
A Practical Verifiable e-Voting Protocol for Large Scale Elections over a
Network

Orhan Cetinkaya
Institute of Applied Mathematics,

METU, Ankara, Turkey
e113754@metu.edu.tr

Ali Doganaksoy
Department of Mathematics,

METU, Ankara, Turkey
aldoks@metu.edu.tr

Abstract

We propose a practical verifiable e-voting protocol
which guarantees e-voting requirements: privacy,
eligibility, uniqueness, uncoercibility, fairness,
accuracy, robustness, individual verifiability, and
universal verifiability. Unlike existing e-voting
protocols we employ dynamic ballot instead of pre-
defined usual ballot in order to strengthen accuracy
and fairness of the protocol. In dynamic ballots, the
ordering of candidates in the ballots is dynamically
created and changes for each voter. Therefore the
proposed protocol is called as “DynaVote”.

DynaVote does not use complex cryptographic
algorithms such as homomorphic encryption and does
not require anonymous communication channels such
as mix-nets since it employs PVID (Pseudo-Voter
Identity) scheme which relies on blind signature.
Besides it has no physical assumption such as
untappable channels. Hence, DynaVote is a practical
e-voting protocol for large scale elections. DynaVote is
performed over a network such as the Internet. In
order to achieve uncoercibility, DynaVote allows
recasting without sacrificing uniqueness.

1. Introduction

Due to the rapid growth of computer technologies

and advances in cryptographic techniques, electronic
voting (e-voting) is now an applicable alternative for
paper based voting. Many e-voting protocols have been
proposed in the last several decades. Nevertheless, to
the best of our knowledge, no practical and complete
solution has been found for large scale elections over a
network. We propose a practical verifiable e-voting
protocol over a network for large scale elections that
satisfies all e-voting security requirements.

Design of secure e-voting protocols over a network
is not an easy task. It is much more difficult to achieve

the e-voting requirements whereas employing the
protocol over a network. Especially, satisfying
uncoercibility, privacy, and eligibility are major
problems of the e-voting over a network. In particular,
avoiding from uncoercibility has more importance
since voter casts his vote in an uncontrolled and
unsupervised environment. In order to overcome this
problem, we propose a solution for uncoercibility by
allowing recasting without sacrificing uniqueness. We
find a solution for privacy and eligibility by applying
PVID (Pseudo-Voter Identity) scheme.

In literature, almost all of the proposed protocols try
to prevent recasting by introducing some mechanisms.
On the other hand, the proposed protocol fully supports
recasting which provides a solution for coercibility
problem in uncontrolled environments such as the
Internet. Even if someone coerces voter, voter casts by
that way. Later, he can recast new one and the old one
is discarded in counting stage. So, practically it is not
possible to coerce the voter or to buy vote from the
voter since nobody can know whether the current vote
will be the final one or not.

However, the e-voting protocols found in the
literature either not fulfill uncoercibility requirement or
make some physical assumptions such as voting booths
or voting pools to overcome coercibility problem [9].
The proposed protocol provides uncoercibility with no
such assumptions due to the vote recasting feature.

The proposed protocol needs an unlinkable pseudo
identity mechanism. PVID scheme provides a pseudo
identity which is an anonymous identity and it is
unlinkable to the voter’s real identity [4]. Thus we
employ PVID scheme in order to satisfy voter
anonymity. In existing e-voting protocols, voter
generally uses his real identity while communicating
with the authorities. On the other hand, in PVID
scheme, voter uses a pseudo identity (PVID) which has
no relation with real one. Voter can use it throughout
the entire communication and he can easily hide his
real identity. PVID scheme provides anonymity

without requiring any complex computational
operations and cryptographic mechanisms. It only
employs blind signature scheme.

Up until now, e-voting protocols have used either
homomorphic encryption or anonymous
communication channels mostly based on mix-nets.
Anonymous channel implementations need expensive
operations and complex calculations. Moreover,
anonymous channels are not easy to set up and add
substantial complexity to the protocol. For example, in
mix-nets, many mix servers are needed. E-voting
protocols based on homomorphic encryption have
communication complexity. Homomorphic voting
protocols are inefficient if there are many candidates or
choices. On the other hand, PVID scheme just needs a
blind signature and the cost of blind signature is
reasonably small and cheap.

