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Abstract 
 

We propose a practical verifiable e-voting protocol 
which guarantees e-voting requirements: privacy, 
eligibility, uniqueness, uncoercibility, fairness, 
accuracy, robustness, individual verifiability, and 
universal verifiability. Unlike existing e-voting 
protocols we employ dynamic ballot instead of pre-
defined usual ballot in order to strengthen accuracy 
and fairness of the protocol. In dynamic ballots, the 
ordering of candidates in the ballots is dynamically 
created and changes for each voter. Therefore the 
proposed protocol is called as “DynaVote”. 

DynaVote does not use complex cryptographic 
algorithms such as homomorphic encryption and does 
not require anonymous communication channels such 
as mix-nets since it employs PVID (Pseudo-Voter 
Identity) scheme which relies on blind signature. 
Besides it has no physical assumption such as 
untappable channels. Hence, DynaVote is a practical 
e-voting protocol for large scale elections. DynaVote is 
performed over a network such as the Internet. In 
order to achieve uncoercibility, DynaVote allows 
recasting without sacrificing uniqueness. 
 
 
1. Introduction 

 
Due to the rapid growth of computer technologies 

and advances in cryptographic techniques, electronic 
voting (e-voting) is now an applicable alternative for 
paper based voting. Many e-voting protocols have been 
proposed in the last several decades. Nevertheless, to 
the best of our knowledge, no practical and complete 
solution has been found for large scale elections over a 
network. We propose a practical verifiable e-voting 
protocol over a network for large scale elections that 
satisfies all e-voting security requirements. 

Design of secure e-voting protocols over a network 
is not an easy task. It is much more difficult to achieve 

the e-voting requirements whereas employing the 
protocol over a network. Especially, satisfying 
uncoercibility, privacy, and eligibility are major 
problems of the e-voting over a network. In particular, 
avoiding from uncoercibility has more importance 
since voter casts his vote in an uncontrolled and 
unsupervised environment. In order to overcome this 
problem, we propose a solution for uncoercibility by 
allowing recasting without sacrificing uniqueness. We 
find a solution for privacy and eligibility by applying 
PVID (Pseudo-Voter Identity) scheme. 

In literature, almost all of the proposed protocols try 
to prevent recasting by introducing some mechanisms. 
On the other hand, the proposed protocol fully supports 
recasting which provides a solution for coercibility 
problem in uncontrolled environments such as the 
Internet. Even if someone coerces voter, voter casts by 
that way. Later, he can recast new one and the old one 
is discarded in counting stage. So, practically it is not 
possible to coerce the voter or to buy vote from the 
voter since nobody can know whether the current vote 
will be the final one or not. 

However, the e-voting protocols found in the 
literature either not fulfill uncoercibility requirement or 
make some physical assumptions such as voting booths 
or voting pools to overcome coercibility problem [9]. 
The proposed protocol provides uncoercibility with no 
such assumptions due to the vote recasting feature. 

The proposed protocol needs an unlinkable pseudo 
identity mechanism. PVID scheme provides a pseudo 
identity which is an anonymous identity and it is 
unlinkable to the voter’s real identity [4]. Thus we 
employ PVID scheme in order to satisfy voter 
anonymity. In existing e-voting protocols, voter 
generally uses his real identity while communicating 
with the authorities. On the other hand, in PVID 
scheme, voter uses a pseudo identity (PVID) which has 
no relation with real one. Voter can use it throughout 
the entire communication and he can easily hide his 
real identity. PVID scheme provides anonymity 



without requiring any complex computational 
operations and cryptographic mechanisms. It only 
employs blind signature scheme. 

Up until now, e-voting protocols have used either 
homomorphic encryption or anonymous 
communication channels mostly based on mix-nets. 
Anonymous channel implementations need expensive 
operations and complex calculations. Moreover, 
anonymous channels are not easy to set up and add 
substantial complexity to the protocol. For example, in 
mix-nets, many mix servers are needed. E-voting 
protocols based on homomorphic encryption have 
communication complexity. Homomorphic voting 
protocols are inefficient if there are many candidates or 
choices. On the other hand, PVID scheme just needs a 
blind signature and the cost of blind signature is 
reasonably small and cheap. 

