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Abstract There are few studies in the literature to address the multi-objective
multi-label feature selection for the classification of video data using evo-
lutionary algorithms. Selecting the most appropriate subset of features is a
significant problem while maintaining/improving the accuracy of the predic-
tion results. This study proposes a framework of parallel multi-objective Non-
dominated Sorting Genetic Algorithms (NSGA-II) for exploring a Pareto set of
non-dominated solutions. The subsets of non-dominated features are extracted
and validated by multi-label classification techniques, Binary Relevance (BR),
Classifier Chains (CC), Pruned Sets (PS), and Random k-Labelset (RAkEL).
Base classifiers such as Support Vector Machines (SVM), J48-Decision Tree
(J48), and Logistic Regression (LR) are performed in the classification phase of
the algorithms. Comprehensive experiments are carried out with local feature
descriptors extracted from two multi-label data sets, the well-known MIR-
Flickr dataset and a WMS (Wireless Multimedia Sensor) dataset that we have
generated from our video recordings. The prediction accuracy levels are im-
proved by 6.36% and 25.7% for the MIR-Flickr and WMS datasets respectively
while the number of features is significantly reduced. The results verify that
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the algorithms presented in this new framework outperform the state-of-the-
art algorithms.

Keywords Multi-label Classification · Multi-objective Optimization ·
Evolutionary · Machine learning · Feature Selection

1 Introduction

We live in an era where computer systems produce very large amounts of
data that must be processed to extract hidden knowledge. To make the best
use of available computing resources, the processing time of big data needs to
employ special data processing techniques. Some parts of the data may be con-
taminated and this can prevent the extraction of useful knowledge. Irrelevant
and/or redundant data must be eliminated, preferably even before being trans-
mitted to a big data store, to reduce the data processing load, to increase the
classification accuracy and to obtain better data models. Complex data struc-
tures need to be designed for filtering out irrelevant data. Efficient data mining
and machine learning methods are being used for discovering correlations [1].
The feature selection is one of the most suitable methods to search for the most
relevant and the smallest subset of features for the data classification. There
are three main methods in literature for performing feature selection: filtering,
wrapper, and embedded methods. The filtering method uses computationally
inexpensive evaluation functions over all available data features, providing a
ranking of features [2]. The wrapper method uses learning algorithms to deter-
mine the most relevant subsets to maximize the performance of learning. The
evaluation of the wrapper algorithm is computationally very expensive but it
determines the most valuable subsets of features [3]. The embedded method
combines feature selection techniques with the model construction process
(wrapper) so that it can stop the attribute filtering process when sufficient
performance is obtained by the classification/learning algorithms [4].

Fig. 1 a. Binary classification, b. Multi-class classification, c. Multi-Label classification

Most of the time, real data includes multiple scopes. An image taken by
a camera can contain many features. Tagging such data-rich content with a
simple binary label may not always be possible. For this reason, multi-label
classification is an important aspect of data classification problems [5][6]. The
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data is labeled with one of two classes in binary classification. For the multi-
class classification, there are more than two classes and each row of data is
tagged only with a single label value. For the multi-label classification, there
are more than two classes and each data may have more than one label. In
Figure 1, the examples of binary classification, multi-class classification, and
multi-label classification of a set of instances are presented.

We handle the problem of multi-label classification of video data problem
as a two-dimensional optimization problem. There may be subsets of solutions
with a minimum number of features. However, their accuracy may not always
be the best. We intend to obtain the smallest feature sets to reduce the execu-
tion time of large datasets while improving the classification accuracy of the
datasets.

In this study, we propose a framework of multi-objective evolutionary al-
gorithms for the solution of this important multi-objective problem. The well-
known NSGA-II algorithm is used in the feature selection phase of the de-
veloped algorithms [7]. Later, the multi-label classification machine learning
technique validates this set of selected features for their prediction accuracy
performance. Binary Relevance (BR), Classifier Chains (CC), Pruned Sets
(PS) and Random k-Label Sets (RAkEL) are used in the proposed algorithms
since they are the best-performing algorithms used in literature. Support Vec-
tor Machines (SVM), J48-Decision Tree (J48) and Logistic Regression (LR)
are used to calculate the fitness values. Since the most time-consuming part
of these multi-objective evolutionary algorithms is the evaluation of the fit-
ness value of each chromosome, these computations are performed in a parallel
computing (multi-threaded) environment to produce speed-up and scalability
while examining larger sets of features. We develop twelve algorithms to verify
that it is possible to obtain better prediction accuracy with a minimum num-
ber of features. The algorithms are validated with two different multi-label
image/video datasets. The first one is the well-known MirFlickr dataset [8]
with extracted features [9] and the second dataset is a new Wireless Multime-
dia Sensor(WMS) video dataset produced in our research project (available
on our website 1). The second dataset is manually annotated and the bag-of-
visual-words are generated from a local Scale Invariant Feature Transforma-
tion (SIFT) descriptor. When the parallel versions of the proposed algorithms
are used, the Hamming score values of the individuals in the population are
increased and the number of features is decreased significantly.

To the best of our knowledge, we propose/design the first version of the
multi-objective multi-label classification problem for the video-datasets in lit-
erature. Multi-objective evolutionary algorithms (NSGA-II) have been success-
fully applied to many feature selection problems. However, the multi-objective
parallel feature selection on local descriptors for the image/video datasets
has been performed for the first time in this study. Twelve different combina-
tions of the algorithm are developed using multi-threaded programming in our
proposed framework. Significant performance improvements are observed and

1 http://ceng.metu.edu.tr/tr/node/3612
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both objectives (higher Hamming score values with the minimum number of
features) are achieved concerning the results of the state-of-the-art algorithms.

Section 2 reviews recent studies related to this research. In Section 3, the
definition of the problem is given. The proposed framework algorithm for the
selection of features is described in detail and the validation algorithms are
explained in Section 4. The experimental results of the algorithms are com-
pared and discussed in Section 5. Our concluding remarks and future work are
presented in the last section.