The proposed protocol is scalable as it supports
small, mid, and large scale elections without any extra
effort and the security of the system does not depend
on the number of voters. It is suitable for large scale
elections since it does not require any complex
algorithms, specific hardware, complex computational
operations or physical assumptions.

Unlike existing e-voting protocols we employ
“dynamic ballot” instead of pre-defined usual ballot in
order to strengthen accuracy and fairness of the
protocol. Therefore the proposed protocol is called as
“DynaVote”. Dynamic ballot concept is introduced in
[3] and described in detail in this paper. In usual
ballots, as the ballot is standard, voter’s casting
displays his actual vote. On the other hand, in dynamic
ballots, voter’s candidate selection has contextual
meaning. It shows voter’s actual vote only with the
corresponding dynamic ballot. Therefore, any
participant or authority including the counter cannot
gain any knowledge about the tally before the counting
stage. Dynamic ballot mechanism is not a simple user
interface implementation; it is a part of the protocol
itself and employed in the protocol layer, not only in
the user interface layer.

Both individual verifiability and universal
verifiability are the guarantors of accuracy and
robustness respectively. We employ bulletin boards
and hash functions to achieve verifiability of the
protocol. The protocol is verifiable in each stage, and
voter can object to any corruption without revealing his
real identity. DynaVote has strong individual
verifiability and universal verifiability.

In this paper, we propose a practical verifiable large
scale e-voting protocol over a network which is a
complete protocol since it guarantees the wide variety
of e-voting requirements: privacy, eligibility,
uniqueness, uncoercibility, fairness, accuracy,

robustness, individual verifiability, and universal
verifiability.

The remainder of the paper is organized as follows.
In the next section related work is summarized. In
Section 3 the proposed protocol DynaVote is
illustrated. Then it is explained how DynaVote fulfills
the e-voting requirements in Section 5. Finally,
conclusions are drawn and future work is suggested.

2. Related Work

We propose a practical secure e-voting protocol

which assures all aforementioned e-voting
requirements for large scale elections over a network.
Many e-voting protocols have been proposed in the last
decades. Nevertheless, to the best of our knowledge, no
complete solution has been found for large scale
elections over a network.

Chaum [5] pioneered the notion of e-voting and
then many protocols were proposed. The first practical
e-voting protocol for large scale elections ensuring
both privacy and fairness is of Fujioka et al. [1].
However, accuracy can be violated that the malicious
authority can add votes if any voter abstains from
voting in counting stage. The e-voting protocol
proposed by Baraani et al. [6] extends [1]. The model
of the original protocol has been further modified with
the addition of a trusted third party. Later, Okamoto [7]
proposed a solution for large scale elections based on
untappable channel and even stronger physical
assumptions, whereas the protocol suffers from
practicality.

In general, the e-voting protocols, stating that they
satisfy practicality and privacy, have strong
assumptions such as anonymous communication
channels and mix-nets. They suffer from computational
costs to prove that their anonymizing is correct.
Moreover, their implementations are actually not
practical [1], [2], [6], [7], [10].

Another commonly proposed way of achieving
privacy in e-voting protocols is to use homomorphic
encryption [8], [11], [12], [13]. In e-voting protocols
based on homomorphic encryption, a combination of
encrypted votes yields accumulation of votes. The
voting result is then obtained from the accumulation of
votes whereas no individual ballot is opened and the
corresponding individual vote remains secret. In these
protocols, voting results are obtained easily so ballot
tabulations are more efficient. However, homomorphic
voting has a drawback where each vote must be
verified to be valid, since without validation,
correctness of the tallying cannot be guaranteed. When
the number of candidates or choices is large,
computational and communicational cost for the proof

and verification of vote validity is quite large that
homomorphic voting actually becomes inefficient for
large scale elections.

DynaVote neither requires anonymous
communication channels and any other physical
assumption nor uses homomorphic encryption and
complex computational operations. It only uses RSA
and PVID scheme [4] which is based on blind
signature; and voting can occur entirely over existing
networks such as the Internet.

There are some e-voting protocols in the literature
which use neither anonymous channels nor
homomorphic encryption in order to perform e-voting
over a network [15], [16], [17]. These protocols suffer
from accuracy as corrupted participants can make fraud
without being detected. Besides they have no solution
for uncoercibility.

Uncoercibility as an extension to receipt freeness
was introduced by Benaloh et al. [8]. Recently some e-
voting protocols have been proposed in order to satisfy
uncoercibility in e-voting [12], [14]. Moreover, they
use mix-nets and homomorphic encryption as others.

