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Abstract

We propose hybrid Artificial Bee Colony (ABC) optimization algorithms for the well-known Quadratic
Assignment Problem (QAP). Large problem instances of the QAP are still very challenging. Scientists have
not discovered any method to obtain the exact solutions for these difficult problems yet. The ABC has been
reported to be an efficient meta-heuristic for the solution of many intractable problems. It has promising
results making it a good candidate to obtain (near)-optimal solutions for well-known NP-Hard problems. The
proposed ABC algorithm (ABC-QAP) and its parallel version (PABC-QAP) are the first applications of the
ABC meta-heuristic together with Tabu search to the optimization of the QAP. The behavior of employed,
onlooker and scout bees are modeled by using the distributed memory parallel computation paradigm for
large problem instances of the QAP. Scout bees search for food sources, employed bees go to food source
and return to hive and share their information on the dance area, onlooker bees watch the dance of employed
bees and choose food sources depending on the dance. Robust Tabu search method is used to simulate
exploration and exploitation processes of the bees. 125 of 134 benchmark problem instances are solved
optimally from the QAPLIB library and 0.27% deviation is reported for 9 large problem instances that could
not be solved optimally. The performance of the ABC optimization algorithms is competitive with state-of-the-
art meta-heuristic algorithms in literature.

Keywords

Artificial Bee Colony; Quadratic Assignment; Optimization; Parallel computation; Meta-heuristic.

F

1 Introduction
The Quadratic Assignment Problem (QAP) was first introduced by Koopmans & Berkman in 1957
[1][2][3]. The QAP is a mathematical model for the location of indivisible economic activities. The QAP is
in the class of NP-Complete problems. It is one of the most difficult combinatorial optimization problems
and there’s no exact algorithm that can solve problems of sizes larger than 35 locations with practical
computational time.

The QAP has been studied for several years in transportation systems, telecommunications, signal-
processing [4], typewriters, keyboard design, layout design, board wiring [5], layout design [6], turbine
balancing [7], scheduling [8], data allocation [9], travelling salesman, bin-packing, maximum clique, linear
ordering and the graph partitioning problem [10].

The QAP is the problem of assigning a set of facilities to a set of locations in such a way as to minimize
the total assignment cost. The QAP can be formulated by using nxn matrices, A, B, C.

A = (aik), B = (bjl), C = (cij) (1)

where aik is the flow amount from the facility i to facility k, bjl is the distance from location j to location
l, cij is the cost of placing facility i at location j. The QAP form of Koopmans & Beckman can be given
as below;

minφεSn
(
n∑
i=1

n∑
k=1

aikbφ(i)φ(k) +
n∑
i=1

ciφ(i)) (2)
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Sn is the permutation of numbers 1,2,...,n. aikbφ(i)φ(k) is the cost of transportation from facility i at
location φ(i) to facility k at location φ(k). ciφ(i) is the cost of installing facility i, at location φ(i) and the
transportation costs to all other facilities k, set at locations φ(1), φ(2), ..., φ(n). In cases where there is no
C term, Lawler introduced at four-index cost array D = (dijkl) instead of the three matrices and obtained
the general form of the QAP as [11];

minφεSn
(

n∑
i=1

n∑
k=1

diφ(i)kφ(k)) (3)

The relationship with the Koopmans & Beckman problem is:

dijkl = aikbjl(i, j, k, l = 1, 2, ...., n; i 6= k or j 6= l) (4)

dijij = aiibjj + cij(i, j = 1, 2, ..., n) (5)

Smaller problem instances of the QAP can be solved by exact algorithms in minutes/hours. However,
due to its intractable behaviour, solution of the larger instances of the QAP can take even hundreds
of years to complete with a single processor brute force algorithm. Therefore, many meta-heuristic
algorithms have been proposed for solving the QAP. The proposed algorithms are influential such that
they can discover (near)-optimal solutions in practical running times.

Artificial Bee Colony (ABC) is a recent meta-heuristic proposed by Dervis Karaboga in 2005 [12].
The ABC is inspired by the intelligent behaviour of honeybees and uses a population-based search
methodology. The ABC has been reported to be efficient for the solution of intractable (NP-Complete)
problems like travelling salesman [13], scheduling and constraint optimization problems [14]. The ABC
algorithm uses simple common parameters such as colony size and maximum cycle (iteration) number.

In our study, the locations of the QAP (permutations) are assumed to be food sources of artificial
bees. These permutations are handled by the artificial bees. The purpose of a bee is to discover food
sources with the highest amount of nectar. Artificial bees explore and exploit a multidimensional search
space. The employed and onlooker bees decide food sources with the experience of themselves and
their hive mates. Scout bees fly around the search space randomly and look for the food sources. If
the nectar amount of a new source is better than those of the previous locations, they mark the new
position. The ABC algorithm combines local search methods (Robust Tabu Search is used in our study)
and global search methods by modelling these processes using employed, onlooker and scout bees. With
well-balanced exploration and exploitation processes, the ABC can provide significant improvements in
optimization times and solution quality.

