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ABSTRACT 

In this paper, a generic texture descriptor, namely, Statistical Analysis of Structural Information (SASI) is 

introduced as a representation of texture. SASI is based on statistics of clique autocorrelation coefficients, 

calculated over structuring windows. SASI defines a set of clique windows to extract and measure various 

structural properties of texture by using a spatial multi-resolution method. Experimental results, performed on 

various image databases, indicate that SASI is more successful then the Gabor Filter descriptors in capturing small 

granularities and discontinuities such as sharp corners and abrupt changes. Due to the flexibility in designing the 

clique windows, SASI reaches higher average retrieval rates compared to Gabor Filter descriptors. However, the 

price of this performance is increased computational complexity. 
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1. INTRODUCTION 

In recent years, textural information has been widely used as a visual primitive in many image processing 

applications [1], [2], [3], [4]. The potential areas include industrial and biomedical surface inspection, ground 

classification and segmentation of satellite or aerial imagery, document analysis, scene analysis, texture synthesis 

for computer graphics and animation, biometric person authentication, content-based image retrieval and model-

based image coding [5], [6], [7].  

 

Although the above application areas necessitate the utilization of texture analysis, only a limited number of 

successful interpretations of texture exist so far. The success of a texture descriptor heavily depends on the data type 

and the application area. A major problem in representing texture is that the textures in the real world are often quite 
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complex due to changes in orientation, scale or other visual appearance such as brightness and contrast [8]. 

Additionally, it is difficult to include extremely large number of attributes of texture under a single mathematical 

representation. 

 

Texture, generally, refers to repetition of basic texture elements called texels [9]. Mathematically speaking, texture 

can be defined as stochastic, possibly periodic, two-dimensional image field. In practice, texture descriptors 

represent distinctive characteristics of a texture, which are specific to the problem domain. Unfortunately, none of 

the existing descriptors has been shown to give satisfactory results over a wide range of textures. 

 

Textures can be represented by statistical, spectral and/or structural descriptors [9]. Well-known statistical 

descriptors are co-occurrence matrix, histogram features and random fields [10], [11], [9]. Gabor, Fourier and 

wavelet filters are the examples of spectral descriptors [12], [4]. Structural descriptors make use of texture 

primitives, where syntactic rules are employed for generating the texture [9]. Statistical descriptors exploit the local 

correlation of image pixels, whereas spectral descriptors capture global information about the energy on different 

scales. While statistical descriptors successfully analyze textures with weak edges or random nature, spectral and 

structural descriptors are best suited for periodic or almost periodic textures. In a given problem domain various 

types of textures may be mixed.  

 

Currently, Gabor Filters are the most popular descriptors, used for texture similarity problems. Among many others 

[12], [13] the successful results are reported by Manjunath & Ma [14], [15] where the image is first Gabor filtered, 

then, the second order statistics of the filter responses is used as a texture descriptor.  

 

In [14] and [15] Manjunath and Ma compare Gabor Filter features with other texture features, namely, pyramid-

structured wavelet transform (PWT) features, tree-structured wavelet transform (TWT) features and multiresolution 

simultaneous autoregressive model (MR-SAR) features, on the image retrieval problem by using Brodatz Album. 

They found that Gabor features slightly improves the overall performance by achieving an average retrieval rate 

close to 74% whereas MR-SAR features remains at 73%.  

 

Selection of the parameters for Gabor Filter descriptor depends on the characteristics of the textures in the image 

database. Since the Gabor functions are not orthogonal, there is a trade-off between redundancy and completeness 
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in the design of the Gabor Filter Banks. Otherwise, the implementation of a complete Gabor expansion would entail 

a generally impractical number of filters. Also, in a digital world, it is not always possible to cope with all sizes of 

analog Gabor Filters, which may cause problems, especially, with the textures that consist of small texels or sharp 

corners. Another limitation of the Gabor descriptor is the restriction of the filtering area, which must fit in a 

rectangle, unless some pre-processing is done.  

 

In this study, we explore a generic texture descriptor, which overcomes the above mentioned difficulties and works 

well on a wide range of textures. The SASI descriptor, proposed in this paper, is based on second order statistics of 

clique autocorrelation coefficients, which are the autocorrelation coefficients over a set of moving windows. The 

clique windows of various size and shape, which are defined by a neighborhood system, are used as a tool for 

describing the characteristics of textures in different granularity. The order of the neighborhood system controls the 

structure of the clique windows. Because of the flexibility in the definition of clique windows, SASI can cope with 

a broad class of textures, which may consist of discontinuities or small primitives.  

 

SASI is tested on Brodatz Album [16], CUReT [17], PhoTex [18] and VisTex [19] image databases. The 

experiments are also performed on a combined database obtained by joining all of the images in these databases. It 

is observed that SASI improves the retrieval rates compared to Gabor Filters. However the price of this 

improvement is the increased computational complexity. 

 

The paper is organized as follows. In Section 2, we introduce SASI descriptor behind a series of definition. 

Experimental results are given in Section 3. Section 4 concludes with discussions on the strengths and weaknesses 

of SASI compared to Gabor Filter descriptors. 