In most of the e-voting protocols, voter is allowed
to vote only once since the uniqueness requirement is
accepted as unreusability. However, DynaVote allows
recasting to overcome uncoercibility problem. Besides,
uniqueness is also assured with PVID scheme.

Our protocol contributes to the literature mainly by
presenting a practical verifiable e-voting protocol
which has the following properties: (i) DynaVote has
no computational complexity in all stages of the
protocol. Furthermore it has no physical assumption.
Hence it is a practical protocol. (ii) DynaVote employs
PVID scheme in order to achieve anonymous
communication and guarantees privacy, eligibility, and
uniqueness. It allows recasting and assures
uncoercibility. It employs bulletin boards in all stages
of the protocol and provides direct individual
verifiability as well as universal verifiability. It uses
dynamic ballots to strengthen accuracy and fairness.
(iii) It is a complete protocol for large scale elections
over an existing network such as the Internet.

3. The Proposed Protocol: DynaVote

The proposed protocol DynaVote has the following

actors: Voter, Ballot Generator, Key Generator,
Counter, and PVID Authority. The protocol consists of
3 distinct stages: Authentication & Authorization,
Voting, and Counting. Authentication & authorization
are performed before the election day. Voting is carried
out during the election period. Later counting is
performed.

Instead of using one election day, we employ an
election period which can be several days. Our purpose
is to gain more flexibility and more voter involvement.
However, depending on the election policy, the voting
duration can be one day as well.

In the authentication & authorization stage, we
employ PVID scheme. The voting stage consists of 2
phases: Ballot obtaining phase and vote casting phase.
In the ballot obtaining phase Ballot Generator provides
dynamic ballot to the voter. In this phase, Key
Generator provides vote encryption key to the voter
over Ballot Generator as well. In the vote casting
phase, voter selects his vote from the dynamic ballot
and then encrypts his candidate selection by using vote
encryption key. Lastly, voter casts his encrypted
candidate selection by using his PVID. In the counting
stage, votes are decrypted and counted.

In all stages bulletin boards are employed in order
to increase security and trust in the protocol. Voter
checks and verifies intermediate outcomes against
bulletin boards. Chaum [5] introduced the concept of
the bulletin board, a public broadcast channel with
universally accessible memory where authorities may
write information in the designated areas via secure
communication that any party may read. All
communications with the bulletin board are public and
therefore can be monitored. Generally, data already
written to a bulletin board cannot be altered or erased
anymore, but it can be appended in case of need.

Before explaining each stage in detail, we provide
the following notation and abbreviations:

(ep, dp): Voter’s permanent public-private key pair
used to communicate with PVID Authority.

(es, ds): Voter’s session public-private key pair used
to communicate with Ballot Generator.

(ev, dv): Voter’s session public-private key pair used
to communicate with Key Generator and Counter.

(ea, da): PVID Authority’s public-private key pair.
(eb, db): Ballot Generator’s public-private key pair.
(ek, dk): Key Generator’s public-private key pair.
(ec, dc): Counter’s public-private key pair.
(ez, dz): Voting public-private key pair generated for

Voter to cast his candidate selection.
Ěx(m): Encryption of message m with the public key

ex.
Ďx(m): Decryption/Sign of message m with the

private key dx.
H(m): One way hash function on message m used

by the voter and authorities.
B: Dynamic ballot.
V': Voter’s candidate selection depending on the

dynamic ballot.
V: Voter’s actual vote.

PVID-list: {PVID1, PVID2}, a list of approved
anonymous pseudo identities which are unlinkable to
the voter’s real identity.

3.1. Authentication & Authorization Stage

This stage is performed prior to the election period.

Voter applies PVID authority to obtain a PVID-list by
using his real registration identity. Registration identity
can be any widely used identity such as social security
number. PVID-list is nothing but a list of approved
anonymous pseudo identities which are unlinkable to
voter’s registration identity.

After completing this stage, voter obtains a PVID-
list and he can use PVIDs at any time and place during
the election period. Voter’s real registration identity is
hidden to the voting authorities. Thus, voter becomes
anonymous while he is using the PVIDs in his
communications with the voting authorities. Voting
authorities can easily check the validity of any PVID
by applying PVID Authority’s public key on it. This
stage is carried out as voter authentication and
authorization. PVID Authority checks voter eligibility
and issues voter’s PVID-list.