We obtain 125 optimal results for the given 134 problem instances in the QAPLIB benchmark library
with ABC-QAP algorithm. In order to find better results for larger instances of the QAP, we propose
a novel island parallel algorithm. There has been a growing interest in parallel applications of meta-
heuristic algorithms to many combinatorial problems recently [15]. The parallel ABC algorithm (PABC-
QAP) that is proposed in our study is the first parallel application of the ABC meta-heuristic to the
QAP. The parallelization of the meta-heuristics can improve the efficiency of optimization algorithm
significantly [16][17]. The behavior of employed, onlooker and scout bees are modeled by using the
distributed memory parallel computation paradigm, Message Passing Interface (MPI). Scout bees search
for food sources, employed bees fly to food source and return to hive and share their information on the
dance area, onlooker bees watch the dances of employed bees and choose food sources depending on
dances. Robust Tabu search method [18] is used to simulate search operations of the bees. Exploration
phase of the ABC optimization is analyzed and the best performing parameter of search effort is decided.
The parameters of the Tabu search method is adaptively set for the Tabu list size and aspiration values.
Our algorithm adjusts these parameters during the execution of the optimization process and provides
better solutions than the existing methods. We observe that the aspiration value of the Tabu search
can prevent getting stuck into local optima when it is well adjusted. 0.018% deviation from the best
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known solutions is reported for all the problem instances. The performance of the ABC optimization is
competitive with state-of-the-art meta-heuristic algorithms in literature.

In section 2, related studies for state-of-the-art QAP are presented. The details of proposed ABC
algorithms for serial and parallel versions are introduced in sections 3 and 4 respectively. The experimental
setup, obtained results, and comparison with state-of-the-art algorithms are reported in section 5.
Concluding remarks are provided in the last section.

2 Related work
In this part, we give information about the previous studies of ABC, Tabu search and some meta-heuristic
algorithms designed for the solution of the QAP [17][19]. Karaboga & Basturk develop an ABC algorithm
to optimize multivariable functions. Their results are compared with Genetic, Particle Swarm Algorithm
(PSO) and PSO-Evolutionary algorithms. The ABC algorithm is observed to outperform the others [20].
In another study, Karaboga & Basturk compare the ABC with differential evolution, PSO and genetic
algorithm for multi-dimensional numerical problems. The obtained results show that the performance
of the ABC is competitive with the other algorithms [21]. ABC Programming (ABCP) is proposed on
symbolic regression problem. A set of symbolic regression benchmark problems are solved using ABCP.
The simulation results indicate that the new method is feasible for the test problems of symbolic regression
[22].

Tayarani-N et al. analyze the fitness landscape of the QAP. The scientists try to understand the correla-
tions between the local optima [23]. There are some recent parallel ABC algorithms in literature. Subotic et
al. propose three different parallel ABC algorithms. The parallel ABC algorithms are independent parallel
runs and two variations of multiple swarms parallelization. By using independent parallel runs method,
they obtain faster execution of the ABC algorithm due to the high computation capability of multicore
processors. They observe better results than the sequential version of the original ABC algorithm. Several
communications between hives are proposed. The communication methods improve the solution quality
with different ratios between exploration and exploitation. Eleven standard benchmark functions are
tested and execution speed and the quality of results are improved [24]. Benitez et al. develop two
parallel ABC algorithms for protein structure prediction. They use three-dimensional hydrophobic-polar
model with side-chains. Experiments are carried out for tuning the parameters of the ABC and adjusting
the load balance in the computing environment. The parallel models are compared with a sequential
ABC algorithm on four benchmark instances. The parallel models are observed to improve the quality
of solutions [25].

Narasimhan & Harikrishna develop a parallel ABC algorithm for shared memory architectures. The bee
colony is divided among the available processors. In a local memory of each processor, a set of solutions is
located. Also each solution is also kept in a shared memory. The bees at a processor improve the solutions
in the local memory. At the end of the execution, the solutions are moved to the shared memory and
made available to the bee colony. The proposed algorithm obtains a substantial amount of speedup [26].
Parpinelli et al. propose parallel ABC algorithms: master-slave, multi-hive with migrations, and hybrid
hierarchical. Statistical results show that intensive local search improves the quality of solutions [27].

Loiola et al. classify some of the most important QAP algorithms according to their mathematical
sources in their survey [28]. They discuss lower bounds for heuristic and exact algorithms. Talbi et al.
propose a parallel algorithm for ant colonies to solve the QAP. A pheromone matrix that simulates the
global memory is provided to cooperate the processes between ants. The exploration is controlled by the
improvement of pheromones levels. The exploitation is enhanced by a Tabu search algorithm [29]. Zhou et
al. present a hybrid frequent pattern based search approach that combines data mining and optimization
paradigms. The proposed method uses a data mining procedure to obtain frequent patterns and the
minded patterns are used to build new and efficient starting points. The proposed approach competes
with state-of-the-art algorithms both in terms of solution quality and computing time [30]. Chmiel &
Kwiecień propose a quantum-inspired evolutionary algorithm for QAP. They present how the QAP is
adapted, including crossover and mutation operators and introducing quantum principles in particular
procedures [31]. Mihić et al. propose a new local search approach, called randomized decomposition
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(RD), for solving nonlinear, nonconvex mathematical programs. They successfully applied to over 400
instances of the quadratic assignment problem (QAP) [32].

Yagmur et al. introduce a parallel version of the Breakout Local Search (BLS) algorithm [16]. They use
a Levenshtein Distance metric for checking the similarity of the new starting points. The proposed BLS
Algorithm (BLS-OpenMP) combines multi-threaded computation using OpenMP. Dokeroglu proposes
Teaching Learning Based (TLBO) hybrid algorithms to solve the QAP [33]. Individuals are trained with
recombination operators and later a Robust Tabu Search engine processes them. Hyper-heuristics is a
recent approach for solving challenging NP-Hard combinatorial optimization problems by using a set of
low level meta-heuristics. Abdel Basset et al. propose a method to improve the Whale algorithm. The
proposed algorithm is enhanced by a local search. The algorithm is tested on many QAP instances and
it is reported to obtain near-optimal solutions with reasonable execution times [34].

