≤ 10 min) (heur2)
• Navigation oriented heuristic (heur3)
• Smart-SRA heuristic (heur4)

We assume that a session H, reconstructed by a heuristic,
captures a real session R, if R occurs as a subsequence of
H (represented as R ⊏ H). For example, if R = [P1, P3, P5]

and H = [P9, P1, P3, P5, P8], then, R ⊏ H since P1, P3 and
P5 are elements of H and they preserve their exact order.
On the other hand, if H = [P1, P9, P3, P5, P8], then, R ⋢ H,
because P9 interrupts R in H. Searching real sessions in
candidate sessions produced by heuristics can be done by
using a simple algorithm adopted from ordinary string
searching algorithm.

5.2 Experimental Results

For comparisons of different heuristics random web sites
and web agent navigations are generated by using the
parameters in Table 5. The number of web pages in a web
site and the average number of out degrees of the pages
(number of links from one page to other pages in the same
site) are taken from [14]. Varying values of the three
parameters defined in the previous section, namely STP,
LPP, and NIP, are used for testing the performances of the

heuristics. In our experiments, we first fix two of these
parameters and then experimentally evaluate performance
results by varying the third parameter.

In the first experiment LPP and NIP are fixed with the
values in Table 5, and STP is varying from 1% to 20%.
Figure 8 depicts the real accuracy values of 4 heuristics.
As it is seen from the figure, Smart-SRA outperforms the
other 3 heuristics with a large difference, and the
difference is very stable. Smart-SRA is almost 50% better
than the other heuristics as STP (session termination
probability) increases.

Table 5: Parameters used for generating user sessions and
web topology.

Number of web pages (nodes) in topology 300
Average number of outdegree 15
Average number of page stay time 2,2 min
Deviation for page stay time 0,5 min
Number of agents 10000
Fixed Session Termination Probability (STP) 5% (0.05)
Fixed Link From Previous Page
probability (LPP)

30% (0.3)

Fixed New Initial Page probability (NIP) 30% (0.3)

Real Accuracy vs STP

0

10

20

30

40

50

1 4 7 10 13 16 19

STP

R
ea

l A
cc

u
ra

cy
 % heur1

heur2

heur3

heur4

Figure 8: Reconstructed session accuracy comparison
with increasing STP.

Increasing STP leads to sessions with fewer pages. In
small sessions the effect of LPP and NIP is also small. For
example, in a session with length 2, fixed LPP and NIP
values are applied only for the second page. If the
navigation is affected by LPP and NIP, then, the session
becomes more complex. If there is no return back to an
already visited page and there is no new initial page, then,
the session becomes simple and it can be captured easily.

In the second experiment, LPP is varied from 0% to 90%
and the other two parameters are fixed with the values in
Table 5. The results of this experiment are given in Figure

9. As it is seen from the figure, as LPP increases the
accuracies of reconstructed sessions decrease. Increasing
LPP leads to more complex sessions. Path completion will
be needed for discovering more accurate sessions.
Although large LPP values are not very realistic, still we
have presented the performance of all 4 heuristics for LPP
values up to 90%. For the large LPP values, Smart-SRA
captures nearly 25% of real sessions, whereas the other
heuristics can determine only 6% to 7% of them.
Moreover, as in the previous experiment, Smart-SRA
performs at least 40% better than the best of the other
heuristics for all LPP values.

Real Accuracy vs LPP

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90

LPP

R
ea

l A
cc

u
ra

cy
 %

heur1

heur2

heur3

heur4

Figure 9: Reconstructed session accuracy comparison
with increasing LPP.

Real Accuracy vs NIP

0

5
10

15
20

25
30

35

0 10 20 30 40 50 60 70 80 90

NIP

R
ea

l A
cc

u
ar

cy
 %

heur1

heur2

heur3

heur4

Figure 10: Reconstructed session accuracy comparison
with increasing NIP.

In the third experiment, as in other experiments, two
parameters are fixed with the values in Table 5 and, NIP
is varied from 0% to 90%. Performances of all four
heuristics are given in Figure 10. The results of this
experiment are also very similar to the second one.

Increasing NIP causes more complex sessions, therefore,
the accuracy decreases for all heuristics. However, large
NIP values are not very realistic. The success of Smart-
SRA is much higher (almost twice as good as the best of
the other heuristics) for all NIP values.