 

2. STATISTICAL ANALYSIS OF STRUCTURAL INFORMATION (SASI) 

 
2.1 Definitions 

SASI is based on the concepts of clique [20] and autocorrelation coefficient. In the following, SASI descriptor is 

introduced along with the background definitions.  
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Definition 1: Neighboring set of a pixel 

For a regular lattice , the neighboring set of a pixel  with coordinate (  is defined by the following 

recurrence relation: 

l ij ), ji

∈∀ kl l klij ≠, ,  

)(minarg
1d

ijηkl

1 ij,klD ηη d
ij

d
ij

−∉

−= U , 

and 

)(minarg1 ij,klDηij = , 

where }1 and 1  ,,  |    { lll HeightjWidthijiij ≤≤≤≤∈= N , 

),( klijD  denotes the distance function between pixel ij  and , kl

d  is the order of neighborhood system and N∈d . 

 

The neighboring relationship has the following properties:  

(1) a pixel is not neighboring to itself:  d
ijηij∉

(2) the neighboring relationship is commutative: ij  d
ij

d
kl ηklη ∈⇔∈

Figure 1 shows the neighbors of pixel , where the labels from 1 to 5 indicate the order of the neighborhood 

system with respect to the Euclidean distance. In this figure, widely used first and second order neighborhood 

systems are indicated by label 1 and 2, respectively. 

ij

 

Pixels near the edge of the lattice have fewer neighbors than the interior pixels. This fact is compensated by 

assuming that the lattice  has a periodic or torus structure, which means that the left edge is connected to the right 

edge and the upper edge is connected to the lower edge [11], [21], [22], [23]. 

l

 

Definition 2: Base Clique Type and Base Clique Test Predicate 

Given the neighborhood system , base clique type set P is defined as, dη

{ } η kl |  lkjip d
ij∈∀−== ),(),(  P , 
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Note that p  is a position vector between two locations (  and  of a lattice and called base clique type. 

Figure 2 indicates the base clique types for the second order neighborhood system , where 

), ji ),( lk

2η .8=P  

 

Base Clique Test Predicate ),( klijBp  is a Boolean function, which tests the neighboring and relative orientation 

of pixel ij  and kl  with respect to each other, given by: 



 ∈=−

=
otherwise            False

 and  ),(),( if            True
),(

d
ij

p

ηklpjilk  
klijB ,  where Pp∈ . 

Unlike neighboring relation, base clique test predicate is not commutative: ),(),( ijklBklijB pp ≠ . 

Definition 3: Clique Chain 

Given pixel  as a seed, the clique chain ij )(ijC p
L  with length L is a set defined by, 

, Pp∈∀   (ij)p
LC ={ ij,kl,mn,.  | v..,qr,st,u

       )()()()( st,uvBqr,stB...kl,mnBij,klB pppp ∧∧∧∧ }, 

where total number of pixels in )(ijp
LC is , L

),( klij  and  is the first and the last neighboring pair of pixels, with the  base  )(st,uv

clique type p , respectively. 

While in η2, clique chains are lines of pixels with various directions, for higher order neighborhood systems, they 

become dash lines of pixels. Since η2=8, only 8 direction clique chains can be obtained, as shown in Figure 3. Note 

that each )(ijp
LC is symmetric to )(ijp

L
−C . 

 

Definition 3: Clique Window 

Clique Window )(abW c,p
S,L

><  with seed  is an  structuring element, which consists of S clique chains, 

defined as 

ab SxL

,
121

,

} (wx,yz)   B...(cd,ef)B(ab,cd)B                                                  
(yz)  |C(wx)C...(ef)C(cd)C(ab){ C(ab)W

Sccc

p
L

p
L

p
L

p
L

p
L

c,p
LS

−
∧∧∧

=>< UUUUU
 

where , l∈yzwxefcdab ,,...,,, >< c  is an ordered S-1 tuple of base clique types such that 

11for121 −=∈>− P,  c | c,...,c,c iS>=<< ..S  ic , and each element of >< c , denoted as ic , represents 
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the base clique type of the i and  clique chain pair. It specifies how the clique chains,th thi )1( + p
L C , are connected 

to each other.  Parameters   Lc< and , S>,p determine the structure of the clique window. 

ic

)

)

1dη

 

The clique window is called regular if = jc for all 1..1, −= Sji and 
p
p

c
c

i

i ≠  and  
p
p

c
c

i

i −≠ , otherwise it 

is irregular. 

 

Figure 4 illustrates some of the clique windows defined in . In contrast to Figure 4 (a),(b),(c),(d) and (e), which 

are regular clique windows, Figure 4 (f),(g),(h) and (i) are the examples of irregular clique windows. For a regular 

clique window 

2η

(abc,p
S,L

><W , the parameters  and LS , >< cp,, determine the size and orientation of the clique 

window, respectively. On the other hand, most of the time, it is hard to talk about the size and orientation of the 

irregular clique windows. This fact is depicted in Figure 4 (h). Thus, for the irregular clique windows, rather than 

the size and orientation, the structure becomes the main issue. 