Çela et al. consider new polynomial-time cases of the QAP with a special diagonal structure. They
obtain a new class of polynomially solvable special cases of the QAP [35]. Bougleux et al. propose a linear
assignment model to a quadratic one. This is provided by a family of edit paths induced by assignments
between nodes. They show that the Graph Edit Distance is equivalent to a QAP [36]. Parallel Evolutionary
algorithms are important means of improvement due to the modern parallel computer architectures.
Nalepa & Blocho propose a parallel memetic algorithm to solve the vehicle routing problem with time
windows. In their study, a number of populations are evolved in a parallel computation environment.
Their study comprises more than 1,584,000 CPU hours and report new best solutions using the best
co-operation schemes [37].

Tosun proposes a parallel hybrid algorithm (PHA) [38]. A genetic algorithm and a robust Tabu search
are incorporated in his study by a parallel environment. The PHA achieves 0.05% deviation on the
average from the best/optimal results. Benlic & Hao propose BLS algorithm for the QAP [39]. The BLS
optimizes the solution of the QAP by the use of local search and adaptive perturbation methods. The same
researchers propose a new memetic algorithm for the QAP [40]. Fescioglu et al. address the principles of
the feedback and self-controlling mechanisms of Tabu search. They introduce new reaction techniques.
The first strategy uses a control-theoretic approach to tune the parameters of the algorithm that affect
the intensification. The second strategy adjusts the parameters based on the search history [41].

Dokeroglu & Cosar propose a parallel MultiStart Hyper-heuristic algorithm (MSH-QAP). The MSH-
QAP uses meta-heuristics, Simulated Annealing, Tabu Search, Ant Colony Optimization, and BLS [17].
Duman et al. propose a new meta-heuristic based on the V flight shape of the migrating birds for the QAP.
The performance of the algorithm is reported to be better than Tabu search, particle swarm optimization,
genetic algorithm, simulated annealing, scatter search, differential evolution and guided evolutionary
simulated annealing [42].

Tabu search optimization method was first developed by Fred W. Glover in 1986 [43]. Tabu search is a
heuristic for solving optimization problems and it has a well-designed mechanism to escape from being
stuck into the local optima. Tabu search can obtain (near)optimal solutions to many classical combinatorial
optimization problems [44]. Taillard proposes Tabu search for the QAP in 1991 [18] and develops two
new parallel algorithms. He obtains new best/optimal results in his study. To the best of our knowledge,
our study is the first application of the ABC meta-heuristic optimization with Tabu search to the QAP.
We introduce a single-core and an island parallel application of the ABC algorithm for the solution of
the QAP.

3 Proposed ABC algorithm for the optimization of the QAP
In this section, we introduce our proposed ABC-QAP algorithm. ABC is a population based meta-heuristic
optimization method. Bees constitute the population of the algorithm. Each bee looks for the optimal
solution (food resource) of the given QAP instance. A solution is assumed to be a food resource and the
nectar amount of each resource represents the quality of each solution. In our model, we use three types
of bees: employed bees, onlookers and scouts. Scout bees search for food sources. Employed bees go to
food source and return hive and share their information on the dance area. When the nectar collecting
duty of an employed bee finishes, the bee becomes a scout and searches for new food sources. Onlookers
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Fig. 1: The classical behaviour of honeybees looking for nectar

watch the dances of employed bees and choose food sources depending on dances. An initial population
is generated at first step of the algorithm. After this process, the optimization is repeated by using the
employed, onlooker, and scout bees. The scout bees start the search process.

There is a single hive in our developed model for the ABC-QAP. In the parallel version of the ABC-QAP,
the number of hives is as many as the number of processors in the parallel computation environment.
Figure 1 gives the fundamental characteristics of bees in the environment. A potential forager starts as
an unemployed forager and has no information about the food sources around the hive. A bee can be a
scout and searches the space for a food (S in Figure 1) or it can watch the dances and goes for finding
food sources (R in Figure 1). The bee collects the food, returns to the hive, unloads the nectar. The bee
can become an uncommitted follower (UF), recruit nest mates (EF1) or go exploiting the food source
without recruiting after bees (EF2).

In our proposed model, each bee starts as a scout bee and explores the search space of the QAP. After
spending some time during the exploration process, it comes back to the hive and shares its information.
Evaluating the results, they go back to the best available food resources. The bees use different parameters
of the Tabu search (as Tabu list size and aspiration values) and start exploiting the food resources in more
detail. For the exploration and exploitation phases of the ABC-QAP, Tabu search technique is used. In
the exploration phase, Tabu search roughly passes over the possible solutions. During this phase it uses
smaller number of iterations and restarts the search from randomly generated initial spaces. Therefore,
the Tabu search provides an efficient diversification mechanism that can evaluate the landscape of the
QAP [23]. The number of scout bees that we use during the exploration phase is set to be 1,000 in our
experiments. This parameter provides a good balance between exploration and exploitation phases of
the optimization. The best food resource is selected after the exploration phase and it is exploited by the
employed bees. Algorithm 1 gives the details of the proposed ABC-QAP algorithm.
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Algorithm 1: Pseudocode of the ABC-QAP algorithm

1 Construct an empty database for food resources();

2 int i=0;
3 while (i++ < #iterations) do

4 // Exploration phase

5 Scout bees search for food();
6 Scout bees return to the hive and dance();
7 Onlooker bees evaluate the food sources();