2 Related work

This section gives information about the multi-objective evolutionary algo-
rithms that are proposed for feature selection. Guyon et al. present a fea-
ture selection method that consists of a heuristic checklist that provides a
basic roadmap by asking questions about features and labels [10]. Using the
responses, a filter, a wrapper, or an embedded method is decided. Another
feature selection research is presented by Jing et al. by using multi-objective
optimization algorithms [11]. A multi-label k-nearest algorithm is implemented
and tested by four multi-label datasets using Hamming loss parameter. Their
method integrates a Genetic Algorithm (GA) with machine learning tech-
niques. They report better results than traditional feature selection algorithms.
Zhang et al. implement a new multi-label feature selection method for the
classification of data by using a multi-objective Particle Swarm Optimization
(PSO) algorithm [12][13]. The introduced algorithm is compared to NSGA-II.
Datasets used for validation and comparison have a maximum number of 14
labels and 294 features.

Vaishali et al. propose an evolutionary feature selection algorithm using a
multi-objective evolutionary method [14]. For the evaluation phase, four differ-
ent machine learning algorithms are used Naive Bayes (NB), J48 Decision Tree,
MLP, Neural Network and Multi-objective Fuzzy Classification. The NSGA-II
and Evolutionary Non-Dominated Radial Slots based algorithm (ENORA) are
used in the experiments. During the validation phase, the binary-labeled health
dataset with 8 features and 767 instances is used. Both ENORA and NSGA-II
algorithms give better results after feature selection but NSGA-II’s Hamming
score improvement is observed to be better when compared to all other algo-
rithms. Vignolo et al. eliminate irrelevant, noisy and redundant features for the
face recognition problem [15]. The implemented evolutionary multi-objective
method aims to minimize the cardinality while maximizing the discriminative
capacity. The multi-objective (MOGA) and classical GAs are compared and
both offer similar accuracy, whereas MOGA achieves this with fewer features.

A study based on the filter method is provided by Labani et al. [16]. In
this study, NSGA-II algorithm is used with NB and SVM for feature selec-
tion. 5 different binary-class datasets are used. They compare their proposed
method with other filter-based methods like Max-Relevance Min-Redundancy
and concerning both a minimum number of features and the maximum accu-



Title Suppressed Due to Excessive Length 5

racy. The proposed algorithm outperforms commonly used methods. Zhang et
al. propose a feature selection approach based on the weighted relevancy [17].
They observe that the correlation between candidate features and class labels
have an important role in feature selection. While calculating the relevance be-
tween features and class labels; entropy and mutual information are calculated.
Deniz et al. propose three feature selection methods for binary classification
problems with machine learning techniques [18]. They propose techniques with
two phases; feature subset selection and applying machine learning techniques
for the prediction accuracy. Saroj & Jyoti work with NSGA-II algorithm for
obtaining optimal multi-objective feature selection [19]. One-point crossover,
bit-flip mutation, and binary-tournament selection methods are used. The fit-
ness function is determined through an equally weighted sum of objectives
which are maximizing information gain, maximizing non-redundancy, and min-
imizing the feature set. Better results are provided by getting Pareto-optimal
solutions instead of a single best solution. Hamdani et al. perform experiments
on NSGA-II algorithm for multi-objective feature selection [20]. The 1-NN al-
gorithm is used as a classifier for evaluating the solutions.

Khan et al. [21] propose a multi-objective feature selection algorithm for
multi-label data classification. NSGA-II algorithm is used with SVM as a base
learner for the fitness values of the algorithm. 2 multi-label datasets with 7 and
174 label values are examined with state-of-art multi-label classifiers, Label
Powerset (LP), BR, CC) and Calibrated Label Ranking (CLR). Shijin et al.
propose a hybrid method of GA and SVM on feature selection for hyperspectral
image classification to get better band combination means finding irrelevant
band combinations with a minimal number of bands [22]. Gaspar implements
a feature selection algorithm using multi-objective evolutionary methods [23].

Xue et al. propose a PSO for the multi-objective feature selection [24].
Linear Forward Selection (LFS) and Greedy Step-wise Backward Selection
(GSBS) methods are used in the proposed algorithm. NSGA-II, Strength
Pareto Evolutionary Algorithm-2 (SPEA2) and Pareto Achieved Evolutionary
Strategy (PAES) algorithms are compared. The K-nearest neighbor algorithm
with 10-fold cross-validation is used in the experiments. Better performance
is observed with LFS than GSBS for both the number of features and the
prediction accuracy. Zhang et al. propose a similar method that is focused
on the performance metrics of multi-objective optimization algorithms [25].
Hyper-volume and two-set-coverage are investigated in this study. The results
of the NSGA-II algorithm are reported to be worse than the PSO, whereas
NSGA-II has better results than the multi-objective differential evolution fea-
ture selection algorithm to the hyper-volume. In a two-set-coverage metric,
the NSGA provides better Pareto optimal solutions than the proposed al-
gorithm on the majority of the datasets. Tangherloni et al. investigate the
performance of meta-heuristics for real-world optimization problems [26]. The
authors study the Parameter Estimation (PE) of biochemical systems, a com-
mon computational problem in the field of Systems Biology. They compare
the solution quality of their algorithms by considering a set of benchmark
functions and a set of biochemical models with an increasing number of di-
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mensions. Experimental results verify that some state-of-the-art optimization
methods are characterized by considerably poor performances when applied
to the PE problem.

Nalluri et al. propose a hybrid architecture, monarch butterfly optimiza-
tion (MBO), to handle imbalanced binary disease datasets that arrive upon
the efficient combination of SVM classifiers sensitive parameter values of evo-
lutionary algorithms [27]. MBO enumerates three objectives, prediction ac-
curacy, sensitivity, specificity. A uni-modular matrix and limit points based
non-dominated solutions selection for local and global search and to generate
an efficient initial population respectively are introduced. The performance of
the architecture is verified on 18 disease datasets having binary class labels
and significant improvements are obtained.

Rundo et al. propose a novel image enhancement method (MedGA) based
on Genetic Algorithms to improve the appearance and the visual quality of
images characterized by a bimodal gray-level intensity histogram, by strength-
ening their two underlying sub-distributions [28][29]. MedGA improves the re-
sults achieved by downstream image processing techniques. The performance
of MedGA quantitatively outperforms the other state-of-the-art tools in terms
of signal and perceived image quality while preserving the input mean bright-
ness.