PVID-list is a list of blindly signed identities. In
PVID scheme, voter performs blind signature with
PVID Authority in order to obtain PVID-list [4].
DynaVote employs PVID scheme for two identities.
Voter creates an ID list {ID1, ID2} where each ID
contains a random number as well as some meaningful
keywords such as ID = (Election Data, Authority Data,
Random Number). Voter blinds the IDs separately with
different random blinding factors r, and obtains
message Mb which is the combination of blinded IDs.

Then the voter sends Ěa(Registration ID, Ďp(Mb)) to
PVID Authority. PVID Authority checks voter’s
eligibility. If the voter is eligible and has not made any
request yet, the PVID Authority signs blinded IDs in
message Mb and obtains Mbs. which is the combination
of blindly signed IDs.

Then PVID Authority sends Ěp(Ďa(Mbs)) back to the
voter. PVID Authority employs threshold cryptography
in signing process to prevent single authority
corruption. Voter checks PVID Authority’s signature
on Mbs and then unblinds each blindly signed ID in
message Mbs and obtains PVID-list = {PVID1, PVID2}.
Actually, PVID-list is the list of signed IDs.

3.2. Voting Stage

In voting stage voter obtains a dynamic ballot and

casts his candidate selection. Dynamic ballot
mechanism is the main building block of the protocol
and before going into detail we explain it in brief. In

usual ballots, the order of candidates in ballot is pre-
determined, so everyone at least authorities know the
order of candidates. In dynamic ballots, the ordering of
candidates changes randomly for each ballot.

In usual ballots, as the ballot is standard, voter’s
casting displays his actual vote. On the other hand, in
dynamic ballots, voter’s candidate selection has
contextual meaning. It shows voter’s actual vote only
with the corresponding dynamic ballot. Note that
dynamic ballot mechanism is not a simple user
interface implementation; it is a part of the protocol
itself and it is employed in the protocol layer, not only
in the user interface layer. So it is not a software
solution.

We assume that any ballot B contains n candidates:
B = {C1, C2, ... , Cn}, Ci representing a different
candidate for each dynamically generated ballot. For n
candidates, voters may take ‘n!’ different ballots.

An example set of dynamic ballots for four
candidates can be as follows:

B1 = {C2, C1, C4, C3}, B2 = {C1, C2, C3, C4}
B3 = {C4, C1, C3, C2}, B4 = {C3, C2, C1, C4} (1)
B5 = {C2, C1, C4, C3}

Therefore, counting authorities cannot count

intermediate results and furthermore voters do not have
to involve more than one round. With dynamic ballots,
any participant or authority including the counter
cannot gain any knowledge about the tally before the
counting stage. In fact this assures the fairness of the
protocol. Voting stage consists of 2 phases: Ballot
obtaining phase and vote casting phase. Overview of
voting stage is shown in Figure 1.

Figure 1. Overview of the voting stage.

3.2.1. Ballot Obtaining Phase. Voter creates session
public-private key pairs (es, ds) and (ev, dv). The former
is used for Ballot Generator; the latter is used for Key
Generator. Voter employs these keys in order to obtain
dynamic ballot and voting key. Voter encrypts ev and
election date with Key Generator’s public key and

produces Ěk(ev, ElectionDate). Election date is used to
make the message more meaningful for Key Generator
and to be easily identified by Key Generator. Then,
voter creates the message M1:

M1 = Ěb(PVID1, Ěk(ev, ElectionDate), es)

Voter sends M1 to Ballot Generator. As soon as

receiving the message M1, Ballot Generator decrypts it.
Ballot Generator checks the PVID1 by applying PVID
Authority’s public key. If the check fails, Ballot
Generator discards the message. If it succeeds, Ballot
Generator signs Ěk(ev, ElectionDate) and then
generates the message M2:

M2 = Ěk(Ďb(Ěk(ev, ElectionDate), eb))

Ballot Generator’s public key, eb, is also encrypted

inside the message body in order to identify any
message corruption. Instead of eb, any pre-defined
value can be used. For this message and the further
messages, we prefer to use public keys. Ballot
Generator sends the message M2 to Key Generator.
Key Generator decrypts the message M2 and checks
Ballot Generator’s signature on it. If it is a valid
message, Key Generator proceeds to further steps. Key
Generator creates a voting key pair (ez, dz). Voting
keys are used by the voters to cast their candidate
selections to Counter. Key Generator saves generated
key pair (ez, dz) in VotingKeyList, which is an internal
list of voting keys. It publishes hash of voter’s public
key with voting key’s public one and private one
separately as H(ev, ez) and H(ev, dz) in Key Generator’s
Bulletin Board (KGBB). H(ev, ez) is used by the voter
to verify the correctness of the voting key and H(ev, dz)
is used by Counter to prevent Key Generator’s
manipulation on the generated voting keys. Key
Generator saves (ev, ez, dz) in VotingKeyList and
generates M3 and M4:

M3 = Ěv(Ďk(ez, ElectionDate), ev)
M4 = Ěb(Ďk(M3, ek))

Key Generator sends M4 to Ballot Generator. Ballot

Generator decrypts the message and checks Key
Generator’s signature. Afterwards Ballot Generator
creates a dynamic ballot B by using a random number
generator function. Then it publishes the hash of
dynamic ballot B and voter’s session public key es
which is H(B, es) in Ballot Generator’s Bulletin Board
(BGBB). H(B, es) is published to give an opportunity
to the voter to verify the correctness of dynamic ballot.
Ballot Generator saves the (PVID1, M3, B, es) in
BallotList, which is an internal list of dynamic ballots.
Then it produces M5:

M5 = Ěs(Ďb(M3, B, eb))

Ballot Generator sends M5 to the voter. Voter

decrypts the received message by applying Ballot
Generator’s public key and extracts M3 and dynamic
ballot B. In order to verify the obtained dynamic ballot,
voter calculates H(B, es) and checks against the BGBB.

Later, voter decrypts the message M3 and applies
Key Generator’s public key in order to extract voting
key ez. Voter creates H(ev, ez) and verifies the result
against the KGBB. At this point voter has dynamic
ballot B and voting key ez; and he is ready to carry out
vote casting.

3.2.2. Vote Casting Phase. Voter selects his candidate
and creates his candidate selection V' using the
dynamic ballot B. Voter encrypts V' with voting key
ez. Then he constructs the message M6:

M6 = Ěc(PVID1, Ěz(V', PVID2), ev)

Voter sends M6 to Counter, in other words voter

casts his vote. There is no need to any anonymous
communication channel to cast vote since PVID
scheme is employed. Nobody can make any relation
between voter’s real registration identity and PVIDs
due to the definition of PVID scheme. Hence voter can
easily send V' as well as PVID. V' is voter’s candidate
selection in the dynamic ballot. So, it has a contextual
meaning depending on the ordering of candidates in
the dynamic ballot B. For example, the following
candidate selections may be done by voters for the
given sample ballot set in equation (1):

V1' = 2, V2' = 2, V3' = 3, V4' = 3, V5' = 3 (2)

Counter decrypts the message M6 and extracts

PVID1 as well as encrypted candidate selection Ěz(V',
PVID2). Counter performs PVID Authority’s public
key on PVID1 to check the validity of PVID1. If it is
valid, Counter processes the request; else discards the
message. Counter creates the hash of encrypted V' as
H(Ěz(V', PVID2)) and publishes it in Counter’s
Bulletin Board (CBB). Counter saves encrypted V' by
appending the date and time of it to VoteList as
(PVID1, Ěz(V', PVID2), ev, DateTime). VoteList is an
internal list of voters’ candidate selections associated
with PVIDs. Later Counter sends an acknowledgement
message Ěv(Ďc(Ack)) to the voter in order to inform
him. As soon as receiving the Ack, the voter checks
the CBB to verify individually his vote. Voter finds the
sequence number of H(Ěz(V', PVID2)) in CBB and
keeps the sequence number as a receipt. Then the
voter’s voting session is over.

3.3. Counting Stage

Counting stage is performed after the election

period has been completed. During the election period,
Ballot Generator, Key Generator, and Counter publish
hash of subsets of relevant information on bulletin
boards. Before proceeding the counting of votes, Ballot
Generator, Key Generator, and Counter announce the
SubBallotList (|PVID1, B|), SubVotingKeyList (|ev,
dz|), and SubVoteList (|Ěz(V', PVID2)|) respectively.

Counter compares the sublists against the hash
values in bulletin boards. Any passive observer or
organization can also check the consistency of the
election by using announced lists and bulletin boards.