The proposed protocol is scalable as it supports 
small, mid, and large scale elections without any extra 
effort and the security of the system does not depend 
on the number of voters. It is suitable for large scale 
elections since it does not require any complex 
algorithms, specific hardware, complex computational 
operations or physical assumptions. 

Unlike existing e-voting protocols we employ 
“dynamic ballot” instead of pre-defined usual ballot in 
order to strengthen accuracy and fairness of the 
protocol. Therefore the proposed protocol is called as 
“DynaVote”. Dynamic ballot concept is introduced in 
[3] and described in detail in this paper. In usual 
ballots, as the ballot is standard, voter’s casting 
displays his actual vote. On the other hand, in dynamic 
ballots, voter’s candidate selection has contextual 
meaning. It shows voter’s actual vote only with the 
corresponding dynamic ballot. Therefore, any 
participant or authority including the counter cannot 
gain any knowledge about the tally before the counting 
stage. Dynamic ballot mechanism is not a simple user 
interface implementation; it is a part of the protocol 
itself and employed in the protocol layer, not only in 
the user interface layer. 

Both individual verifiability and universal 
verifiability are the guarantors of accuracy and 
robustness respectively. We employ bulletin boards 
and hash functions to achieve verifiability of the 
protocol. The protocol is verifiable in each stage, and 
voter can object to any corruption without revealing his 
real identity. DynaVote has strong individual 
verifiability and universal verifiability. 

In this paper, we propose a practical verifiable large 
scale e-voting protocol over a network which is a 
complete protocol since it guarantees the wide variety 
of e-voting requirements: privacy, eligibility, 
uniqueness, uncoercibility, fairness, accuracy, 

robustness, individual verifiability, and universal 
verifiability. 

The remainder of the paper is organized as follows. 
In the next section related work is summarized. In 
Section 3 the proposed protocol DynaVote is 
illustrated. Then it is explained how DynaVote fulfills 
the e-voting requirements in Section 5. Finally, 
conclusions are drawn and future work is suggested. 

 
2. Related Work 

 
We propose a practical secure e-voting protocol 

which assures all aforementioned e-voting 
requirements for large scale elections over a network. 
Many e-voting protocols have been proposed in the last 
decades. Nevertheless, to the best of our knowledge, no 
complete solution has been found for large scale 
elections over a network. 

Chaum [5] pioneered the notion of e-voting and 
then many protocols were proposed. The first practical 
e-voting protocol for large scale elections ensuring 
both privacy and fairness is of Fujioka et al. [1]. 
However, accuracy can be violated that the malicious 
authority can add votes if any voter abstains from 
voting in counting stage. The e-voting protocol 
proposed by Baraani et al. [6] extends [1]. The model 
of the original protocol has been further modified with 
the addition of a trusted third party. Later, Okamoto [7] 
proposed a solution for large scale elections based on 
untappable channel and even stronger physical 
assumptions, whereas the protocol suffers from 
practicality. 

In general, the e-voting protocols, stating that they 
satisfy practicality and privacy, have strong 
assumptions such as anonymous communication 
channels and mix-nets. They suffer from computational 
costs to prove that their anonymizing is correct. 
Moreover, their implementations are actually not 
practical [1], [2], [6], [7], [10]. 

Another commonly proposed way of achieving 
privacy in e-voting protocols is to use homomorphic 
encryption [8], [11], [12], [13]. In e-voting protocols 
based on homomorphic encryption, a combination of 
encrypted votes yields accumulation of votes. The 
voting result is then obtained from the accumulation of 
votes whereas no individual ballot is opened and the 
corresponding individual vote remains secret. In these 
protocols, voting results are obtained easily so ballot 
tabulations are more efficient. However, homomorphic 
voting has a drawback where each vote must be 
verified to be valid, since without validation, 
correctness of the tallying cannot be guaranteed. When 
the number of candidates or choices is large, 
computational and communicational cost for the proof 



and verification of vote validity is quite large that 
homomorphic voting actually becomes inefficient for 
large scale elections. 

DynaVote neither requires anonymous 
communication channels and any other physical 
assumption nor uses homomorphic encryption and 
complex computational operations. It only uses RSA 
and PVID scheme [4] which is based on blind 
signature; and voting can occur entirely over existing 
networks such as the Internet. 