In this study, twelve multi-objective algorithms and their parallel versions
are developed and verified. In this sense, our study is unique when compared
with other related studies.

3 Problem Definition

In this section, we give information about the multi-label data classification
and the multi-objective optimization problems.

3.1 Multi-label classification

The classification problem can be depicted as: let D, Y, and H be the do-
main of possible training instances, the class labels, and the set of classifiers
respectively. Then, each instance d ∈ D is assigned to a value y ∈ Y to find a
classifier h ∈ H that gives maximum possible probability of satisfying h(d) = y
for each test case (d, y) [30].

The classification process can be considered in three groups; binary, multi-
class, and multi-label classification. In binary classification, the list of class
labels Y contains only two values and the classification operation determines
whether a test instance belongs to a class or not. In the multi-class classifi-
cation, the list of Y can have more than two classes for each instance. The
membership of these classes is mutually exclusive and there is a unique class
label for each instance. For multi-label classification, the list of labels can have
multiple values, as in the multi-class classification but each instance can be
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assigned to multiple class labels. The classification steps are similar to the
binary/multi-class classification processes. The model is first trained with or
without labels and then the trained model is validated with distinct data to
measure the success of the model. Multi-label classification management re-
quires much effort than other methods. Therefore, some modifications need to
be performed. Three main approaches used for this purpose are data transfor-
mation, method adaptation and ensemble-based classifiers [31].

Data transformation: can be achieved in two ways. The first one is a trans-
formation into binary classification and the second one is a multi-class clas-
sification. For the binary classification transformation, the data is split into
single labeled data for all labels and then the results of all classifications are en-
sembled. For the multi-class classification transformation, label combinations
are generated with selected methods. The multi-class classification is applied
as if all generated sub-label sets are represented as a single class. Unlike the
transformation of binary-classification, the labels are not independent of each
other. Their relationships are considered in this method. The most widely used
algorithms for this approach are BR, CC, LP, and PS.

Method adaptation: The multi-labeled data remains the same as original
but traditional classification algorithms are adapted to handle multiple out-
puts. There is not a single general solution. Two main concerns are taken into
account. The first one is deciding an error function and the second one is a
modification for the adaptation of the error function [25].

Ensemble-based classifier : aims to remove barriers or manage weaknesses
in methods based on processing or adaption. For example, when applying the
PS algorithm, many levels are created and the computation becomes longer.
However, the ensemble-based algorithm for PS uses a voting system to avoid
a large number of levels. With this modification, the building time is reduced
and the success of the algorithm is improved. A detailed explanation of this
process is given in [32]. Another popular example is RAkEL that is an en-
sembled algorithm for LP and BR transformation based algorithms. RAkEL
overcomes obstacles produced by LP with two additional parameters, namely
the number of classifiers for the training phase and the length of the labelsets.
As a result, the performance becomes better than those of BR and LP [33].

3.2 Multi-objective problems

Multi-objective optimization problems aim to obtain two or more objectives
related to the solution of the problem. Since the objectives must be related to
each other, all objectives are considered simultaneously during the solution.
Multi-objective optimization algorithms can be formulated mathematically as



8 Gizem Nur Karagoz et al.

in Equation 1 where f and x represent the objective function and the generated
decision space solutions related to M number of objectives respectively [34].

f(x) = (f1(x), f2(x), ..., fm(x)) such that m = 1, ..,M (1)

Because the objectives conflict, getting the best results for all objectives
is neither meaningful nor possible most of the time [35]. Therefore, Pareto
optimality method is used to evaluate multi-objective algorithms. A set of so-
lutions is provided instead of a single best one. Edgeworth proposes the Pareto-
optimality paradigm [36]. Concerning this definition of Pareto-optimality, the
decision vector is not dominated by any other solution [37].

4 Proposed multi-objective evolutionary algorithm

In this section, we explain the proposed multi-objective evolutionary feature
selection algorithms, NSGA-II (the non-dominated sorting GA), the multi-
label classification algorithms (BR, CC, PS, RAkEL) and the machine learning
techniques (SVM, LR, J48). The algorithms proposed are wrapper type feature
selection algorithms.

4.1 Non-dominated Sorting Genetic Algorithm (NSGA-II)

In the first phase of the algorithm, an initial population is randomly gener-
ated and the fitness values of individuals (chromosomes) in the population are
calculated. The distance of each chromosome’s objective values is evaluated
with the Euclidean Distance measure called Crowding Distance. Since all so-
lutions in the population have two parameters as front and crowding distance,
a non-dominated sorting operation is performed by considering the fronts. In-
dividuals in smaller fronts are assumed to have higher priority. For individuals
on the same front, their crowding distances are compared and an individual
with a larger value is decided to be the winner [34]. The binary tournament se-
lection method is applied to produce the next generations. Four chromosomes
are chosen at random. Two parents are selected according to their fitness val-
ues. After the crossover and bit-flip mutation operations, two new children are
generated. Only the best half of the individuals is used to create the next gen-
eration. Individuals with worse fitness values are eliminated. The algorithm
terminates when the maximum number of generations is executed [7][27]. In
Figure 2, the chromosome structure of an instance with eight features is pre-
sented. Genes with value one represent the selected feature indexes of each
data instance, whereas the genes with value zero represent features that are
not selected for the validation. The flowchart of the proposed algorithm is
given in Figure 3. The pseudocode of the proposed algorithm is provided in
Algorithm 1.
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Fig. 2 Chromosome structure of the proposed multi-objective evolutionary algorithms for
multi-label image/video classification problem.

Fig. 3 The flowchart of the multi-objective evolutionary algorithms.

4.2 Multi-label classification algorithms

To handle the multi-labeled datasets, multi-label classification approaches
given below are implemented.

Binary Relevance (BR) algorithm: is the multi-tag classification algorithm
that is based on the most used transformation to manage multiple targets.
The BR divides the data into multiple binary-classification problems and then
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Algorithm 1: The pseudocode of the multi-objective evolutionary
algorithm for the multi-label data classification problem.