 

In this study, we mainly concentrate on the regular clique windows. For the sake of simplicity, )(,
, abcp
LS

><W  is 

abbreviated as (abc,p
S,LW , since in regular clique windows, all ic s are equal to each other. Also due to the 

symmetric relations a regular clique window )(abc,p
S,LW  has the same structure as )(abc,p

S,L
−W , )(abc,p

S,L
−W  and 

)(abW c,p
S,L

−−  as shown in Figure 5. 

 

In , 12 different clique windows (ignoring the symmetric ones) can be defined as shown in Figure 6. One can 

employ the higher order neighborhood systems, in order to incorporate the characteristics of the images in the 

database. Then, the clique windows can be defined based on the clique type set for a given neighborhood system. 

For example, 26, 86 and 124 regular clique windows can be defined in ,  and  respectively. Note that a 

clique window defined in  can also be defined in if d . 

2η

3η 4η 5η

2dη 12 d≥

 

In this study, only the regular clique windows are used for measuring the texture similarity. For practical reasons, 

the definitions below are given for regular clique windows. The generalization to irregular cases requires some extra 

works.  
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Definition 4: Clique Autocorrelation Coefficient 

Clique autocorrelation coefficient at lag vector )( yx ,vvv =  of a given seed pixel  for a regular clique 

window 

ab

)(abc,p
S,LW  is given by 

∑ ∑

∑

∈∀ ∈++∀
++++

∈++∀
++++

−−

−−

=

)(),( )()(

22

)( )( and  ),()(

)()(

))((  
)(

ab W ji ab W v,jvi
v,jviv,jvii,ji,j

abWv,jviji
v,jviv,jvii,ji,j

abW

c,p
S,L

c,p
S,Lyx

yxyx

c,p
S,Lyx

yxyx
c,p

S,L

xxxx

xxxx
vr          (1) 

where is the gray value of the image at position  and  jix , ),( ji

∑
∈∀

=
(ab) W(i,j) 
i,j

(ab)W
i,j

c,p
S,Lc,p

S,L

x
N

x     1
 

is the mean value of the gray levels and
(ab)W c,p

S,L
N is the number of pixels in the clique window )(abc,p

S,LW . 

 

Lag vector v  is a vector between two locations of a clique window. Note that autocorrelation coefficients of a 

clique window depend only on the length and direction of the lag vector.  

 

Clique autocorrelation coefficients can be considered as a short-term correlogram over the clique window defined 

by the clique chain. They enable us to capture stationary information at various scale and orientation within an 

image. 

 

Since the autocorrelation coefficients at all lags bear redundant information as experimented later in Section 3.1.1, 

there is no need to use all of them for the representation of a texture in a multidimensional space. Therefore, it is 

reasonable to take the lag vector v  of a clique window )(abc,p
S,LW  as, 

)  (  yx n p,n pp nv =×= , 

where  is a lag multiplier and n 1L1  , −≤≤∈ nn N . In other words, the lag vector v  is taken as the same as 

the base clique type of the clique chains, which make the clique window.  

 

Definition 5: Second Order Statistics of Autocorrelation Coefficients 

Mean value and standard deviation of clique autocorrelation coefficients with lag vector v  of all clique windows 

)(abW c,p
S,L  is defined as  
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∑
∈∀

=
ll )(

)(c,p
LS, )(1)(µ

a,b

abW c,p
S,Lvr

N
v                                                             (2) 

 and 

( )∑
∈∀

−=
ll (a,b)

abW vvr
N

v
c,p

S,L
2

c,p
LS,

)(c,p
LS, )(µ)(1)(σ                                                (3) 

 

respectively, where v  is the lag vector, p  and c  are the base clique types,   is the number of clique chain,  is 

the clique chain length and  is the number of pixels in the lattice. 

S L

lN

 

Definition 6: SASI Descriptor 

For a given texture T, SASI descriptor is defined as an Nx1 vector with the entries (n)c,p
LS,µ , (n)c,p

LS,σ as 

DT ={ )(µ 1
c,p
L,S

11

11
v ,�, )(QQ

QQ

c,p
L,S Qvµ  , )( 1

c,p
L,S

11

11
vσ  ,�, )(QQ

QQ

c,p
L,S Qvσ }                          (4) 

where 2 (Q mean values +  standard deviations) is the size of the feature vector. Q× Q

 

For each selected clique window )(abii

ii

c,p
,LSW , where i=1...total_number_of_clique_windows_selected, total 

number of mean value and standard deviations calculable are )1(2 −× iL , since lag vector v  is defined as 

ip nv   ×=  where . Therefore, the maximum value of Q  is . 1L1  , i −≤≤∈ nn N ∑
=

−
WindowCliqueof

i
iL

    #  Total

1

)1(

 

Definition 7: Normalized SASI Descriptor 

Given, [ ]QT fffD *221 ,...,,= , then normalized SASI descriptor, [ ]QT fffD *221 ,...,, ′′′=′ , is defined by 

normalizing the entries of DT as follows: 

 *1..2  i              ' Q
f

f
i

i

f

fi
i =

−
=

σ

µ
                                         (5) 

where 
if

µ is the mean value and 
if

σ  is the standard deviation of the features over the entire database.  
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D'T measures the structural information by using the second order statistics of local autocorrelation coefficients for 

texture T. The size of the descriptor D'T depends on the image database. We use the distance metric defined below 

in order to measure the mathematical similarity between the textures.  