8 // Exploitation phase

9 Check previously visited food resources();
10 Decide the best food resources();
11 Employeed bees travel to the food sources();
12 Tabu search for nectar collecting();
13 Return to hive();
14 Collect the solution in the hive();

15 Report the best solution();

3.1 Tabu search
Tabu search is a trajectory optimization technique. It uses an adaptive memory to explore the search
space of the QAP. The memory prevents visiting the recently searched spaces. Tabu search can use several
techniques to obtain better search spaces. Diversification and intensification are some of the techniques
used during the optimization. Using different sizes of the Tabu list is a promising technique. Larger Tabu
lists can provide a good stagnation avoidance mechanism, whereas a smaller Tabu list exploits local best
values that may be located around local optimal value. Tabu search also uses some aspiration criteria
to override a Tabu state and an aspiration criterion is allowed whenever a move may have a chance
to obtain a better result. Taillard’s Tabu search method has a short-term memory with multiple-levels
of aspiration criteria. The short-term memory is good for high-quality solutions. However, longer term
memory can have promising results. Tabu search algorithms can have a variety of parameter settings
that explore the intensification and diversification strategies [45][46]. The long-term memory holds the
frequency of the parts that appear in better solutions. Diversification can eliminate these long-term parts
and can direct to unexplored parts. Tabu search seeks for a neighbouring solution that has the local best
value. During this search, the calculation of the results forces a move that obtains the objective function
most. The Tabu list forbids the reverse moves of a search process to avoid revisiting to the previously
evaluated areas. Robust Tabu search uses the number of failures and the Tabu list size as parameters.
The number of failures is the number of iterations in which no improvement is obtained. Taillard reports
that it is possible to get better results with larger number of failures. Our proposed algorithm, ABC-QAP
uses Robust Tabu search for the search processes of the scout and employed bees. Algorithm 2 presents
the details of the Tabu search algorithm.

3.2 Tuning the Tabu list size and aspiration value
The size of a Tabu list is an important parameter for finding the optimal values. For every unit and
location in the QAP, the last iteration that occupies this location is saved in the list. Small size Tabu lists
can cause the search to process in the same areas and get stuck into local optima, whereas larger lists can
prevent better moves to be explored and lead to lower quality solutions. The optimization may execute
more iterations than it is needed due to the excessive Tabu list size. The lower and upper limits of the
Tabu list size are decided to be between [0.9 x n - 1.1 x n] by Taillard (where n is the problem size).
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Fig. 2: Flowchart of the ABC-QAP algorithm

These parameters are observed to be the mean values that provides reasonable execution times during
the optimization process. A dynamic size Tabu list between these value provides a very effective way
for the optimization process and the aspiration value [47]. Therefore, we apply a technique that changes
the size of the Tabu list dynamically in this study.

Aspiration value of Tabu search allows a move to be executed if it finds a better move than the
existing solutions. The aspiration value of Tabu search process is generally decided as recommended by
classical methods. However, this value can change depending on the structure of the problem. Therefore,
we propose a dynamic aspiration value in our study. The value changes at each 100,000 iteration of
Tabu search. The aspiration value can be a good way of local search with smaller values. However,
when the search process is stuck into local optima, optimization needs to get out of this space while
preserving its previously obtained experiences (by not destroying the existing permutation of the current
solution). A well-tuned aspiration value can provide such a mechanism. Our dynamic aspiration value
changes between [n - (n x n x 10)]. Smaller values of the aspiration can search the closer spaces of the
current solution while larger values are providing an escape mechanism from local optima. With this
way, a diversified space search is constructed with hundreds of processors that are optimizing the same
problem instance with different Tabu list sizes and aspiration values.

3.3 Quick evaluation of neighbouring solutions
Swapping (exchanging) two different locations of a current QAP solution and generating a new
permutation is a very effective approach to traverse the solution search space of the QAP. This approach
allows us to calculate the cost of the new permutation quickly by only finding the cost of difference [18].
Formally, calculating the fitness value of a QAP permutation is O(n2) for a calculation to be made from
scratch, whereas it becomes O(n) when the difference of two permutations is calculated. This method
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Algorithm 2: Tabu Search [18][33]

1 Authorized: If a move that is not Tabu.
2 Aspired: Permit Tabu moves if they are interesting.
3 Tabu List: Vector of moves to avoid backward moves.
4 Neighbor: Each location of the permutation is considered as a neighbor.

5 Tabu Search (Flow, Dist, MaxIter, BestPerm, MinSize: minimum Tabu list size, Maxsize: maximum
Tabu list size, Aspiration value);

6 Tabu list = empty;
7 Calculate current Cost(BestPerm);
8 Cur Sol = BestPerm;
9 ∆[j][k] = Compute ∆(); /* j,k = 0,...,n */

10 Tabu list[j][k] = - (n×j+k);

11 for (int i = 1; i < MaxIter; i++) do
12 j retained = ∞;
13 Min ∆ = ∞;
14 Already Aspired = false;

15 for (all neighbors (j, k)) do
16 cur1 = Tabu list[j][Cur Sol[k]];
17 cur2 = Tabu list[k][Cur Sol[j]];
18 Authorized = (cur1 < i) ‖ (cur2 < i);
19 Aspired = (cur1 < i - Aspiration)‖ (cur2 < i-Aspiration)‖ (Cur Cost + ∆[j][k] < BestCost);
20 if ( (Aspired && Already Aspired) ‖ (Aspired && ∆[j][k] < Min ∆) ‖
21 (!Aspired && !Already Aspired && ∆[j][k] < Min ∆ && Authorized) ) then
22 j retained = j;
23 k retained = k;
24 Min ∆ = ∆[j][k];
25 if (Aspired) then
26 Already Aspired = true;