There are some e-voting protocols in the literature 
which use neither anonymous channels nor 
homomorphic encryption in order to perform e-voting 
over a network [15], [16], [17]. These protocols suffer 
from accuracy as corrupted participants can make fraud 
without being detected. Besides they have no solution 
for uncoercibility. 

Uncoercibility as an extension to receipt freeness 
was introduced by Benaloh et al. [8]. Recently some e-
voting protocols have been proposed in order to satisfy 
uncoercibility in e-voting [12], [14]. Moreover, they 
use mix-nets and homomorphic encryption as others. 

In most of the e-voting protocols, voter is allowed 
to vote only once since the uniqueness requirement is 
accepted as unreusability. However, DynaVote allows 
recasting to overcome uncoercibility problem. Besides, 
uniqueness is also assured with PVID scheme. 

Our protocol contributes to the literature mainly by 
presenting a practical verifiable e-voting protocol 
which has the following properties: (i) DynaVote has 
no computational complexity in all stages of the 
protocol. Furthermore it has no physical assumption. 
Hence it is a practical protocol. (ii) DynaVote employs 
PVID scheme in order to achieve anonymous 
communication and guarantees privacy, eligibility, and 
uniqueness. It allows recasting and assures 
uncoercibility. It employs bulletin boards in all stages 
of the protocol and provides direct individual 
verifiability as well as universal verifiability. It uses 
dynamic ballots to strengthen accuracy and fairness. 
(iii) It is a complete protocol for large scale elections 
over an existing network such as the Internet. 

 
3. The Proposed Protocol: DynaVote 

 
The proposed protocol DynaVote has the following 

actors: Voter, Ballot Generator, Key Generator, 
Counter, and PVID Authority. The protocol consists of 
3 distinct stages: Authentication & Authorization, 
Voting, and Counting. Authentication & authorization 
are performed before the election day. Voting is carried 
out during the election period. Later counting is 
performed.  

Instead of using one election day, we employ an 
election period which can be several days. Our purpose 
is to gain more flexibility and more voter involvement. 
However, depending on the election policy, the voting 
duration can be one day as well. 

In the authentication & authorization stage, we 
employ PVID scheme. The voting stage consists of 2 
phases: Ballot obtaining phase and vote casting phase. 
In the ballot obtaining phase Ballot Generator provides 
dynamic ballot to the voter. In this phase, Key 
Generator provides vote encryption key to the voter 
over Ballot Generator as well. In the vote casting 
phase, voter selects his vote from the dynamic ballot 
and then encrypts his candidate selection by using vote 
encryption key. Lastly, voter casts his encrypted 
candidate selection by using his PVID. In the counting 
stage, votes are decrypted and counted. 

In all stages bulletin boards are employed in order 
to increase security and trust in the protocol. Voter 
checks and verifies intermediate outcomes against 
bulletin boards. Chaum [5] introduced the concept of 
the bulletin board, a public broadcast channel with 
universally accessible memory where authorities may 
write information in the designated areas via secure 
communication that any party may read. All 
communications with the bulletin board are public and 
therefore can be monitored. Generally, data already 
written to a bulletin board cannot be altered or erased 
anymore, but it can be appended in case of need.  

Before explaining each stage in detail, we provide 
the following notation and abbreviations: 

(ep, dp): Voter’s permanent public-private key pair 
used to communicate with PVID Authority. 

(es, ds): Voter’s session public-private key pair used 
to communicate with Ballot Generator. 

(ev, dv): Voter’s session public-private key pair used 
to communicate with Key Generator and Counter. 

(ea, da): PVID Authority’s public-private key pair. 
(eb, db): Ballot Generator’s public-private key pair. 
(ek, dk): Key Generator’s public-private key pair. 
(ec, dc): Counter’s public-private key pair. 
(ez, dz): Voting public-private key pair generated for 

Voter to cast his candidate selection. 
Ěx(m): Encryption of message m with the public key 

ex. 
Ďx(m): Decryption/Sign of message m with the 

private key dx. 
H(m): One way hash function on message m used 

by the voter and authorities. 
B: Dynamic ballot. 
V': Voter’s candidate selection depending on the 

dynamic ballot. 
V: Voter’s actual vote. 