Then Counter starts counting. Firstly, it matches
each item in VoteList |PVID1, Ěz(V', PVID2), ev,
DateTime| with corresponding items in
SubVotingKeyList |ev, dz| over voter’s session key ev.
Afterwards Counter obtains a list |PVID1, Ěz(V',
PVID2), ev, DateTime, dz|.

Counter simplifies the list by decrypting the
encrypted candidate selections (Ěz(V', PVID2)) with
the corresponding private keys (dz) and produces the
list |PVID1, PVID2, V'| which is voters’ candidate
selections. Counter checks the PVID2 by applying
PVID Authority’s public key. If the check fails,
Counter discards the vote. Overview of counting stage
is shown in Figure 2.

Figure 2. Overview of counting stage.

Since PVID scheme is employed and the proposed

protocol allows recasting, voter can vote several times.
Date and time of each casting are kept by Counter.
Only the latest cast is taken into consideration.

Later, Counter matches the candidate selections (V')
in the list |PVID1, PVID2, V'| with corresponding
dynamic ballots (B) in SubBallotList |PVID1, B| over
PVID1. Then, Counter obtains a list |PVID1, PVID2,
V', B| which is in fact the list of voters’ actual votes.
An actual vote V is defined as:

V = Ci ∈ B where i = V', B = {C1, C2, ... , Cn}

For the given sample ballot set in (1) and sample

candidate selection set in (2) the election result
becomes as in Table 1. Thus, the final tally is: C1 = 2
votes, C2 = 1 vote, C3 = 1 vote, C4 = 1 vote.

Table 1. A sample election result.

B V' V
B1 = {C2, C1, C4, C3}
B2 = {C1, C2, C3, C4}
B3 = {C4, C1, C3, C2}
B4 = {C3, C2, C1, C4}
B5 = {C2, C1, C4, C3}

V1' = 2
V2' = 2
V3' = 3
V4' = 3
V5' = 3

V1 = C1
V2 = C2
V3 = C3
V4 = C1
V5 = C4

At the end of the counting stage, Counter announces

the list of |PVID1, H(Ěz(V', PVID2)), V| in consistent
with the order in the CBB as well as remarking the
discarded votes. Now votes are easily tallied and the
election result is announced.

One of the major contributions of this paper is to
give an opportunity to voter to perform individual
verifiability while casting his vote without revealing
his identity. In each stage voter can check and
individually verify intermediate outcomes against
bulletin boards. In case of any corruption he can make
objection. After counting stage has been completed
voter can individually verify his vote with his PVID1
and the receipt of sequence number of H(Ěz(V',
PVID2)) by using the announced lists.

4. Security Analysis

We provide the sketch of proofs that state how the

DynaVote protocol fulfills the e-voting requirements.
Lemma 1 (Privacy): A particular voter and his cast

vote is unlinkable.
Sketch of Proof: PVID Authority issues blind

signature on voter’s blinded IDs after checking voter’s
eligibility. Since the blind signature scheme is used,
any particular registration ID is not linkable to any
PVID and any particular PVID is not linkable to any
registration ID. Voter does not use his registration ID
after obtaining PVID; instead he uses his PVID in next
stages. Therefore privacy is assured.

Lemma 2 (Eligibility): Only eligible and authorized
voters can vote.

Sketch of Proof: We employ PVID scheme which
guarantees that only eligible voters can obtain valid
PVIDs. PVID Authority issues blind signature on
voter’s blinded IDs after checking voter’s eligibility.
Only eligible voters’ blinded IDs are blindly signed by
PVID Authority. Ineligible people’s blinded IDs

cannot be signed without being detected since
threshold cryptography is applied to distribute the
authority over n parties. In order to sign any request at
least t parties should come together. Therefore
authentication and authorization are fulfilled by PVID
scheme. In the proposed protocol voter can vote
multiple times, just the latest one is counted, the rest
are discarded. Thus, the proposed protocol achieves
eligibility requirement.

Lemma 3 (Uniqueness): Only one vote for a voter is
counted.

Sketch of Proof: In counting stage, Counter obtains
a final list |PVID1, PVID2, V', B|. PVID1 is the primary
key for this list and is unique. Voter can recast,
however the last vote is taken into consideration and
the previous ones are discarded. Thus, there is no
PVID duplication in the list. Since the PVID1 is unique
in the list and can be verifiable using PVID Authority’s
public key, there is no chance that more than one vote
is counted for any voter. Therefore, uniqueness is
achieved.

Lemma 4 (Uncoercibility): Voter cannot be coerced
to cast his vote in a particular way.