27 if (j retained != ∞)) then
28 Exchange(Cur Sol[j retained], Cur Sol[k retained]);
29 Cur Cost = Cur Cost + ∆[j retained][k retained];
30 Tabu list[j retained][Cur Sol[k retained]] = j + getRandom(MinSize, MaxSize);
31 Tabu List[k retained][Cur Sol[j retained]] = j + getRandom(MinSize, MaxSize);
32 if (Cur Cost < BestCost) then
33 BestCost = Cur Cost;

34 Update Move Costs(Flow, Dist, Cur Sol, ∆, j, k, j retained, k retained);

is used as a performance increasing calculation method in our proposed algorithm, PABC-QAP. Robust
Tabu search uses a matrix to store the cost of each possible exchange and these costs are added to obtain
the cost of the new solution. Starting from a solution φ, a neighbour solution π is obtained by permuting
units r and s:

π(k) = φ(k)∀k 6= r, s

π(r) = φ(s)

π(s) = φ(r)

(6)
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Fig. 3: The execution time of the problem instances with respect to their sizes

The value of a move 4(φ, r, s) is as given below when the matrices are symmetrical;

π(k) = φ(k)∀k 6= r, s

π(r) = φ(s)

π(s) = φ(r)

(7)

In Figure 3, the execution times of problem instances ranging from size 12 to 256 are given. 10,000
neighbors are searched for the problem instances with the given quick evaluation method introduced
above. A linear rise in time can be observed during the executions. This technique provides a big
advantage during the exploration and exploitation phases of the ABC optimization.

4 Parallel ABC algorithm for the QAP
For hard problem instances of the QAP, we need to develop a more powerful and scalable parallel
algorithm. Therefore, we propose an island parallel ABC optimization algorithm for the QAP. In this
algorithm, there are a master node (processor) and many slave nodes in the parallel computation
environment. The name of the proposed algorithm is PABC-QAP. Each one of the slave nodes in the
computation environment works on a separate hive and with a different set of bees (scout, onlooker
and employeed). The PABC-QAP algorithm starts a diverse exploration phase at each processor. This
is provided by randomly generated initial starting permutations of the QAP. The seeding mechanism
at each processor is initialized with (current time x # processor). This seeding value is able to provide
well-diversified permutations for each processor. During the exploration phase, Tabu search algorithm is
run with a small number of number of failures (100) and 1,000 restarts. This way of executing the Tabu
search with smaller number of iterations provides a good way of exploring the search space of the QAP.
1,000 explorations are executed with 255 processors. Totally, 255,000 exploration processes are run in
parallel. Due to the minimum amount of communication between processors, the algorithm is observed
to be scalable and works almost with a linear speed-up. In some of the problem sets that we cannot
obtain the best/optimal values with ABC-QAP, it was possible to obtain the best values even in the
exploration phase of the parallel PABC-QAP algorithm. For very hard problem instances like tai100a and
tai256c, we still need to spend most of our optimization time in the exploitation phase of the algorithm.
Since a good balance between exploration and exploitation phases ensures a time-efficient optimization
process, we carry out some experiments to understand the behaviour of the exploration in terms of time
and devitaion from the best results. Its effect to the exploitation phase is analyzed in the experiments
section of our study.

After the exploration phase of the scout bees is completed, the best permutation is sent to the
exploitation phase. Then, Tabu search starts optimizing the current solution with higher number of
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restarts and failures given in Table 1. After the optimization process is completed at each slave processor,
the results and the execution time of the optimizations are sent to the master node. Slave nodes may
spend different execution times because of the diversified optimization process at each node. The master
node receives the results from the slave nodes and reports the best one as the result of the PABC-QAP
algorithm. Figure 4 and Algorithm 3 present the flowchart and the details of the PABC-QAP algorithm
respectively.

Fig. 4: Flowchart of the parallel PABC-QAP algorithm

5 Performance evaluation of the proposed algorithms
In this section, we present the experimental setup and the results obtained by the proposed ABC
algorithms, ABC-QAP and PABC-QAP. During our experiments, we use QAPLIB (the benchmark problem
library of the QAP) [48]. 134 problem instances are solved from QAPLIB benchmark problem instances
[4]. Most of the state-of-the-art algorithms use this library. Therefore, it provides a fair platform for the
evaluation of new algorithms. Problem instances of this library are generated from real life applications
or randomly (such as Manhattan distances of rectangular grids (Head12), hospital layout (kra30), and the
backboard wiring (Ste36a)). During our experiments, each problem instance is tested 30 times and the
average/best results of the tests are reported. C++ programming language is used for the implementation
of ABC-QAP and PABC-QAP algorithms.