6. Conclusions and Future work

This paper introduces a new session reconstruction
heuristic which is based on user web page requests logs.
Our heuristic, Smart-SRA, has been experimentally shown
to be better than previously developed reactive, time and
navigation oriented heuristics. Also, we do not allow page
sequences with any unrelated (without any hyperlinks
from the preceding page(s) to the next page) consecutive
requests to be in the same session. Navigation oriented
heuristics will insert artificial browser (back) requests into
a session in order to guarantee that consecutive requests
will have connectivity between each other. Since we don’t
insert such artificial page requests, our session sequences
are much shorter and therefore, easier to process than
those generated by navigation oriented heuristics. We also
extend navigation oriented heuristics by using two time
oriented heuristics. Another advantage of Smart-SRA is
that it guarantees that all sessions generated will be
maximal sequences and do not subsume any other session.

We have also implemented a novel agent simulator for
generating simulated user sessions. Our agent simulator
generates complete sessions satisfying both connectivity
and timestamp rules. We have compared the sessions
reconstructed by Smart-SRA and previous heuristics
against the simulated sessions generated by the agent
simulator. We have also defined a method to calculate the
accuracy of the reconstructed sessions as a sequence –
subsequence relationship. As it is seen from the
experimental results, even when the behavior of simulated
agent is very complex, Smart-SRA performs much better
than previous heuristics with respect to real accuracy. In
addition, it is experimentally shown that bigger NIP and
LPP values leads to complex navigation behaviors, and
thus, intelligent path completion and separation is needed
for more accurate session reconstruction. Our experiments
show that larger values of NIP and LPP decrease the
accuracy of all session reconstruction heuristics while
Smart-SRA is still much more successful than other
heuristics for larger NIP and LPP values.

References:

[1] Andrei, B., Kumar, R., Farzin, M, “Graph Structure in the
Web,” The Ninth International World Wide Web Conference,
Amsterdam, May 2000.

[2] Berendt, B., Mobasher, B., Spiliopoulou, M., and
Nakagawa, M. “A Framework for the Evaluation of Session
Reconstruction Heuristics in Web Usage Analysis,” INFORMS
Journal of Computing, Special Issue on Mining Web-Based
Data for E-Business Applications Vol. 15, No. 2, 2003.

[3] Catledge, L.,Pitkow, J., “Characterizing browsing behaviors
on the world wide web,” in Computer Networks and ISDN
Systems, 27(6), 1995.

[4] Common Logfile Format,
http://www.w3.org/Daemon/User/Config/Logging.html

[5] Cooley, R., Mobasher, B. and Srivastava, J.. “Web mining:
Information and pattern discovery on the world wide web.” In
proceedings of the 9th IEEE International Conference on Tools
with Artifical Intelligence (ICTAI’ 97), Newposrt Beach, CA.

[6] Cooley, R., Mobasher, B., and Srivastava, J., “Data
Preparation for Mining World Wide Web Browsing Patterns,”
Knowledge and Information Systems, vol. 1, no. 1, 1999.

[7] Cooley, R., Tan, P. and Srivastava, J., “Discovery of
interesting usage patterns from Web data,” Advances in Web
Usage Analysis and User Profiling. LNAI 1836, Springer,
Berlin, Germany, pp.163-182, 2000.

[8] Cooper, C, Frieze, A., “A general model of Web graphs,”
European Symposium on Algorithms: Algorithms-ESA 2001,
pp. 500-511, 2001.

[9] Fu, Y. and Shih, M., “A Framework for Personal Web
Usage Mining,” International Conference on Internet
Computing, Las Vegas, NV, pp. 595-600, 2002.

[10] Kumar, R., Prabhagar, R., Sridhar, R., “The Web As a
Graph,” Proc. of 19th ACM SIGMOD-SIGACT- SIGART
Symp, PODS 2000.

[11] Shahabi, C., Kashani, F., “Efficient and Anonymous Web-
Usage Mining for Web Personalization,” INFORMS Journal of
Computing 15(2), pp. 123-147, 2003.

[12] Spiliopoulou, M., Faulstich, L.C. "WUM: A tool for Web
Utilization analysis,” Proc.of EDBT workshop WebDB’98,
LNCS 1590, Springer, Berlin, Germany, pp.184-203, 1998.

[13] Srivastava, J., Cooley, R., Desphande, M. and Tan, P.
“Web Usage Mining, Discovery and Applications of usage
patterns from web data,” SIGKDD Explorations 1(2):12-23,
2000.

[14] http://www.sims.berkeley.edu/research/ projects/how-
much-info/internet/ rawdata.html