PVID-list: {PVID1, PVID2}, a list of approved 
anonymous pseudo identities which are unlinkable to 
the voter’s real identity. 

 
3.1. Authentication & Authorization Stage 

 
This stage is performed prior to the election period. 

Voter applies PVID authority to obtain a PVID-list by 
using his real registration identity. Registration identity 
can be any widely used identity such as social security 
number. PVID-list is nothing but a list of approved 
anonymous pseudo identities which are unlinkable to 
voter’s registration identity.  

After completing this stage, voter obtains a PVID-
list and he can use PVIDs at any time and place during 
the election period. Voter’s real registration identity is 
hidden to the voting authorities. Thus, voter becomes 
anonymous while he is using the PVIDs in his 
communications with the voting authorities. Voting 
authorities can easily check the validity of any PVID 
by applying PVID Authority’s public key on it. This 
stage is carried out as voter authentication and 
authorization. PVID Authority checks voter eligibility 
and issues voter’s PVID-list. 

PVID-list is a list of blindly signed identities. In 
PVID scheme, voter performs blind signature with 
PVID Authority in order to obtain PVID-list [4]. 
DynaVote employs PVID scheme for two identities. 
Voter creates an ID list {ID1, ID2} where each ID 
contains a random number as well as some meaningful 
keywords such as ID = (Election Data, Authority Data, 
Random Number). Voter blinds the IDs separately with 
different random blinding factors r, and obtains 
message Mb which is the combination of blinded IDs. 

Then the voter sends Ěa(Registration ID, Ďp(Mb)) to 
PVID Authority. PVID Authority checks voter’s 
eligibility. If the voter is eligible and has not made any 
request yet, the PVID Authority signs blinded IDs in 
message Mb and obtains Mbs. which is the combination 
of blindly signed IDs. 

Then PVID Authority sends Ěp(Ďa(Mbs)) back to the 
voter. PVID Authority employs threshold cryptography 
in signing process to prevent single authority 
corruption. Voter checks PVID Authority’s signature 
on Mbs and then unblinds each blindly signed ID in 
message Mbs and obtains PVID-list = {PVID1, PVID2}. 
Actually, PVID-list is the list of signed IDs. 

 
3.2. Voting Stage 

 
In voting stage voter obtains a dynamic ballot and 

casts his candidate selection. Dynamic ballot 
mechanism is the main building block of the protocol 
and before going into detail we explain it in brief. In 

usual ballots, the order of candidates in ballot is pre-
determined, so everyone at least authorities know the 
order of candidates. In dynamic ballots, the ordering of 
candidates changes randomly for each ballot. 

In usual ballots, as the ballot is standard, voter’s 
casting displays his actual vote. On the other hand, in 
dynamic ballots, voter’s candidate selection has 
contextual meaning. It shows voter’s actual vote only 
with the corresponding dynamic ballot. Note that 
dynamic ballot mechanism is not a simple user 
interface implementation; it is a part of the protocol 
itself and it is employed in the protocol layer, not only 
in the user interface layer. So it is not a software 
solution. 

We assume that any ballot B contains n candidates: 
B = {C1, C2, ... , Cn}, Ci representing a different 
candidate for each dynamically generated ballot. For n 
candidates, voters may take ‘n!’ different ballots. 

An example set of dynamic ballots for four 
candidates can be as follows: 

 
B1 = {C2, C1, C4, C3}, B2 = {C1, C2, C3, C4} 
B3 = {C4, C1, C3, C2}, B4 = {C3, C2, C1, C4}         (1) 
B5 = {C2, C1, C4, C3} 
 
Therefore, counting authorities cannot count 

intermediate results and furthermore voters do not have 
to involve more than one round. With dynamic ballots, 
any participant or authority including the counter 
cannot gain any knowledge about the tally before the 
counting stage. In fact this assures the fairness of the 
protocol. Voting stage consists of 2 phases: Ballot 
obtaining phase and vote casting phase. Overview of 
voting stage is shown in Figure 1. 

 

 
Figure 1.  Overview of the voting stage. 