1 Input : popSize, genSize, crossoverRate,mutationRate;

2 Output : Non Dominated Solutions;
3 P ← randomly generate initial population () ;
4 S ← {} // the set of already examined individuals/chromosomes ;

5 for i ← 1 to genSize do
6 foreach u in P do
7 if u does not exist in S then
8 u.objective1 ← # of selected features;

// method = {BR,CC,PS,RAkEL with J48,SVM,LR}
9 u.objective2 ← Find Accuracy(u,method);

10 S ← S ∪ {u};
11 else
12 u.objective1 ← S[u].objective1;
13 u.objective2 ← S[u].objective2;

14 P ← Non Dominated Sort(P )

15 for i← 1 to |P |/2 do
16 p1 ← Binary Tournament();
17 p2 ← Binary Tournament();
18 c1, c2 ← Half Uniform Crossover(p1, p2, crossoverRate);

c1 ← Bit F lip Mutation(c1,mutationRate);
c2 ← Bit F lip Mutation(c2,mutationRate); P ∪ c1 ∪ c2;

19 P ← Non Dominated Sort(P );

20 return Non Dominated Solutions(P );

fuses them for the final prediction (see Figure 4). Binarization techniques are
used and for each label, a new binary-labeled dataset is created and trained.
Test and validation operations are applied to each model for each label in the
datasets. Since each target is managed individually, the algorithm does not
consider the correlation between labels [31].

Classifier Chains (CC): is similar to the BR algorithm. Multiple binary
datasets are generated as shown in Figure 5. When a new binary classification
algorithm is executed for every label, the previous labels act as inputs of the
next classification process. Unlike BR, the correlation between the labels is
not taken into account in CC. Once the data transformation is applied, the
classification is managed with binary classifiers for all the generated datasets
[38].

Pruned Sets (PS) method : transforms multi-label data into multi-class
data. This method is based on the most correlated labels and co-occurrences
in multi-labeled datasets. For each combination of label-sets, a new class is
registered for a multi-class classification. To handle a large number of classes
created, the label set graph is generated based on the condition of the co-
occurrences. Thus, the multi-label classification problem can be solved as a
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Fig. 4 The stages of the BR algorithm.

Fig. 5 Data transformation operation of the CC algorithm.

single label classification problem. A new dataset is created as an empty set
and all labels with their co-occurrences form a graph with the stopping condi-
tion corresponding to the number of label occurrences. If the condition is not
fulfilled, these label sets are split and recombined for more common combina-
tions [32].

Random k-Labelsets (RAkEL) method : is an ensemble-based multi-label
classification algorithm. Basically, RAkEL creates sub-label sets that consist
of k labels. Each sub labelset is selected randomly. RAkEL ensembles these k -



12 Gizem Nur Karagoz et al.

labeled subsets with a label power-set algorithm. Label powerset algorithm is a
transformation based multi-label classification technique that takes all labelset
as a label of the multi-class classification task. The correlation between labels
is taken into account. However, as data size grows, the number of classes and
datasets created becomes prohibitively large. Theoretically, it is limited by the
number of instances (since 2k >> n).

4.3 Performance evaluation

The evaluation metrics used for multi-class or binary classification cannot be
used directly for multi-label classification. The accuracy of the labels must be
taken into account in the label set. In this way, Hamming loss is the sample-
based metric that is used primarily. The loss measure is calculated for each
instance and the average value is found. The symmetric difference (∆) is calcu-
lated between the prediction and the actual label sets for all labels per instance
(Equation 2 ). Then, it is normalized according to the number of instances and
the number of labels [31].

Hamming Loss =
1

n

1

k

n∑
i=1

| Yi∆Zi | (2)

4.4 Machine learning algorithms

Some basic classifiers are needed to apply multi-label classification algorithms.
The classification performance on machine learning algorithms refers to the
success of the dimension reduction phase performed by the evolutionary GA.

Support Vector Machines (SVM): is a classification algorithm that creates
hyper-planes for the separation of class instances. The hyper-planes are calcu-
lated to decide the best hyper-plane maximizing distances from all instances.
Hyper-planes are selected according to this condition iteratively.

If data is linearly separable, this method performs well. Otherwise, the ker-
nel trick is used to transform the data into higher dimensionality. It helps to
separate the data with hyper-planes [39]. In this study, the Sequential Mini-
mal Optimization (SMO) algorithm is used for this purpose. This algorithm is
created by Platt to avoid working on very large data and time-consuming pro-
cesses [40]. SMO divides the problem into smaller sub-problems. The required
memory for SMO is linear and larger training operations can be performed
easily. The optimization stage is performed with Lagrange multipliers.

Logistic Regression (LR): is a well-known classification algorithm for both
statistics and machine learning. The LR classification algorithm is based on
calculating posterior probabilities of occurrence for the attributes in a training
set. The Sigmoid function (Equation 3) is used for calculating the probabilities
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in our problem domain. X is the input set and θ is the coefficient value for
all features. With these values, y gives the probability of the occurrence of an
event. Since the label value prediction must be in a binary form, these prob-
ability results that are calculated with the Sigmoid function are transformed
into binary forms. If the probability of occurrence is less than 0.5, it is assumed
to be zero, otherwise one.

P = (y = 1 | X, θ) =
1

1 + e−(θ ∗X)
(3)

Continuous real values are converted into binaries. If the probability of
occurrence is less than 0.5, we take as zero otherwise, we take one. Therefore,
LR is a convenient technique for binary classification process [41].

Decision Tree (J48): is a uni-variate algorithm that generates hyper-planes
to create partitions in classes. Thus, the branching of a tree depends on a
unique attribute. J48 is based on C4.5 decision tree algorithm which is an
extension of ID3 [42]. The ID3 algorithm addresses classification problems by
creating simple and small decision trees. The potential for all attributes and
gains are calculated.

The entropy of all individuals is calculated with Equation 4 and all possible
combinations of conditional entropy are computed with Equation 5. Finally,
the gains are calculated with Equation 6 to search for anomalies in the data.
Once the gain calculations are complete, the best attribute is selected based on
the maximal gain for branching. This operation is repeated until all attributes
are in the tree or stop condition is fulfilled. When the tree is formed, it is
pruned to obtain a more generalized tree and increase the performance of the
classification [43].