We carry out our experiments on HP ProLiant DL585 G7 that has AMD Opteron 6212 CPU running
at 2.6 GHz and having 8 cores. It is possible to create 8 threads at each core (providing 64 possible cores
simultaneously). Each CPU has 64-bit computing capacity and AMD SR5690 chipset. The server uses 256
GB Pc:3-10600 RAM and 1.5 TB.
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Algorithm 3: Pseudocode of the PABC-QAP algorithm

1 if (I am a slave processor) then

2 Construct an empty database for food resources();

3 int i=0;
4 while (i++ < #iterations) do

5 // Exploration phase

6 Scout bees search for food();
7 Scout bees return to the hive and dance();
8 Onlooker bees evaluate the food sources();

9 // Exploitation phase

10 Check previously visited food resources();
11 Decide the best food resources();
12 Employeed bees travel to the food sources();
13 Tabu search for nectar collecting();
14 Return to hive();
15 Collect the solution in the hive();
16 Send the best result to the master node();

17 if (I am the master processor) then

18 Receive the solutions from the slaves();
19 Report the best solution();

5.1 The effect of increasing the number of processors
The number of processors has a crucial impact on the performance of the proposed parallel algorithm,
PABC-QAP. In Figure 5, we give the deviation of our experiments on tai50a problem instance with
increasing number of processors (Tabu search uses 1,000,000 number of failures and ABC uses 100 scout
bees for the exploration phase). The experiments are repeated 30 times and their average value is reported.
x-axis is the number of explorations and y-axis gives the deviation of the optimization from the best results
in the library. If a good diversification mechanism can be provided at each processor and as many as
possible number of processors are used, then the probability of finding the optimal value is significantly
increased. Certainly, providing well-tuned parameters is another big advantage during the optimization.
Our main purpose in this part of our tests is to ensure that parallel environment can provide a better
tool while finding the optimal solution. The first thing that comes to mind when considering parallel
algorithms is their speed-up. However, island parallel ABC algorithm that we propose in this study works
on several hives and optimizes independent solution candidates instead of parallelizing the calculation of
a single solution’s optimization effort. The latter can be a very difficult job most of the time and can not
provide (near)-linear speed-ups, whereas the coarsely grained island parallel ABC can efficiently consume
its computation time. The result has 1.1% deviation with a single processor for the given configuration.
With 255 threads (that work on different hives that are located on each processor’s memory) is 0.57%. A
clear progress is observed during the experiments. The performance increases as the number of failures
and iterations of the Tabu search becomes higher.

5.2 Tuning the number of explorations
One of our biggest concerns is setting the right balance between exploration and exploitation phases of
the ABC algorithm in terms of time and deviation from the optimal results. The number of explorations
has a crucial impact on the performance of the optimization process. In Figure 6, we give the deviation of
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Fig. 5: The effect of increasing number of processors for the PABC-QAP algorithm

Fig. 6: The effect of the number of explorations on problem instance tai50a.

some results for tai50a problem instance with increasing number of explorations. We run each exploration
30 times and report the results on Figure 6. The problem instance, tai50a, is a quite difficult and moderate
size problem in the library. x-axis is the number of explorations and y-axis gives the deviation of the
optimization. Starting from 1 up to 130,000 explorations, we observe the performance of the exploration
process on the optimization. Dark markers on Figure 6 are the exploration results, whereas the white
markers are the results that are obtained after the exploitation phase. Even the number of exploration is
run with 130,000 iterations to get better starting permutations for the exploitation phase, we decide that
1,000 iteration is a nice value with its reasonable execution time for the exploration. No big advantage is
observed with higher as the number of explorations is increased more than 2,000 iterations. Therefore,
we set the number of exploration activity as 1,000 for all the problem instance. Of course this is not
the optimal value for all the problem instances but a simple parameter tuning method provided for the
balance between exploration and exploitation phases. In the exploitation phase of the ABC-QAP, as it is
reported by Taillard, higher number of failures provides better results when Tabu list size and aspiration
values are tuned well.

5.3 The execution results on the QAPLIB problem instances
In this part of our study, we present the results of our ABC-QAP and parallel PABC-QAP algorithms
in terms of deviation percentage from the best known solutions and execution times. First, we solve
a problem instance with ABC-QAP to obtain the minimum deviation from the best known solutions
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reported in the QAPLIB. In case we cannot have the best results, we apply different Tabu list and
aspiration settings for the ABC-QAP algorithm. Later, we execute the PABC-QAP algorithm with 255
processors and given settings in Tables 2 to 8. The name of the problem instance, Best Known Solution
(BKS) value of the problem instance reported by the QAPLIB, how many times the best result is (found),
Average Percentage Deviation from the best known solution (APD), Best Percentage Deviation of our
result from the BKS (BPD), execution time of the algorithm in seconds (sec.), number of processors used
during the optimization (#proc.), the aspiration value of the Tabu search process (aspiration) are given in
the Tables. If the problem instance is optimized with PABC-QAP algorithm then the number of processors
is reported to be more than 255 in the Tables. The harder problem instances that are not optimally solved
by the ABC-QAP algorithm are tested with its parallel version and 255 processors. The average execution
time and deviations are reported at the Tables.

Table 1 gives four configurations for the Tabu search algorithm that we use in our experiments. For
small problem instances that are easily solved, we apply configuration 1. For harder problem instances
we use configuration 2. Due to the execution time limitations, we need to use configuration 3 for the
tai256c problem instance. The Tabu list size parameter used in our experiments is proposed by Taillard
[18]. Aspiration value range is applied dynamically for the first time in our study in the ranges given in
Table 1. Setting 4 is used for the exploration phase of the ABC-QAP algorithm.