Sketch of Proof: The proposed protocol allows
recasting. Even if someone coerces voter, voter casts
by that way. Later, he can change his vote, by recasting
new one and then the old one is discarded in counting
stage. Same logic can be applied to vote selling. So,
practically it is not possible to coerce voter or to buy
vote from voter, since nobody can know whether the
current vote will be the final one. Therefore,
uncoercibility is achieved.

Lemma 5 (Fairness): No partial tally is revealed
before the end of the voting period.

Sketch of Proof: Counting comes after the voting
stage is completed so no one can gain any partial
knowledge about the tally before the counting stage; as
a consequence, voting is not effected. Since we are
employing dynamic ballots, Counter just knows voter’s
candidate selection which does not reveal any
information without ballot. Even if Ballot Generator
provides Counter the corresponding dynamic ballot B,
Counter could not extract the voter’s cast vote since the
voting key, which is maintained by Key Generator, is
required. Thus, Counter could not calculate any partial
result. So, this requirement is achieved.

Lemma 6 (Accuracy): Any vote cannot be added,
altered, deleted, invalidated or copied in the final tally
without being detected.

Sketch of Proof: During the voting stage, voter
verifies each step before proceeding to next one. When
he obtains dynamic ballot B and voting key ez, he
checks KGBB and BGBB; in case of corruption he can
object to Ballot Generator. After voting, he also
verifies CBB to assure that his vote is listed. The

detailed explanation is given in individual verifiability
requirement analysis.

Voting and counting authorities have bulletin
boards and they publish all relevant information in
them. Counter counts votes using the sublists provided
by Ballot Generator and Key Generator. For
consistency, Counter compares the sublists against the
hash values in bulletin boards.

Any single authority cannot alter, delete, invalidate
or copy any vote since the modification causes
inconsistency with the bulletin boards. Moreover, voter
verifies his vote and makes objection. Any single
authority cannot add any vote since a vote consists of a
dynamic ballot B and a voting key ez. Even if Ballot
Generator, Key Generator and Counter conspire
together, they cannot add a new vote since they cannot
create fake PVIDs. PVID Authority cannot issue fake
PVIDs since threshold cryptography is applied. So,
accuracy is achieved.

Lemma 7 (Robustness): Any coalition of voters or
authorities cannot disrupt the voting or influence the
election and final tally.

Sketch of Proof: The dishonest voter cannot disrupt
the voting, he has just right over his vote, so he may
only disrupt his vote. Even if he sends more than one
votes, in this case, just last one is counted since PVID1
is unique. Voter is aware of that his previously sent
votes will be discarded if he sends more than one vote.

As bulletin boards are employed, hash of all
information related with voter’s vote is recorded
publicly. Thus, any authority corruption can be
revealed. If any authority conspires with voter, they
can just corrupt that voter’s vote. Therefore, this
requirement is achieved.

Lemma 8 (Individual Verifiability): Each eligible
voter can verify that his vote is counted correctly.

Sketch of Proof: Key Generator publishes H(ev, ez)
in KGBB. H(B, es) is published in BGBB. Voter
attempts to create same hash values by using dynamic
ballot B, voting key ez and his session keys ev and es. If
he obtains same values, he proceeds to send his
candidate selection to Counter.

In ballot obtaining phase, if voter receives corrupted
voting key ez, he could not generate proper H(ev, ez).
He can object this situation by showing (ev, ez) and
H(ev, ez). If voter does not receive proper dynamic
ballot B, he can prove that the dynamic ballot does not
match with the hash values published in BGBB by
showing (B, es) and H(B, es). Therefore Ballot
Generator and Key Generator are required to respond
to voter properly. Otherwise, voter can easily prove
any improper responses.

In vote casting phase, voter checks CBB as soon as
receiving the acknowledgement from Counter by
creating same hash value for V' as H(Ěz(V', PVID2)).

If the value does not match, he can object to Counter
by illustrating V' and ez. Thus, Counter could not
modify the voter’s candidate selection V'. Voter can
verify his vote by checking his PVID1 and the
sequence number of H(Ěz(V', PVID2)) by using the
announced lists. Therefore, individual verifiability is
fulfilled.

Lemma 9 (Universal Verifiability): Any participant
or passive observer can verify that the published tally
is correctly computed from correctly cast votes.