Entropy(y) =

n∑
j=1

(| yi |)
(| y |)

log
| yi |
| y |

(4)

Entropy(j | y) =
| yi |
| y |

log
| yj |
| y |

(5)

Gain(y, j) = Entropy(y − Entropy(j | y)) (6)

4.5 Parallel versions of the multi-objective evolutionary algorithms

Parallel multi-objective evolutionary algorithms are efficient tools for the op-
timization of NP-Hard problems [44][45]. The performance of the optimiza-
tion can be considerably improved by using fine-grained parallel processing of
chromosomes with intelligent operators (mutation and crossover). The fitness
calculation of the chromosomes in this study requires a lot of time because of
the long execution time of applied machine learning techniques. This process
prevents the efficient exploration of the subset of features of selected elements.
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Therefore, we propose a Parallel-NSGA-II algorithm that uses multi-threaded
paradigm for speeding-up the solution of the problem [46]. The proposed al-
gorithm keeps a population in the memory of the master thread and sends
chromosomes to be calculated to the slave threads. Since the calculation of the
machine learning accuracy with a selected number of features is fine-grained,
it is observed that this parallelization technique of the conventional NSGA-II
algorithm provides an almost linear speed-up. It is possible to calculate larger
numbers of fitness values and obtain better results than the standard (serial)
version of the NSGA-II algorithm. The scalability of the algorithms is one of
our main concerns to be able to increase the number of cores in the computa-
tion environment. The versions we develop in this framework are proved to be
scalable and almost linear speed-up in their executions. Rundo et al. make use
of the Message Passing Interface (MPI) specifications for Python Master-Slave
paradigm employing mpi4py to leverage High-Performance Computing (HPC)
resources in medical image analysis provided by MedGA [28][29]. The results
of our experiments are reported in the experimental evaluation section.

5 Performance Evaluation of Experimental Results

In our experiments, two multi-label video/image datasets are used to verify
the proposed algorithms. The first dataset is the most widely used and publicly
available image dataset MIR-Flickr [8]. This dataset consists of 25,000 images.
Important features of the dataset are extracted in a study by Costa et al. [9].
This feature set that is extracted with the Segmentation based Fractal Tex-
ture Analysis (SFTA) algorithm is used in our experiments. This extraction
creates binary images with binary stack decomposition. Extracted features are
transformed into vectors as feature sets [47]. There are 42 features in MIR-
Flickr dataset and there are at most 23 labels for each image (Car, Bird, Lake,
Night, Water, Sky, People, Baby, Clouds, Tree, Portrait, Dog, Animals, Fe-
male, Transport, Flower, Indoor, Male, Food, River, Structures, Sea, Sunset).

The second dataset is obtained from our Wireless Multimedia Sensors
(WMS) video recordings. The recorded files are split into five-second frames
and a manual annotation process is applied to identify objects in the frames.
The objects are grouped using three labels (person, group of people and ve-
hicle). After the annotation process is completed, the features are extracted
with SIFT method based on key-point localization of objects [48]. The im-
plementation is provided by using openCV framework and the Python pro-
gramming language [49]. Once the SIFT features are specified, the codebook
is constructed to obtain a dictionary of visual words. During the construction
of the codebook, the k-means clustering algorithm is applied to determine the
centroids. Then, the L1 normalization is applied to obtain the final version
in the form of 100 bags of visual words for each frame. The data is extracted
from 3-minute videos. 1000 video frames are used in the experiments. In the
dataset of WMS, for every frame, 100 features and 3 labels are available as
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Fig. 6 Person, group of people, and vehicle frames from the Wireless Multimedia Sensors
(WMS) video recordings.

person, group of people and vehicle. Some examples of these frames are shown
in Figure 6.

The experiments are performed on a computer with 8 core 64-bit CPU (i7-
3632QM, 2.20GHz). The algorithms are developed with Java and the MOEA
framework [46]. Multi-label machine learning algorithms providing fitness val-
ues are implemented with MEKA, a multi-label extension of WEKA machine
learning toolkit [50].

The results reported here are the average of five executions with five-fold
cross-validation. This method is used to minimize the impact of random fac-
tors. The dataset is divided into five equal-size partitions and four of them are
used for training. The remaining partition is used for testing. The average of
these five executions is the final accuracy value of the results. This is the most
common way in the literature to evaluate the predictive accuracy of machine
learning algorithms.

5.1 Setting the size of the population and the number of generations

The main parameters that affect the performance of the NSGA-II are the
number of generations and the size of the population. Tuning these parame-
ters improves the efficiency of the NSGA-II significantly. To obtain the best
settings, the size of the population is increased from 10 to 100, while the
number of generations is being increased to 10, 20, 30, 40, 50, to 70 iterations
respectively. Some of the results are presented in Figures with different number
of generations and populations 7, 8, 9 and 10.

At the beginning of the experiments, the population size is set to 10 and
optimized through 10 generations. The Hamming score reaches 0.885 with
three features. The solutions do not construct a good Pareto-curve with this set
of parameters. In advanced stages of experiments, a fewer number of features
are achieved with higher Hamming scores. Non-dominated results are well
located on Pareto-curves. During the experiments, the increase in the number
of instances in each population positively affects the results. Better results
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Table 1 Parameter settings for the parallel NSGA-II algorithms (N is the number of indi-
viduals in the population).

Parameter Value
population size 50
# generations (termination condition) 20
crossover rate 1.0
distribution index for crossover 15.0
mutation rate 1/N
distribution index for mutation 20.0

Fig. 7 The performance of the multi-objective BR-J48 algorithm with 10 individuals and
10 generations.

can be achieved as the number of generations increases. The best Hamming
score of minimum features - optimal solutions is very similar to each other
with 50 population - 70 generations and 100 population - 30 generations.
Deciding the number of generations as 20 and the number of instances for each
population as 50 is suitable for obtaining the best non-dominant solutions. The
best parameters used in the experiments for the parallel NSGA-II are presented
in Table 1.