 

Definition 8: SASI Distance 

In this study, the mathematical similarity between the textures T1 and T2 is measured by the following metric: 

212211

21),( 21
TTTTTT

TT

DDDDDD
DD

TTS
′•′−′•′+′•′

′•′
=                                        (6) 

where • stands for dot product. 

 

2.2 Algorithm of SASI 

  

         Begin 
 Select neighborhood system  dη
 Select the clique windows c,p

S,LW  as a subset of all the clique windows  
   Select the lag vectors used for each clique window 
 φ=TD  
 For each clique window c,p

S,LW  
  For each lag vector v  
    For each pixel (  )ab
     Define clique window )(abc,p

S,LW  

    Calculate )()( abW c,p
S,Lvr  using Equation (1) 

    Next pixel  )(ab
    Calculate mean value )(µ c,p

LS, v  and standard deviation )(c,p
LS, vσ  

   { } )( ,)(µ c,p
LS,

c,p
LS, vvDTT σUD =  

  Next v  
  Next cp  ,

S,LW
 Construct normalized D  vector using Equation (5) T′
         End. 

The most crucial part of the algorithm is the selection of the clique window sizes, and . A preliminary analysis 

on database, as discussed in the next section, may help us to determine them. Window sizes depend on the size of 

the texture primitives and resolution of the images in the database. Basically, clique windows should be small 

enough to capture small primitives and big enough to capture large patterns or primitives in the images of the 

database. One can employ all possible size clique windows and related autocorrelation coefficients, but this time, 

S L
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the computational power is wasted. Additionally, increasing the dimension of the feature vector may not improve 

the representation capability of the descriptor. This is a well-known phenomenon, called "curse of dimensionality", 

in pattern recognition. 

 

3. EXPERIMENTS 

Two sets of experiments are done to show the power of SASI. First, SASI descriptor is analyzed in detail and 

compared to Gabor Filter descriptor. Latter, SASI and Gabor Filter descriptor are tested on the image retrieval 

problem by using four different image databases, namely Brodatz Album, CUReT [17], PhoTex [18] and VisTex 

[19]. The experiments are also performed on a database generated by joining all the images of these four databases. 

 

Brodatz Album contains 112 pictures with size 512x512 and 256 gray values after digitizing, showing a variety of 

textures, collected for artistic purposes [16]. It is a de facto standard set of images for texture retrieval problem. Due 

to its popularity and comparable studies exist in the literature [24], [14], [15]; a more comparative analysis is 

provided on the Brodatz Album in the following sections. 

 

Columbia-Utrecht Reflectance and Texture Database (CUReT) are formed by the researchers at Colombia 

University and Utrecht University [17]. It contains 61 different pictures with various size and color. Thumbnails of 

the images can be seen at http://www.cs.columbia.edu/CAVE/curet/html/sample.htm. Before applying SASI and 

Gabor descriptors, each image is rescaled to 512x512 and converted to gray scale.  

 

Jerry Wu from Heriot-Watt University at Edinburgh creates Photometric Texture Database (PhoTex) [18]. 30 

different pictures with size 512x512 and 256 gray values exist in PhoTex. Images can be seen at 

http://www.cee.hw.ac.uk/texturelab/database/jwdb/thumbnails.htm as thumbnails. 

 

Vision Texture Database (VisTex) is formed by the Vision and Modeling group at the MIT Media Lab [19]. It 

contains 167 colored reference textured images with size 512x512. Images are grouped according to their contents. 

Further details can be found at http://www-white.media.mit.edu/vismod/imagery/VisionTexture/vistex.html.  
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3.1 SASI in Detail 

In this section, first, traditional correlogram method is examined to show the redundancy in autocorrelation 

coefficients in the analysis of texture. Next, the clique windows are employed in order to show the effect of the 

window sizes in constructing the SASI descriptor. Then, SASI descriptor is compared to Gabor Filter descriptor.  

 

3.1.1 Traditional Correlogram Analysis 

Traditional correlogram is a special case of SASI, where the size and the shape of the clique windows are chosen as 

the size and the shape of the image itself and clique autocorrelation coefficient is calculated for all lag vectors. The 

resulting series is called the autocorrelation series or correlogram.  

 

Figure 7 shows the correlogram of texture D001 from Brodatz Album. The correlogram in Figure 7 shows that at 

each 30 pixel in X and Y direction texture primitives are repeated. 

 

It is well known that correlogram bears redundant information [9], [25], [26]. This redundancy is partially observed 

by using Principal Component Analysis. When the rows of the correlogram are chosen as variables, it can be seen 

that few new variables or principal components are sufficient to capture the information provided by the existing 

variables. This fact is exemplified in the sample Brodatz texture, D001 in Table 1. Note that only 5 principal 

components are sufficient to capture almost all the information provided by 129 variables.  