Sketch of Proof: At the end of the election, before
counting, all authorities publish their sublists. As soon
as Counter announces the election result all authorities
publish complete lists. Besides, bulletin boards are
employed. So any participant or passive observer can
check whether votes are counted correctly or not.
Counter has responsibility to verify all results and
publish them. So, universal verifiability is fulfilled.

5. Discussion

DynaVote has one shortcoming which appears

when Ballot Generator, Key Generator and Counter
conspire and work together. They can modify cast
votes due to the recasting. However, voter can verify
his vote on the Counter’s published list and make an
objection providing his PVIDs. It does not violate
voter’s privacy since PVIDs are pseudo identities
which are unlinkable with real registration ID.
Currently, we are studying to find a proper solution for
this specific issue.

In this paper, we just mentioned the core e-voting
requirements and illustrated how DynaVote fully
satisfies them. Besides, there are some desirable
requirements. DynaVote also satisfies many of them
such as dispute-freeness, scalability, efficiency, and
mobility. As a future work, we will describe in detail
how DynaVote achieves these requirements as well. In
addition, we are planning to implement DynaVote as a
proof of concept.

6. References

[1] A. Fujioka, T. Okamoto, and K. Ohta, “A practical

secret voting scheme for large scale elections,”
AUSCRYPT’92, Australia, pp. 244-251, 1992.

[2] L. Cranor, and R. Cytron: “Sensus: A security-
conscious electronic polling system for the Internet,”
Hawaii Int. Conf. on System Sciences, Hawaii, 1997.

[3] O. Cetinkaya, and Ali Doganaksoy, “A practical privacy
preserving e-voting protocol using dynamic ballots,” 2nd
National Cryptology Symposium, Ankara, Turkey, 2006.

[4] O. Cetinkaya, and A. Doganaksoy, “PVID: Pseudo-
voter identity scheme for e-voting protocols,” First Int.
Workshop on Advances in Information Security, Vienna,
Austria, 2007.

[5] D. Chaum, “Untraceable electronic mail, return
addresses, and digital pseudonyms,” Communications of
ACM, Vol. 24, pp. 84-88, 1981.

[6] A. Baraani, J. Pieprzyk, and R. Safavi, “A practical
electronic voting protocol using threshold schemes,”
Centre for Computer Security Research, University of
Wollongong, Australia, 1994.

[7] T. Okamoto, “Receipt-free electronic voting schemes
for large scale elections,” 5th Security Protocols
Workshop, LNCS 1163, Springer-Verlag, pp. 125-132,
1997.

[8] J. Benaloh, and D. Tuinstra, “Receipt-free secret-ballot
elections,” Proc. of the 26th ACM Symp. on the Theory
of Computing, 544-553, 1994.

[9] R. Sampigethaya, and R. Poovendran, “A framework
and taxonomy for comparison of electronic voting
schemes,” Elsevier Computers & Security, Vol. 25, No.
2, pp. 137-153, 2006.

[10] D. Chaum, P. Y. A. Ryan, and S. Schneider, “A
practical, voter-verifiable election scheme,”
ESORICS’05, Milan, Italy, pp. 118-139, 2005.

[11] R. Cramer, R. Gennaro, and B. Schoenmakers, “A
secure and optimally efficient multi-authority election
scheme,” EUROCRYPT’97, Germany, 1997.

[12] A. Acquisti, “Receipt-free homomorphic elections and
write-in voter verified ballots,” ISRI Technical Report
CMU-ISRI-04-116, Carnegie Mellon Uni., PA, 2004.

[13] M. Hirt, and K. Sako, “Efficient receipt-free voting
based on homomorphic encryption”, EUROCRYPT'00,
Bruges, Belgium, pp. 539-556, 2000.

[14] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-
resistant electronic elections”, ACM Workshop on
Privacy in the Electronic Society, VA, pp. 61-70, 2005.

[15] Y. Mu, and V. Varadharajan, “Anonymous secure e-
voting over a network”, 14th Annual Computer Security
Applications Conference, AZ, pp. 293-299, 1998.

[16] I. Ray, I. Ray and N. Narasimhamurthi, “An anonymous
electronic voting protocol for voting over the Internet”,
3rd Int. Workshop on Advanced Issues of E-Commerce
and Web-based Information Systems, CA, 2001.

[17] C. C. Yang, C. Y. Lin, and H. W. Yang, “Improved
anonymous secure e-voting over a network”,
Information & Security, Vol. 15-2, pp.181-194, 2004.