5.2 Experimental results of serial and parallel NSGA-II algorithms

For the performance comparison of serial and parallel versions of the algo-
rithms, four multi-label classification algorithms with base classifier J48 deci-
sion trees are tested with the MIR-Flickr dataset. The results are observed to
construct better Pareto-curves (see Figures 11, 12, 13 and 14 for more details).

The serial PS algorithm has Hamming score values 0.812 and 0.823 re-
spectively with one and 26 features. The parallel version of this algorithm has
0.840 Hamming score with one feature and the Hamming score is maximized
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Fig. 8 The performance of the multi-objective BR-J48 algorithm with 30 individuals and
10 generations.

Fig. 9 The performance of the multi-objective BR-J48 algorithm with 10 individuals and
70 generations.

to 0.861 with 7 features. In both objectives, better results are obtained with
the parallel versions of the algorithms.

The serial implementation of the CC algorithm has 0.866 Hamming score
with one feature. With the same number of features, 0.883 Hamming score is
obtained in the parallel version of the algorithm.

The serial implementation of BR has 0.866 Hamming score with one fea-
ture. The best non-dominated results (Pareto-optimal results) of the algorithm
and its parallel version have 0.887 Hamming score with the same number of
features. The maximum Hamming score is 0.889 with 6 features in parallel
version and 0.867 with seven features in the serial version.
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Fig. 10 The performance of the multi-objective BR-J48 algorithm with 50 individuals and
50 generations.

Table 2 The average execution time of serial and parallel algorithms

Algorithm
Base

Classifier
serial (min) parallel (min) Improvement (%)

BR J48 371.23 23.28 93.73
CC J48 389.54 20.31 94.79
PS J48 1020.6 36.27 96.45
RAkEL J48 371.36 114.55 69.15

When the resulting graphs are analyzed, all the algorithms are observed
to converge faster with their parallel versions. The convergence of the serial
algorithm requires more execution time and cannot achieve results of paral-
lel implementations in terms of Hamming scores. The parallel multi-objective
evolutionary algorithms save a great amount of execution time. The serial ver-
sion of the BR algorithm runs for 6 hours and 11 minutes, whereas the parallel
version terminates in 23 minutes and 28 seconds. The serial CC algorithm con-
sumes 6 hours and 30 minutes, whereas its parallel version runs for 20 minutes
and 31 seconds. As a result, the parallel versions of the algorithms have a
considerable advantage over their serial versions in terms of computation time
and solution quality (see Table 2). The improvement in the Table presents the
percentage of reduction in execution time (See Equation-7). S and P represent
the execution time of the serial and parallel implementation respectively.

Improvement Percentage = (
S − P
S

)× 100 (7)
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Fig. 11 Comparison of serial and parallel versions of PS-J48 algorithms.

5.3 The evaluation of results with parallel multi-label image/video
classification algorithms

Tables 3, 4, 5, and 6 give the performance of BR, CC, PS and J48 multi-
label classification algorithms on MIR-Flickr dataset respectively. For each
algorithm, 5 Pareto-optimal solutions are reported. After the feature selection
process is applied, the Hamming score is improved and the number of features
is decreased. Thus, the proposed algorithms are effective in finding relevant
features among the set of extracted SFTA features. The best improvement is
observed with CC and J48. The Hamming score is improved from 0.8338 to
0.8865. The number of features is decreased from 42 to 9 features. For both
objectives, the J48 algorithm outperforms the SVM and LR algorithms. In
the original feature set, there are 42 features and it is decreased down to 5
or 9 features in the average. The best Hamming scores are recorded as 0.887
with the CC algorithm. This value was 0.8511 before the feature selection is
applied. The RAkEL algorithm gives the worst results concerning the number
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Fig. 12 Comparison of serial and parallel versions of CC-J48 algorithms.

of features compared to other algorithms. Since it finds Pareto-optimal solution
in the early stages of the evaluation, the number of non-dominated results is
lower than the others. For this dataset, the RAkEL algorithm does not perform
well. Our Hamming score results range from 0.80 to 0.84 (similar to other
multi-label classification approaches) [51].

Tables 7, 8, 9 and 10 present the results of WMS multi-label video dataset
for proposed BR, CC, PS and RAkEL algorithms respectively. The improve-
ment in the Hamming scores is evident after the application of the feature
selection process. For the PS-SVM combination, the Hamming score is in-
creased from 0.7038 to 0.8447 and the number of features is reduced from
100 to 41. The best improvement is recorded with the combinations of J48
algorithm. With the BR-J48 algorithm, the Hamming score is improved from
0.6447 to 0.78481 while the number of features is reduced to 14. Similar im-
provements are obtained in the algorithms PS-J48, CC-J48, and RAkEL-J48.
The BR-LR shows a marked improvement with respect to the Hamming score
when accuracy results increase from 0.6941 to 0.8456. However, the number
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Fig. 13 Comparison of serial and parallel versions of BR-J48 algorithms.

Table 3 Pareto-optimal results of BR algorithm on MirFlicker dataset

Multi-Label
Classification

Algorithm

# of Features
Before FS

Base
Classifier

Hamming Score
Before FS

Hamming Score
after FS

# of Features
after FS

BR 42

LR 0.86115

0.86939 12
0.86802 8
0.86749 6
0.86668 4
0.86594 1

SVM 0.86573

0.87964 25
0.88335 15
0.88441 8
0.88494 2
0.88494 1

J48 0.86182

0.88865 6
0.88812 5
0.88706 4
0.88653 2
0.88602 1
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Fig. 14 Comparison of serial and parallel versions of RAkEL-J48 algorithms.