All the problems in the library of the QAPLIB are solved during the experiments. Tables 2 to 8 give our
experimental results on 134 problem instances in the QAPLIB. We spend nearly 339,599.5 hours of CPU
time with parallel computation (14,150.0 days) during our experiments. 125 of the problems are solved
optimally with respect to the results given in the benchmark library. 105 of these results are obtained by
ABC-QAP and 21 of them are solved with parallel PABC-QAP algorithm. The problem instances, bur,
had, chr, els, esc, had, kra, lipa, nug, Rou, Scr, Sko (except sko100a) and Ste are solved optimally by the ABC
algorithms. The larger problem instances of taia and taib are the hardest instances that we have to deal
with during the experiments. The average of best reported deviations is observed to be 0.092% for tai
problem instances. Specially, tai50a, tai60a, tai80a, and tai100a have the largest deviations among all the
problem instances. For tai256c, we report one of the best results in literature, 0.082% deviation. The ABC
algorithms spend most of their execution time on these problem instances. tai256c, tai150b, and tai100a
spend 71,129, 16,665, and 10,379 seconds during the optimization respectively.

TABLE 1: Tabu search parameter settings

configuration maximum # failures Tabu list size range of aspiration value

1 50,000xn lower limit=(9xn/10) – upper limit=(11xn/10) [n - nxn]

2 50,000xn lower limit=(9xn/10) – upper limit=(11xn/10) [n - nxnx10]

3 20,000xn lower limit=(9xn/10) – upper limit=(11xn/10) [n - nxnx10]

4 1,000xn lower limit=(9xn/10) – upper limit=(11xn/10) [n - nxn]

5.4 Comparison with the state-of-the-art meta-heuristic algorithms

In this part of our experiments, we compare our proposed ABC algorithms with state-of-the-art algorithms
in literature. These algorithms are (JRG-DivTS) [49], which is developed by James et al. It is an advanced
version of the Tabu search algorithm that is a multi-start TS algorithm. SC-Tabu [41], TLBO-RTS [33],
Iterated Tabu Search (ITS) by Misevicius [50], Lagrangian Smoothing Algorithm (LagSA) [51], GA/SD
[52] and ACO/GA/LS [53]. Table 9 gives the results of the algorithms for taia problem instances. These
problems are the hardest problems in literature. Overall deviation of the ABC algorithms is 0.248% for
the problem instances. This is the second best performance among the reported algorithms. For tai40a,
the best result is reported by the ABC algorithm. For tai100a, our algorithm is the second best one. Only
the performance of the ABC on tai80a is not among the first three algorithms. For taib problem instances,
TLBO-RTS, JRG-DivTS, ITS, SC-TABU, and ABC have deviation results 0.006, 0.07, 0.051, 0.009, and 0.00
respectively.
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TABLE 2: Results obtained for the problem instances bur, had, chr, and els. BKS is the best known result for the
problem instance. APD is average percentage deviation. BPD is the best percentage deviation. sec. is the execution
time of the algorithm.

Instance BKS found APD BPD sec. #proc. aspiration
Bur26a 5426670 10 0 0 2 1 [n - n x n]
Bur26b 3817852 10 0 0 1 1 [n - n x n]
Bur26c 5426795 10 0 0 7 1 [n - n x n]
Bur26d 3821225 10 0 0 12 1 [n - n x n]
Bur26e 5386879 10 0 0 0.1 1 [n - n x n]
Bur26f 3782044 10 0 0 0.2 1 [n - n x n]
Bur26g 10117172 10 0 0 1 1 [n - n x n]
Bur26h 7098658 10 0 0 1 1 [n - n x n]
Chr12a 9552 10 0 0 0.1 1 [n - n x n]
Chr12b 9742 10 0 0 0.1 1 [n - n x n]
Chr12c 11156 10 0 0 0.1 1 [n - n x n]
Chr15a 9896 10 0 0 0.2 1 [n - n x n]
Chr15b 7990 10 0 0 0.1 1 [n - n x n]
Chr15c 9504 10 0 0 2 1 [n - n x n]
Chr18a 11098 10 0 0 5 1 [n - n x n]
Chr18b 1534 10 0 0 0.1 1 [n - n x n]
Chr20a 2192 10 0 0 15 1 [n - n x n]
Chr20b 2298 10 0 0 8 1 [n - n x n]
Chr20c 14142 10 0 0 2 1 [n - n x n]
Chr22a 6156 10 0 0 8 1 [n - n x n]
Chr22b 6194 10 0 0 6 1 [n - n x n]
Chr25a 3796 10 0 0 13 1 [n - n x n]
Els19 17212548 10 0 0 0.10 1 [n - n x n]
Average - 10 0.0 0.0 3.65 - -

TABLE 3: Results obtained for the problem instance esc.

Instance BKS found APD BPD sec. #proc. aspiration
Esc16a 68 10 0 0 0.1 1 [n - n x n]
Esc16b 292 10 0 0 0.1 1 [n - n x n]
Esc16c 160 10 0 0 0.1 1 [n - n x n]
Esc16d 16 10 0 0 0.1 1 [n - n x n]
Esc16e 28 10 0 0 0.1 1 [n - n x n]
Esc16f 0 10 0 0 0.1 1 [n - n x n]
Esc16g 26 10 0 0 0.1 1 [n - n x n]
Esc16h 996 10 0 0 0.1 1 [n - n x n]
Esc16i 14 10 0 0 0.1 1 [n - n x n]
Esc16j 8 10 0 0 0.1 1 [n - n x n]
Esc32a 130 10 0 0 0.1 1 [n - n x n x 10]
Esc32b 168 10 0 0 0.1 1 [n - n x n]
Esc32c 642 10 0 0 0.1 1 [n - n x n]
Esc32d 200 10 0 0 0.1 1 [n - n x n]
Esc32e 2 10 0 0 0.1 1 [n - n x n]
Esc32g 6 10 0 0 0.1 1 [n - n x n]
Esc32h 438 10 0 0 0.1 1 [n - n x n]
Esc64a 116 10 0 0 0.1 1 [n - n x n]
Esc128 64 10 0 0 1 1 [n - n x n]
Average - 10 0.0 0.0 0.15 - -
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TABLE 4: Results obtained for the problem instances had, kra and lipa.