 
3.2.1. Ballot Obtaining Phase. Voter creates session 
public-private key pairs (es, ds) and (ev, dv). The former 
is used for Ballot Generator; the latter is used for Key 
Generator. Voter employs these keys in order to obtain 
dynamic ballot and voting key. Voter encrypts ev and 
election date with Key Generator’s public key and 



produces Ěk(ev, ElectionDate). Election date is used to 
make the message more meaningful for Key Generator 
and to be easily identified by Key Generator. Then, 
voter creates the message M1: 

 
M1 = Ěb(PVID1, Ěk(ev, ElectionDate), es) 
 
Voter sends M1 to Ballot Generator. As soon as 

receiving the message M1, Ballot Generator decrypts it. 
Ballot Generator checks the PVID1 by applying PVID 
Authority’s public key. If the check fails, Ballot 
Generator discards the message. If it succeeds, Ballot 
Generator signs Ěk(ev, ElectionDate) and then 
generates the message M2: 

 
M2 = Ěk(Ďb(Ěk(ev, ElectionDate), eb)) 
 
Ballot Generator’s public key, eb, is also encrypted 

inside the message body in order to identify any 
message corruption. Instead of eb, any pre-defined 
value can be used. For this message and the further 
messages, we prefer to use public keys. Ballot 
Generator sends the message M2 to Key Generator. 
Key Generator decrypts the message M2 and checks 
Ballot Generator’s signature on it. If it is a valid 
message, Key Generator proceeds to further steps. Key 
Generator creates a voting key pair (ez, dz). Voting 
keys are used by the voters to cast their candidate 
selections to Counter. Key Generator saves generated 
key pair (ez, dz) in VotingKeyList, which is an internal 
list of voting keys. It publishes hash of voter’s public 
key with voting key’s public one and private one 
separately as H(ev, ez) and H(ev, dz) in Key Generator’s 
Bulletin Board (KGBB). H(ev, ez) is used by the voter 
to verify the correctness of the voting key and H(ev, dz) 
is used by Counter to prevent Key Generator’s 
manipulation on the generated voting keys. Key 
Generator saves (ev, ez, dz) in VotingKeyList and 
generates M3 and M4: 

 
M3 = Ěv(Ďk(ez, ElectionDate), ev) 
M4 = Ěb(Ďk(M3, ek)) 
 
Key Generator sends M4 to Ballot Generator. Ballot 

Generator decrypts the message and checks Key 
Generator’s signature. Afterwards Ballot Generator 
creates a dynamic ballot B by using a random number 
generator function. Then it publishes the hash of 
dynamic ballot B and voter’s session public key es 
which is H(B, es) in Ballot Generator’s Bulletin Board 
(BGBB). H(B, es) is published to give an opportunity 
to the voter to verify the correctness of dynamic ballot. 
Ballot Generator saves the (PVID1, M3, B, es) in 
BallotList, which is an internal list of dynamic ballots. 
Then it produces M5: 

 
M5 = Ěs(Ďb(M3, B, eb)) 
 
Ballot Generator sends M5 to the voter. Voter 

decrypts the received message by applying Ballot 
Generator’s public key and extracts M3 and dynamic 
ballot B. In order to verify the obtained dynamic ballot, 
voter calculates H(B, es) and checks against the BGBB. 

Later, voter decrypts the message M3 and applies 
Key Generator’s public key in order to extract voting 
key ez. Voter creates H(ev, ez) and verifies the result 
against the KGBB. At this point voter has dynamic 
ballot B and voting key ez; and he is ready to carry out 
vote casting. 

 
3.2.2. Vote Casting Phase. Voter selects his candidate 
and creates his candidate selection V' using the 
dynamic ballot B. Voter encrypts V' with voting key 
ez. Then he constructs the message M6: 

 
M6 = Ěc(PVID1, Ěz(V', PVID2), ev) 
 
Voter sends M6 to Counter, in other words voter 

casts his vote. There is no need to any anonymous 
communication channel to cast vote since PVID 
scheme is employed. Nobody can make any relation 
between voter’s real registration identity and PVIDs 
due to the definition of PVID scheme. Hence voter can 
easily send V' as well as PVID. V' is voter’s candidate 
selection in the dynamic ballot. So, it has a contextual 
meaning depending on the ordering of candidates in 
the dynamic ballot B. For example, the following 
candidate selections may be done by voters for the 
given sample ballot set in equation (1): 