 

A similar analysis indicates that there is no need to calculate all lags of the clique autocorrelation coefficient for 

determining the SASI descriptor. Thus, as mentioned in Definition 4, lag vector v  of a clique autocorrelation 

)()( abW c,p
S,Lvr  is taken as, p nv   ×= , where  is a lag multiplier.  n

 

In the next section the effect of window size parameters  on texture representation will be explored in detail. LS,

 

3.1.2 Selection of Clique Window Size in SASI Descriptor 

In order to analyze clique window size, four regular clique windows, namely W , W , W  

and W  are defined, as shown in Figure 8, which are horizontal, vertical, right and left diagonal clique 

)1,0(),0,1(
LS=

)0,1(),1,0(
LS=

)0,1(),1,1(
LS=

)0,1(),1,1(−
=LS
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windows, respectively. For each clique window, possible lag vectors v  for the clique autocorrelation coefficients 

are also shown. 

 

For the notational simplicity, horizontal, vertical, right diagonal, left diagonal clique windows will be represented as 

,W ,W  and W . Working with these clique windows may help us to analyze the effects of the clique 

window sizes and the clique autocorrelation lags on SASI. 

H
SW V

S
RD

S
LD

S

  

Different properties or components of the texture are captured by the clique autocorrelation coefficients at different 

lag vectors applied on the clique windows. Figure 9 illustrates the relation between the clique window size versus 

mean values and standard deviations of autocorrelation coefficients of texture D001 in the Brodatz Album. Note 

that the mean values and standard deviations of the autocorrelation coefficients remain almost the same for larger 

values of clique window than the size 25x25. Therefore, for this particular example, it is shown that using clique 

window size larger than 25x25 does not bring any critical information. Similar analysis is done for the texture D052 

shown in Figure 10. In this case, the largest window size might be 15x15. 

 

In Figure 9 and 10, the clique autocorrelation coefficients are calculated for 4 orientations of clique windows with 

the lag multiplier . Whereas in Figure 11 and 12, directions of lag vectors are fixed, but varying lag multiplier 

 is employed for textures D001 and D052. Due to the dominant horizontal and vertical effects in texture D001 

and dominant diagonal effects in texture D052, related clique windows are selected to examine the dominant 

features of both textures. Figure 11 and 12 indicates that using clique window size larger than 33x33 for texture 

D001 and larger than 19x19 for texture D052 brings very small information for clique autocorrelation coefficient 

with lag multiplier n .  

1=n

=

n

2

 

Note that, the mean value of the clique autocorrelation coefficients approaches to the autocorrelation coefficient of 

the entire texture, as the size of the clique window gets larger. 

 

The window sizes and the lag vectors of the autocorrelation coefficients for each clique window are the critical 

parameters of SASI. Therefore, a preliminary analysis on the images of the database is required to select these 

parameters before the calculation of SASI descriptor. 
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3.1.3 Gabor versus SASI Descriptor 

Gabor Filter descriptor, reported by Manjunath and Ma [14], [15] use a dictionary, which contains four scales and 

six orientations. Each filter captures the relevant texture primitives of the image. Second order statistics of the 

Gabor Filter  (4 scales ×  6 orientation = 24 filter) responses of a given texture is used as a texture descriptor. Thus, 

an image is represented by a vector f
v

 of size 48 [15].  

},,...,,{ )1)(1()1)(1(0000 −−−−= KSKSf σµσµ
v

, 

where the subscript S represents the scale (S=0,..,3) and K represents the orientation (K=0,..,5). The distance 

between two images is defined as: 

 

∑∑ −
+

−
=

S SK

j
SK

i
SK

K SK

j
SK

i
SKjid

)()(
),(

σα
σσ

µα
µµ

, 

 

where )( SKµα  and )( SKσα are the standard deviations of respective features over the entire database. 

 

The algorithmic complexity of Gabor Filter descriptor is O )log( 2 NN ×  when filtering is implemented in 

frequency domain, whereas the complexity of SASI is O )NL(S ××  where S ×  L is a clique window size and N 

is the image size and N = Width  Height of the image. If the size of the clique window is small compared to the 

image size ( ) than SASI descriptor requires less computational power than that of Gabor Filter. 

However in our experiments, we use clique windows of size 3x3, 5x5 and 7x7 for 128x128 images. Therefore, for 

the databases used in this study, Gabor Filter is more efficient in terms of the computational complexity. 

×

NLS 2log<×

 

As in Gabor Filter, SASI captures the components of texture with different coarseness. As a result, coarse-to- fine 

components of the textures are represented in large-to-small size clique windows. This fact is depicted in Figures 

13, 14 and 15 where various sizes of clique windows decompose the image into various granularities. 

 

In order to depict the characteristics of both SASI and Gabor Filter descriptors, three textures are selected from the 

Brodatz Album, namely D001, D035 and D052. D001 contains sharp edges with large texels and high contrast. On 

the other hand, D035 and D052 have coarse to fine textures with relatively low contrast. Considering the structure 

of the textures, D001 is analyzed by horizontally oriented clique windows and Gabor Filters, whereas D035 is 
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analyzed by diagonal clique windows and Gabor Filters, since these effects are dominant in the selected textures. 