Table 4 Pareto-optimal results of CC algorithm on MirFlicker dataset

Multi-Label
Classification

Algorithm

# of Features
Before FS

Base
Classifier

Hamming Score
Before FS

Hamming Score
after FS

# of Features
after FS

CC 42

LR 0.84313

0.86532 6
0.88601 5
0.88547 3
0.88441 2
0.88345 1

SVM 0.85119

0.88706 7
0.88601 5
0.88546 3
0.88442 2
0.88335 1

J48 0.83834

0.88653 9
0.88653 6
0.88601 5
0.88494 4
0.88335 1
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Table 5 Pareto-optimal results of PS algorithm on MirFlicker dataset

Multi-Label
Classification

Algorithm

# of Features
Before FS

Base
Classifier

Hamming Score
Before FS

Hamming Score
after FS

# of Features
after FS

PS 42

LR 0.80201

0.82148 15
0.82010 8
0.81933 6
0.81929 5
0.81546 1

SVM 0.84291

0.86647 11
0.86002 9
0.85790 6
0.84889 3
0.83987 1

J48 0.80799

0.86426 15
0.86320 9
0.86108 7
0.85047 4
0.83987 1

Table 6 Pareto-optimal results of RAkEL algorithm on MirFlicker dataset

Multi-Label
Classification

Algorithm

# of Features
Before FS

Base
Classifier

Hamming Score
Before FS

Hamming Score
after FS

# of Features
after FS

RAkEL 42

LR 0.84492

0.80257 28
0.80419 21
0.81215 12
0.83580 5
0.86439 1

SVM 0.86541

0.80450 20
0.81197 13
0.81894 9
0.84313 3
0.86265 1

J48 0.80232

0.80154 26
0.80626 17
0.82253 8
0.83759 5

0.86485 1

of features is not decreased as in J48 algorithm. The RAkEL-SVM has the
worst performance with respect to both objectives. While the Hamming score
is being increased from 0.7038 to 0.7650, the number of features is decreased
from 100 to 47. This is the highest number of features recorded after applying
feature selection.

To emphasize the importance of feature selection, all combinations of algo-
rithms are executed with the original set of features and three features on the
WMS dataset. The execution times of the algorithms are recorded in Table
11. The improvement percentage is calculated with respect to the Equation
7. The percentage of improvement is observed to be remarkably good. The
smallest percentage of improvement is 58.41%. But for most algorithms, the
improvement is about 95.0%. An improvement of 99.58% is recorded with 3
features.
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Table 7 Pareto-optimal results of BR algorithm applied on WMS video dataset.

Multi-Label
Classification

Algorithm

# of Features
Before FS

Base
Classifier

Hamming Score
Before FS

Hamming Score
after FS

# of Features
after FS

BR 100

LR 0.69409

0.84557 32
0.83587 26
0.81814 16
0.76161 5
0.71856 1

SVM 0.71645

0.84937 42
0.84051 34
0.82278 18
0.79283 10
0.74093 3

J48 0.64472

0.78481 14
0.78017 11
0.76835 5
0.78017 3
0.74093 1

Table 8 Pareto-optimal results of CC algorithm applied on WMS video dataset.

Multi-Label
Classification

Algorithm

# of Features
Before FS

Base
Classifier

Hamming Score
Before FS

Hamming Score
after FS

# of Features
after FS

CC 100

LR 0.68776

0.77764 11
0.77553 8
0.76624 6
0.75316 4
0.72236 1

SVM 0.71814

0.77595 13
0.76583 8
0.75864 5
0.75063 3
0.74177 1

J48 0.64556

0.78143 14
0.77848 10
0.75751 7
0.75738 4
0.74177 1

5.4 Comparison with state-of-the-art algorithms

Our proposed algorithms are compared with state-of-the-art feature selection
algorithms, Principal Component Analysis (PCA), Information Gain (IG), and
Correlation Based Feature Selection (CBFS). PCA is a linear dimensionality
reduction technique that uses linear mapping via covariance or correlation
relationship between features. Though variance of the low dimensional data
is maximized and by using eigenvectors, most related features arise. This al-
gorithm is based on a study by Pearson [52]. This supervised dimensionality
reduction technique is revised in a book by Jolliffe [53]. The other implemented
algorithm is IG. This method is used for splitting decision trees but also it is
a popular feature selection technique. The difference between the entropy of
dataset D and the weighted sum of selected subset entropies are calculated as
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Table 9 Pareto-optimal results of PS algorithm applied on WMS video dataset. (FS stands
for feature selection.)

Multi-Label
Classification

Algorithm

# of Features
Before FS

Base
Classifier

Hamming Score
Before FS

Hamming Score
after FS

# of Features
after FS

PS 100

LR 0.66245

0.76709 45
0.75992 26
0.74768 13
0.72152 5
0.70844 1

SVM 0.70379

0.84473 41
0.83292 29
0.81351 16
0.77722 9
0.70844 1

J48 0.62067

0.77004 15
0.75569 11
0.74434 8
0.72532 6
0.71898 1

Table 10 Pareto-optimal results of RAkEL algorithm applied on WMS video dataset. (FS
stands for feature selection.)

Multi-Label
Classification

Algorithm

# of Features
Before FS

Base
Classifier

Hamming Score
Before FS

Hamming Score
after FS

# of Features
after FS

RAkEL 100

LR 0.66245

0.77131 21
0.75949 16
0.75527 10
0.73038 7
0.69958 1

SVM 0.70379

0.76498 47
0.76287 18
0.75105 12
0.74641 8
0.73881 1

J48 0.62067

0.76708 38
0.75949 27
0.75232 10
0.73038 5
0.70465 1

the information gain and the highest is selected as the strongest feature. For
this purpose, searching is performed via ranking all attributes. While applying
IG on multi-label data, multi-label classification techniques are used. Binary
relevance based IG results are evaluated on other multi-label classification al-
gorithms. The last state-of-the-art feature selection algorithm we use is CBFS.
It is a filter-based feature selection algorithm and ranks features by a heuristic
evaluation function given in Equation 8. The average class-feature correlation
is represented as rcf . rff represents the average feature-feature correlation
where k represents the number of features. The subsets are evaluated consid-
ering feature-feature and feature-class correlations of all features, termination
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Table 11 The improvements in the execution times (with 3-features and 100-features).

Multi-Label
Classification

Algorithm

Base
Classifier

Exec. Time (sec)
with

all features

Exec. Time (sec)
with

3 features

Decrease
in Percentage
(%)

BR
LR 0.358 0.025 93.02
SVM 0.194 0.032 83.51
J48 0.195 0.006 96.92

CC
LR 0.374 0.023 93.85
SVM 0.188 0.034 81.91
J48 0.193 0.007 96.37

PS
LR 1.877 0.038 97.98
SVM 0.188 0.034 67.21
J48 0.138 0.014 89.86

RAkEL
LR 17.44 0.719 95.88
SVM 1.878 0.781 58.41
J48 1.363 0.097 92.88

is performed by the ’best-fit’ search method. If five consecutive subsets are not
improved over the current best subset then searching is terminated.