 
V1' = 2, V2' = 2, V3' = 3, V4' = 3, V5' = 3             (2) 
 
Counter decrypts the message M6 and extracts 

PVID1 as well as encrypted candidate selection Ěz(V', 
PVID2). Counter performs PVID Authority’s public 
key on PVID1 to check the validity of PVID1. If it is 
valid, Counter processes the request; else discards the 
message. Counter creates the hash of encrypted V' as 
H(Ěz(V', PVID2)) and publishes it in Counter’s 
Bulletin Board (CBB). Counter saves encrypted V' by 
appending the date and time of it to VoteList as 
(PVID1, Ěz(V', PVID2), ev, DateTime). VoteList is an 
internal list of voters’ candidate selections associated 
with PVIDs. Later Counter sends an acknowledgement 
message Ěv(Ďc(Ack)) to the voter in order to inform 
him. As soon as receiving the Ack, the voter checks 
the CBB to verify individually his vote. Voter finds the 
sequence number of H(Ěz(V', PVID2)) in CBB and 
keeps the sequence number as a receipt. Then the 
voter’s voting session is over. 



 
3.3. Counting Stage 

 
Counting stage is performed after the election 

period has been completed. During the election period, 
Ballot Generator, Key Generator, and Counter publish 
hash of subsets of relevant information on bulletin 
boards. Before proceeding the counting of votes, Ballot 
Generator, Key Generator, and Counter announce the 
SubBallotList (|PVID1, B|), SubVotingKeyList (|ev, 
dz|), and SubVoteList (|Ěz(V', PVID2)|) respectively. 

Counter compares the sublists against the hash 
values in bulletin boards. Any passive observer or 
organization can also check the consistency of the 
election by using announced lists and bulletin boards. 

Then Counter starts counting. Firstly, it matches 
each item in VoteList |PVID1, Ěz(V', PVID2), ev, 
DateTime| with corresponding items in 
SubVotingKeyList |ev, dz| over voter’s session key ev. 
Afterwards Counter obtains a list |PVID1, Ěz(V', 
PVID2), ev, DateTime, dz|. 

Counter simplifies the list by decrypting the 
encrypted candidate selections (Ěz(V', PVID2)) with 
the corresponding private keys (dz) and produces the 
list |PVID1, PVID2, V'| which is voters’ candidate 
selections. Counter checks the PVID2 by applying 
PVID Authority’s public key. If the check fails, 
Counter discards the vote. Overview of counting stage 
is shown in Figure 2. 

 

 
Figure 2.  Overview of counting stage. 

 
Since PVID scheme is employed and the proposed 

protocol allows recasting, voter can vote several times. 
Date and time of each casting are kept by Counter. 
Only the latest cast is taken into consideration. 

Later, Counter matches the candidate selections (V') 
in the list |PVID1, PVID2, V'| with corresponding 
dynamic ballots (B) in SubBallotList |PVID1, B| over 
PVID1. Then, Counter obtains a list |PVID1, PVID2, 
V', B| which is in fact the list of voters’ actual votes. 
An actual vote V is defined as: 

 
V = Ci ∈ B        where i = V', B = {C1, C2, ... , Cn} 
 
For the given sample ballot set in (1) and sample 

candidate selection set in (2) the election result 
becomes as in Table 1. Thus, the final tally is: C1 = 2 
votes, C2 = 1 vote, C3 = 1 vote, C4 = 1 vote. 

 
Table 1.  A sample election result. 

B V' V 
B1 = {C2, C1, C4, C3} 
B2 = {C1, C2, C3, C4} 
B3 = {C4, C1, C3, C2} 
B4 = {C3, C2, C1, C4} 
B5 = {C2, C1, C4, C3} 

V1' = 2 
V2' = 2 
V3' = 3 
V4' = 3 
V5' = 3 

V1 = C1 
V2 = C2 
V3 = C3 
V4 = C1 
V5 = C4 

 
At the end of the counting stage, Counter announces 

the list of |PVID1, H(Ěz(V', PVID2)), V| in consistent 
with the order in the CBB as well as remarking the 
discarded votes. Now votes are easily tallied and the 
election result is announced. 