Also, the vertical effects are analyzed in D052, which consists of vertical, diagonal and horizontal texels. 

 

Table 2 indicates the parameters of Gabor and SASI descriptors used in the experiment. The outputs of the clique 

autocorrelation coefficients and the Gabor Filter responses shown in Figure 13, 14 and 15 are scaled to 0 to 255, 

where 255 (white) and 0 (black) correspond to the high and low responses, respectively. 

 

The results of the filter responses and the clique autocorrelation coefficients depicted in Figure 13, 14 and 15 are 

not directly comparable. However, by analyzing these figures, one can get an idea about how these two descriptors 

work. Although there is no one to one mathematical match, for each image, small to big clique window versus 

narrow to wide Gabor filter is employed. 

  

A comparison of SASI and Gabor Filter outputs in Figure 13 indicates that while SASI captures the sharp edges, 

Gabor has a tendency to smooth them. The Gaussian structure of the Gabor Filter naturally, bends the straight lines 

while SASI captures them without any deformation. 

 

It can be seen from Figure 14 and 15 that, Gabor Filter fails to capture small texels because of the error in discrete 

approximation of Gabor function for small windows. The output of fine parameters of Gabor is almost white noise 

(no pattern). 

 

3.2 Image Retrieval  

Textural information can be used in two main application domains: �between-image search� and �within-image 

search�. The first domain deals with searching an image database and finding the most similar image to a given 

query image. The latter deals with texture segmentation problem, searching a region within an image and finding 

the most similar region to a given object or a region. Although the proposed descriptor can be used in both domains, 

in this study, we are mainly concentrated on between-image search problem since in this domain, the performance 

of a descriptor can be easily evaluated in terms of the average retrieval rates [24], [27], [14], [2], [15]. On the other 

hand, the concept of similarity is quite subjective. 
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There are two popular methods for testing the performance of a texture descriptor: 

 

i. Each image in the database is divided into sub-images, 

ii. The images in the database are grouped by the user.  

 

The first method enables us to identify each subimage without human subjective support, unless images are similar 

to each other, whereas the latter method requires grouping criteria that may differ from user to user. Although 

human support adds subjectivity to the performance measuring process, without this support human visual system 

consistency of a descriptor cannot be fully measured. This is a dilemma of the performance measuring process.  

 

3.2.1 Image Retrieval without Human Subjectivity 

In our experiments, all of the images in Brodatz Album, CUReT, PhoTex and VisTex databases are partitioned into 

16 nonoverlapping regions, as shown in Figure 16. Hence, for Brodatz Album 112× 16=1792 subimages, for 

CUReT, 61 16=976 subimages, for PhoTex 30× × 16=480 subimages and for VisTex 67 16=2672 subimages are 

obtained, as shown in Table 3. The performance of the proposed descriptor for each image database is measured in 

terms of the average retrieval rate, which is defined as the average percentage number of patterns belonging to the 

same image as the query pattern in top 15 matches (self matches are excluded) [14], [15], [24]. In another words, 

for each subimage, its most similar 15 subimages are searched within the entire database consists of subimages. In 

the ideal case, retrieved 15 closest and the query subimage should come from the same original image. This type of 

performance appraisal is widely used in between-image search applications. 

×

 

Throughout the image retrieval experiments 3x3, 5x5 and 7x7 clique windows are employed. Table 4 (a) shows the 

autocorrelation coefficients and the related window sizes, which are selected in the preliminary analysis of Brodatz, 

CUReT, PhoTex and VisTex image databases, as explained in the previous section. As it can be seen from the 

Table 4 (a) for a given clique window type, 10 autocorrelation coefficient are calculated and the feature vector of 

size 20 (10 mean value + 10 standard deviation) is formed. 

 

In order to make a systematic analysis on the performance of SASI descriptor all clique windows defined in , 

, ,  and are employed. Table 4 (b) shows the number of clique windows and corresponding feature 

vector size for each neighborhood system. 

1η

2η 3η 4η 5η
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After calculating the SASI descriptor, the ranking process is accomplished by using Equation (6). 

 

The average retrieval rates of Gabor and SASI descriptor are computed for images in Brodatz, CUReT, PhoTex and 

VisTex databases, respectively and the results are indicated in Table 3. Note that SASI descriptor achieves average 

retrieval rate between 47-92% whereas Gabor Filter remains in the range of 46-80%. We, also, formed a large 

image database by combining all the subimages of the Brodatz, CUReT, PhoTex and VisTex. In this experiment, 

for each subimage its most similar 15 subimages are searched within 5,920 subimages. The average retrieval rate 

for SASI descriptor (in ) is 67.20% whereas that of Gabor is 60.56%. 3η

 

In SASI increasing the order of the neighborhood system larger than 3, decreases the average retrieval rate, due to 

curse of dimensionality. Thus, the below experiments are done by using SASI with clique windows defined in . 3η

 

Although we did not perform a systematic set of experiments to check the consistency of SASI to the human visual 

system, during the experiments, we observed that SASI retrieves images which are quite consistent to our intuition. 