µs =
krcf√

k + k(k − 1)rff
(8)

State-of-the-art algorithms are evaluated on both datasets. Tables 12 and
13 present the results obtained with MIR-Flickr and WMS datasets respec-
tively. For both dataset BR, CC, PS, and RAkEL multi-label classification
algorithms are applied with base classifiers J48 decision tree, SVM and LR on
dimensionally reduced subsets. The results show that our proposed algorithm
performs better than the-state-of-the-art algorithms in terms of the number
of features and Hamming-score values.

With MIR-Flickr dataset, the BR-J48 algorithm has achieved 0.88865 Hamming-
score value with six features. With the same algorithm combination, CBFS re-
ports 0.86335 Hamming-score value with 17 features, IG reports 0.86265 with
the same number of features and PCA has better results than both CBFS
and IG. The results of the CC-SVM and other feature selection algorithms are
reported in Figure 15. All state-of-the-art feature selection algorithm results
are worse than our the Pareto-optimal solutions.

For WMS dataset, similar results are recorded. Our proposed feature se-
lection approach results have 0.78143 Hamming score with 14 features on the
combination of CC-J48 algorithm. CBFS could only reach to 0.719 Hamming-
score with 17 features and IG has Hamming-score to 0.71883 with 22 features.
PCA has the worst results (see Table 13).

The execution times of all the algorithms are reported. Since our proposed
feature selection method is a multi-objective evolutionary approach, the exe-
cution time is much higher than other state-of-the-art feature selection algo-
rithms. Tables 14 and 15 present the execution time of state-of-the-art feature
selection algorithms on MIR-Flickr and WMS datasets respectively.
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Fig. 15 The results of the CC-SVM multi-objective evolutionary algorithm and other state-
of-the-art algorithms (CBFS, IG, PCA) on MIR-Flickr dataset. Red curve shows the Pareto
optimal solutions of CC-SVM.

Table 12 Comparison of state-of-the-art feature selection algorithms on MIR-Flickr
Dataset. The best results are given in bold numbers.

Multi-label
Classification
Algorithm

Base
Classifier

Proposed Algorithm
# of Features
After Proposed
Algorithm Applied

CBFS (17) IG (17) PCA (10)

BR
LR 0.86939 12 0.86452 0.86428 0.86583
SVM 0.88494 2 0.86570 0.86570 0.86778
J48 0.88865 6 0.86335 0.86265 0.86409

CC
LR 0.86532 6 0.84726 0.84596 0.84543
SVM 0.88706 7 0.85787 0.85726 0.84561
J48 0.88653 6 0.84674 0.84574 0.84435

PS
LR 0.82148 15 - - -
SVM 0.86647 11 0.84139 0.84165 0.84048
J48 0.86426 15 0.81104 0.80615 0.80904

RAkEL
LR 0.86439 1 0.85783 0.85833 0.86313
SVM 0.86265 1 0.86543 0.86496 0.86739
J48 0.86485 1 0.81100 0.81178 0.81709
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Table 13 Comparison of state-of-the-art feature algorithms on WMS Dataset. The best
results are given in bold numbers.

Multi-label
Classification
Algorithm

Base
Classifier

Proposed Algorithm
# Features
After Proposed
Algorithm Applied

CBFS (17) IG (22) PCA (10)

BR
LR 0.84557 32 0.75167 0.79200 0.71810
SVM 0.84937 42 0.75200 0.79033 0.72238
J48 0.78481 14 0.71700 0.72767 0.70143

CC
LR 0.77764 11 0.74033 0.78833 0.70238
SVM 0.77595 13 0.75167 0.78383 0.72286
J48 0.78143 14 0.71900 0.71883 0.67286

PS
LR 0.76709 45 0.74700 0.78400 0.71095
SVM 0.84473 41 0.74700 0.78650 0.72810
J48 0.77004 15 0.68700 0.71400 0.66000

RAkEL
LR 0.77131 21 0.74700 0.78400 0.71095
SVM 0.76498 47 0.74700 0.78650 0.72810
J48 0.76708 38 0.68700 0.71400 0.66000

Table 14 The execution time of algorithms on MIR-Flickr dataset

Algorithm Execution Time (sec)

NSGA-II 1396.8

PCA 0.7804

CBFS 1.6866

IG 1.3012

Table 15 The execution time of algorithms on WMS dataset

Algorithm Execution Time (sec)

NSGA-II 0.6482

PCA 0.0619

CBFS 0.4322

IG 0.4026



Title Suppressed Due to Excessive Length 29

6 Conclusions and future work

In this paper, we propose a framework of multi-objective parallel evolutionary
algorithms to both select the minimum number of multi-label image/video
dataset features and provide the maximum prediction accuracy values. The
feature selection process is implemented using the well-known NSGA-II algo-
rithm and applied with twelve different combinations of various machine learn-
ing techniques. The experiments are carried out on two datasets (MIR-Flickr
dataset and our WMS video recording dataset). The results of the experi-
ments validate that the proposed algorithms improve the prediction accuracy
of the results with a minimum number of features. We have observed that
the Hamming score increases when the number of features is reduced during
the multi-objective optimization process. The proposed algorithms succeed in
obtaining Pareto-optimal solutions that have high prediction accuracy values
with a minimum number of features.

The selection of the features being an open research problem, it is possible
to improve the accuracy of the predictions with the new techniques proposed
for the selection of the features. In addition, new algorithms enriched with
deep learning techniques can be run on more powerful computing capabilities,
increasing the number of generations, and exploring with diverse populations,
which may produce better results. The use of deep auto-encoders for feature
selection and the use of parallel scalable multi-objective optimization algo-
rithms to select not only the minimum number of features for multi-tag image
dataset, but also for an audio dataset and providing the maximum prediction
accuracy values are our ongoing research.
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