One of the major contributions of this paper is to 
give an opportunity to voter to perform individual 
verifiability while casting his vote without revealing 
his identity. In each stage voter can check and 
individually verify intermediate outcomes against 
bulletin boards. In case of any corruption he can make 
objection. After counting stage has been completed 
voter can individually verify his vote with his PVID1 
and the receipt of sequence number of H(Ěz(V', 
PVID2)) by using the announced lists. 

 
4. Security Analysis 

 
We provide the sketch of proofs that state how the 

DynaVote protocol fulfills the e-voting requirements. 
Lemma 1 (Privacy): A particular voter and his cast 

vote is unlinkable. 
Sketch of Proof: PVID Authority issues blind 

signature on voter’s blinded IDs after checking voter’s 
eligibility. Since the blind signature scheme is used, 
any particular registration ID is not linkable to any 
PVID and any particular PVID is not linkable to any 
registration ID. Voter does not use his registration ID 
after obtaining PVID; instead he uses his PVID in next 
stages. Therefore privacy is assured. 

Lemma 2 (Eligibility): Only eligible and authorized 
voters can vote. 

Sketch of Proof: We employ PVID scheme which 
guarantees that only eligible voters can obtain valid 
PVIDs. PVID Authority issues blind signature on 
voter’s blinded IDs after checking voter’s eligibility. 
Only eligible voters’ blinded IDs are blindly signed by 
PVID Authority. Ineligible people’s blinded IDs 



cannot be signed without being detected since 
threshold cryptography is applied to distribute the 
authority over n parties. In order to sign any request at 
least t parties should come together. Therefore 
authentication and authorization are fulfilled by PVID 
scheme. In the proposed protocol voter can vote 
multiple times, just the latest one is counted, the rest 
are discarded. Thus, the proposed protocol achieves 
eligibility requirement. 

Lemma 3 (Uniqueness): Only one vote for a voter is 
counted. 

Sketch of Proof: In counting stage, Counter obtains 
a final list |PVID1, PVID2, V', B|. PVID1 is the primary 
key for this list and is unique. Voter can recast, 
however the last vote is taken into consideration and 
the previous ones are discarded. Thus, there is no 
PVID duplication in the list. Since the PVID1 is unique 
in the list and can be verifiable using PVID Authority’s 
public key, there is no chance that more than one vote 
is counted for any voter. Therefore, uniqueness is 
achieved. 

Lemma 4 (Uncoercibility): Voter cannot be coerced 
to cast his vote in a particular way. 

Sketch of Proof: The proposed protocol allows 
recasting. Even if someone coerces voter, voter casts 
by that way. Later, he can change his vote, by recasting 
new one and then the old one is discarded in counting 
stage. Same logic can be applied to vote selling. So, 
practically it is not possible to coerce voter or to buy 
vote from voter, since nobody can know whether the 
current vote will be the final one. Therefore, 
uncoercibility is achieved. 

Lemma 5 (Fairness): No partial tally is revealed 
before the end of the voting period. 

Sketch of Proof: Counting comes after the voting 
stage is completed so no one can gain any partial 
knowledge about the tally before the counting stage; as 
a consequence, voting is not effected. Since we are 
employing dynamic ballots, Counter just knows voter’s 
candidate selection which does not reveal any 
information without ballot. Even if Ballot Generator 
provides Counter the corresponding dynamic ballot B, 
Counter could not extract the voter’s cast vote since the 
voting key, which is maintained by Key Generator, is 
required. Thus, Counter could not calculate any partial 
result. So, this requirement is achieved. 

Lemma 6 (Accuracy): Any vote cannot be added, 
altered, deleted, invalidated or copied in the final tally 
without being detected. 

Sketch of Proof: During the voting stage, voter 
verifies each step before proceeding to next one. When 
he obtains dynamic ballot B and voting key ez, he 
checks KGBB and BGBB; in case of corruption he can 
object to Ballot Generator. After voting, he also 
verifies CBB to assure that his vote is listed. The 

detailed explanation is given in individual verifiability 
requirement analysis. 