In order to show these informal results, two examples, where 4 query texture and their 35 closest textures in the 

Brodatz Album, are given in Appendix-Figure 1.a and 1.b.  

 

The retrieval rate for each image in the Brodatz album for Gabor and SASI descriptor is shown in Table 5. Figure 

17 indicates the percentage of retrieving the correct subimages as a function of number of retrieved subimages. In 

Figure 17, horizontal axis represents the number of retrieved subimages and vertical axis represents the percentage 

of the correct retrieved subimages. The performance increases to 93% if the top 100 retrievals are considered 

instead of 15 retrieval considerations. 

 

3.2.2 Image Retrieval with Human Help: Clustering 

Brodatz, CUReT, PhoTex and VisTex image databases were never intended to give a fully representative sample set 

of a broad class of textures for testing the full performance of texture descriptors. As described earlier, during the 

evaluation of the performance of a descriptor, the images of the databases are partitioned into n  subimages. Then, 

for each subimage, its most similar  subimages are searched within the subimages in the database. In this 

case, images can be considered as distinct classes, whereas the subimages correspond to the entries of each class. 

1−n

 

 16



It is expected that the query and the retrieved most similar, i.e. closest, 1−n  subimages are regions of the same 

image. This expectation is only valid for an image database, where images of the database are visually different 

from each other whereas the subimages are visually similar. However, the databases used in the experiments are far 

from satisfying this expectation. 

 

There are two major problems for measuring the performance of a descriptor. Firstly, some images in the database 

are quite similar to each other. Secondly, splitting an image into subimages may sometimes yield visually dissimilar 

textures. These problems prevent us to measure the consistency of a descriptor with the human visual system. 

 

In order to avoid the above problems, the subimages may be clustered by the human support. However, in this case 

the measured performance of a descriptor is human specific. Also, when the number of images clustered by the 

human is increased, subjectivity is also increased from one person to the other.  

 

Since it is hard to manually group the subimages, 112 textured images of Brodatz Album are visually grouped into 

32 different clusters, each of which contains 1-8 similar texture [15], [24], [27]. In this study, we use the clustering 

schema defined in [24] as shown in Table 6. After the grouping, each image is partitioned into 16 subimages. Note 

that, this clustering process can eliminate the problems of Brodatz Album mentioned above, to a certain extent.   

 

This time, the query and retrieved most similar subimages are tested for belonging to the same cluster. Since 

clusters contain different number of images rather than average retrieval rates, weighted average retrieval rates, 

where the weights are the number of images in each cluster, are considered. Figure 18 illustrates an evaluation 

based on 32 clusters. Weighted average retrieval rate of SASI descriptor is higher than that of Gabor Filter 

descriptor. As it can be seen from Figure 18, when clustering is employed, the most similar 8 subimages of a given 

query subimage are in the same cluster at the rate of 90%. 

 

As stated in Section 3, images in the VisTex database were grouped according to their contents by the researchers at 

the MIT Media Lab. In table 7, 19 groups of images in the VisTex are shown. Same analysis defined in the previous 

paragraph is applied on visually grouped images of VisTex.  Figure 19 shows an evaluation based on 19 clusters 

where the most similar 8 subimages of a given query subimage are in the same cluster at the rate of 85%. 
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4. CONCLUSUIONS 

In this paper, a new texture descriptor, namely SASI, is introduced and compared to Gabor Filters. SASI descriptor 

consists of second order statistics of autocorrelation coefficient at different lags over a set of clique windows. The 

concept of clique chain is employed for constructing these structural windows. Clique windows are defined by 

using a set of neighborhood systems. Changing the order of the neighborhood system, various regular or irregular 

clique windows are generated. The size of the clique windows and the lag vectors for the autocorrelation 

coefficients are the parameters of SASI. Selection of these parameters requires domain dependent analysis. The 

traditional correlogram is a special case of SASI, where only one clique window is used with the size of the image 

itself and clique autocorrelation coefficient is calculated for all lag vectors. Therefore, SASI can be considered as a 

generalized correlogram. 

 

SASI descriptors have various superiorities compared to Gabor filters. First of all, the Gaussian structure of the 

Gabor filters, has the tendency to bend the straight lines and smoothes the sharp edges. On the other hand, the 

flexibility in designing a large class of clique windows enables one to capture a great variety of textures without any 

distortion. Secondly, while SASI descriptors can successfully extract small texels, the Gabor function fails to detect 

them, due to the relatively large error of the discrete filter approximation.  As a result, SASI descriptor captures the 

structural property of the texture better than the Gabor Filters. This fact is verified during the performance tests 

based on average retrieval rates applied on subimages and visually clustered images of Brodatz Album, CUReT, 

PhoTex and VisTex databases. Finally, during the experiments it is observed that SASI descriptor is more 

consistent to the Human Visual System compared to the Gabor filters, in retrieving the similar images. This is quite 

reasonable considering the fact that SASI does not restrict the textures to obey the laws of Gaussian nature. On the 

other hand, the main disadvantage of SASI descriptor is its high computational complexity, especially for large size 

clique windows required for capturing large texels. 
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Figure 1.   Neighbors of pixel . The labels d=1,�,5 indicate the order of neighborhood system with respect to 

Euclidean distance. 
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Figure 2.   Base clique types p , in  neighborhood. Shaded pixel is taken as a seed pixel. 2η
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Figure 3.   8 orientations of clique chain with length 7. 

 

 

 

Figure 4.   Some of the regular and irregular clique windows defined in . (a),(b),(c),(d),(e) are regular, but    

(f),(g),(h),(i) are irregular. 

2η
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Figure 5.   Different representations of a regular clique window. 

 

 

 

 

 

 

Figure 6.   Regular clique windows defined in . 2η
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Figure 7:   Texture D001 with size 128x128 and its correlogram as a 2-d intensity diagram. 

 

 

 

 

 

 

 

Figure 8.   Horizontal, vertical, right and left diagonal clique windows. 
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Figure 9.   Window Sizes vs. Mean Values and Standard Deviations for texture D001 from Brodatz Album. 

 

 

Figure 10. Window Sizes vs. Mean Values and Standard Deviations for texture D052 from Brodatz Album. 
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Figure 11. Window Sizes vs. Mean Values & Standard Deviations for texture D001 using vertical clique windows. 

 

 

 

 

 

 

 

 

Figure 12. Window Sizes vs. Mean Values & Standard Deviations for texture D052 using right diagonal clique 

windows. 
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Figure 13. SASI and Gabor Filters horizontal analysis of texture D001 from Brodatz Album. 

 

 

 

 

Figure 14. SASI and Gabor Filters right diagonal analysis of texture D035 from Brodatz Album. 
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Figure 15. SASI and Gabor Filters vertical analysis of texture D052 from Brodatz Album. 

 

 

 

 

 

 

 

Figure 16: Subimages of size 128x128 in D001 with size 512x512. 
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Figure 17. Average retrieval rates as a function of number of retrieved subimages for Brodatz Album. 

 

 

Figure 18.  Retrieval performance after clustering for Brodatz Album. 
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Figure 19.  Retrieval performance after clustering for VisTex database. 

 

 

Table 1: Principal Component Analysis of the correlogram. 
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Table 2: Parameters of Gabor and SASI. 

 

 

 

 

 

 

 

 

Table 3: Properties of the Brodatz, CUReT, PhoTex and VisTex image databases and corresponding average 

retrieval rates. 
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Table 4: The clique window sizes and autocorrelation coefficients (a)  and number of clique windows vs. feature 

size (b) for Brodatz Album, CUReT, PhoTex and VisTex image databases. 

 

 

Table 5: The retrieval rates for the 112 texture images in Brodatz Album. 
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Table 6: Texture clusters identified by human for Brodatz Album. 

 

 

 

 

 

 

 

 

Table 7: Image groups in the VisTex database. 
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Appendix-Figure I.a: The most similar 35 images of given query images, namely D001_1 and D018_1,are                               

depicted. Images are ordered by the distance from left to right, top to bottom (excluding self matches). 
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Appendix-Figure I.b: The most similar 35 images of given query images D052_1 and D101_1. 
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Appendix-Table 1: Glossary of  Notation 

N  The set of positive integers 

l  A regular lattice 

ij  A pixel with coordinate (  ), ji

jix ,  The gray value of the image at position  ),( ji

dη  thd  order neighborhood system 

d
ijη  The neighboring set of a pixel ij  in the d.th order neighborhood system 

),( klijD  The distance function between pixel  and  ij kl

p , c  A position vector between two locations of a lattice, also called base clique type 

P  Base clique type set 

>< c  An ordered tuple of base clique types 

),( klijBp  Base Clique Test Predicate 

)(ijC p
L  A Clique chain with length L defined on a given seed pixel ij  

)(abW c,p
S,L

><  A Clique Window with seed pixel . It consists of S clique chains ab )(ijp
LC  

)(abW c,p
S,L  A Regular Clique Window  

)( yx ,vvv =  A lag vector 

)()( abW c,p
S,Lvr  Clique autocorrelation coefficient at lag vector v  of a given clique window )(abc,p

S,LW  

(ab)W c,p
S,L

N  The number of pixels in the clique window )(abc,p
S,LW  

i,jx   The mean value of the gray levels in the given clique window )(abc,p
S,LW  

)(µ c,p
LS, v  Mean value of clique autocorrelation coefficients with lag vector v  of all )(abc,p

S,LW  

)(σ c,p
LS, v  Standard deviation of clique autocorrelation coefficients with lag vector v  of all )(abc,p

S,LW  

TD  A SASI descriptor 

TD′  A normalized SASI descriptor 

),( 21 TTS  A mathematical similarity metric between the textures T1 and T2 

 35



 

 36


	INTRODUCTION
	STATISTICAL ANALYSIS OF STRUCTURAL INFORMATION (SASI)
	EXPERIMENTS
	CONCLUSUIONS
	REFERENCES