Voting and counting authorities have bulletin 
boards and they publish all relevant information in 
them. Counter counts votes using the sublists provided 
by Ballot Generator and Key Generator. For 
consistency, Counter compares the sublists against the 
hash values in bulletin boards. 

Any single authority cannot alter, delete, invalidate 
or copy any vote since the modification causes 
inconsistency with the bulletin boards. Moreover, voter 
verifies his vote and makes objection. Any single 
authority cannot add any vote since a vote consists of a 
dynamic ballot B and a voting key ez. Even if Ballot 
Generator, Key Generator and Counter conspire 
together, they cannot add a new vote since they cannot 
create fake PVIDs. PVID Authority cannot issue fake 
PVIDs since threshold cryptography is applied. So, 
accuracy is achieved. 

Lemma 7 (Robustness): Any coalition of voters or 
authorities cannot disrupt the voting or influence the 
election and final tally. 

Sketch of Proof: The dishonest voter cannot disrupt 
the voting, he has just right over his vote, so he may 
only disrupt his vote. Even if he sends more than one 
votes, in this case, just last one is counted since PVID1 
is unique. Voter is aware of that his previously sent 
votes will be discarded if he sends more than one vote. 

As bulletin boards are employed, hash of all 
information related with voter’s vote is recorded 
publicly. Thus, any authority corruption can be 
revealed. If any authority conspires with voter, they 
can just corrupt that voter’s vote. Therefore, this 
requirement is achieved. 

Lemma 8 (Individual Verifiability): Each eligible 
voter can verify that his vote is counted correctly. 

Sketch of Proof: Key Generator publishes H(ev, ez) 
in KGBB. H(B, es) is published in BGBB. Voter 
attempts to create same hash values by using dynamic 
ballot B, voting key ez and his session keys ev and es. If 
he obtains same values, he proceeds to send his 
candidate selection to Counter. 

In ballot obtaining phase, if voter receives corrupted 
voting key ez, he could not generate proper H(ev, ez). 
He can object this situation by showing (ev, ez) and 
H(ev, ez). If voter does not receive proper dynamic 
ballot B, he can prove that the dynamic ballot does not 
match with the hash values published in BGBB by 
showing (B, es) and H(B, es). Therefore Ballot 
Generator and Key Generator are required to respond 
to voter properly. Otherwise, voter can easily prove 
any improper responses. 

In vote casting phase, voter checks CBB as soon as 
receiving the acknowledgement from Counter by 
creating same hash value for V' as H(Ěz(V', PVID2)). 



If the value does not match, he can object to Counter 
by illustrating V' and ez. Thus, Counter could not 
modify the voter’s candidate selection V'. Voter can 
verify his vote by checking his PVID1 and the 
sequence number of H(Ěz(V', PVID2)) by using the 
announced lists. Therefore, individual verifiability is 
fulfilled. 

Lemma 9 (Universal Verifiability): Any participant 
or passive observer can verify that the published tally 
is correctly computed from correctly cast votes. 

Sketch of Proof: At the end of the election, before 
counting, all authorities publish their sublists. As soon 
as Counter announces the election result all authorities 
publish complete lists. Besides, bulletin boards are 
employed. So any participant or passive observer can 
check whether votes are counted correctly or not. 
Counter has responsibility to verify all results and 
publish them. So, universal verifiability is fulfilled. 

 
5. Discussion 

 
DynaVote has one shortcoming which appears 

when Ballot Generator, Key Generator and Counter 
conspire and work together. They can modify cast 
votes due to the recasting. However, voter can verify 
his vote on the Counter’s published list and make an 
objection providing his PVIDs. It does not violate 
voter’s privacy since PVIDs are pseudo identities 
which are unlinkable with real registration ID. 
Currently, we are studying to find a proper solution for 
this specific issue. 

In this paper, we just mentioned the core e-voting 
requirements and illustrated how DynaVote fully 
satisfies them. Besides, there are some desirable 
requirements. DynaVote also satisfies many of them 
such as dispute-freeness, scalability, efficiency, and 
mobility. As a future work, we will describe in detail 
how DynaVote achieves these requirements as well. In 
addition, we are planning to implement DynaVote as a 
proof of concept. 
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