Instance BKS found APD BPD sec. #proc. aspiration
Had12 1652 10 0 0 0.1 1 [n - n x n]
Had14 2724 10 0 0 0.1 1 [n - n x n]
Had16 3720 10 0 0 0.1 1 [n - n x n]
Had18 5358 10 0 0 0.1 1 [n - n x n]
Had20 6922 10 0 0 0.1 1 [n - n x n]
Kra30a 88900 10 0 0 7 1 [n - n x n]
Kra30b 91420 10 0 0 1 1 [n - n x n x 10]
Kra32 88700 10 0 0 0.2 1 [n - n x n]
Lipa20a 3683 10 0 0 0.1 1 [n - n x n]
Lipa20b 27076 10 0 0 0.1 1 [n - n x n]
Lipa30a 13178 10 0 0 1 1 [n - n x n]
Lipa30b 151426 10 0 0 0.1 1 [n - n x n]
Lipa40a 31538 10 0 0 5 1 [n - n x n]
Lipa40b 476581 10 0 0 0.1 1 [n - n x n]
Lipa50a 62093 10 0 0 14 1 [n - n x n]
Lipa50b 1210244 10 0 0 0.1 1 [n - n x n]
Lipa60a 107218 10 0 0 19 1 [n - n x n x 10]
Lipa60b 2520135 10 0 0 18 1 [n - n x n x 10]
Lipa70a 169755 10 0 0 31 1 [n - n x n x 10]
Lipa70b 4603200 10 0 0 3 1 [n - n x n x 10]
Lipa80a 253195 10 0 0 64 1 [n - n x n x 10]
Lipa80b 7763962 10 0 0 33 1 [n - n x n x 10]
Lipa90a 360630 10 0 0 102 1 [n - n x n x 10]
Lipa90b 12490441 10 0 0 45 1 [n - n x n x 10]
Average - 10 0.0 0.0 14.3 - -

TABLE 5: Results obtained for the problem instance nug.

Instance BKS found APD BPD sec. #proc. aspiration
Nug12 578 10 0 0 0.1 1 [n - n x n]
Nug14 1014 10 0 0 1 1 [n - n x n]
Nug15 1150 10 0 0 0.2 1 [n - n x n]
Nug16a 1610 10 0 0 1 1 [n - n x n]
Nug16b 1240 10 0 0 0.1 1 [n - n x n]
Nug17 1732 10 0 0 1 1 [n - n x n]
Nug18 1930 10 0 0 2 1 [n - n x n]
Nug20 2570 10 0 0 2 1 [n - n x n]
Nug21 2438 10 0 0 3 1 [n - n x n]
Nug22 3596 10 0 0 0.1 1 [n - n x n]
Nug24 3488 10 0 0 3 1 [n - n x n]
Nug25 3744 10 0 0 4 1 [n - n x n]
Nug27 5234 10 0 0 2 1 [n - n x n]
Nug28 5166 10 0 0 3 1 [n - n x n]
Nug30 6124 10 0 0 2 1 [n - n x n]
Average - 10 0.0 0.0 1.6 - -

Table 10 gives the comparison of our results with sko problem instances. The overall deviation of the
ABC algorithms is 0.0%. The performance of our algorithm can be reported to be the best one. The only
problem instance that we cannot solve optimally is sko100a (with 0.008% deviation). In Table 11, proposed
parallel PABC-QAP algorithm is compared with other parallel algorithms in literature. The results are
obtained from their original studies. TLBO-RTS algorithm is executed on 50 processors, PABC-QAP works
with 255 processors, QAP-IPGA uses 240 processors, COSEARCH uses 150 workstations and CPTS uses
10 processors. The results of PABC-QAP is observed to be among the best performing parallel algorithms.
The number of processors used during the optimization is a crucial parameter that the largest number
of processors is used by the PABC-QAP algorithm. The CPTS has a nice performance in addition to the
small number of processors it uses during the experiments. CPTS consumes the longest execution times
for the optimization. TLBO-RTS, CORESEARCH, CPTS, and PABC-QAP are the best performing parallel
algorithms in literature for the solution of the QAP.
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TABLE 6: Results obtained for the problem instances Rou, Scr, Sko and Ste.

Instance BKS found APD BPD sec. #proc. aspiration
Rou12 235528 10 0 0 0.1 1 [n - n x n]
Rou15 354210 10 0 0 0.1 1 [n - n x n]
Rou20 725522 10 0 0 2 1 [n - n x n]
Scr12 31410 10 0 0 0.1 1 [n - n x n]
Scr15 51140 10 0 0 0.1 1 [n - n x n]
Scr20 110030 10 0 0 2 1 [n - n x n]
Sko42 15812 10 0 0 13 255 [n - n x n x 10]
Sko49 23386 10 0 0 452 255 [n - n x n x 10]
Sko56 34458 10 0 0 54 255 [n - n x n x 10]
Sko64 48498 10 0 0 144 255 [n - n x n x 10]
Sko72 66256 10 0 0 421 255 [n - n x n x 10]
Sko81 90998 10 0 0 912 255 [n - n x n x 10]
Sko90 115534 10 0 0 882 255 [n - n x n x 10]
Sko100a 152002 - 0.008 0.006 10233 255 [n - n x n x 10]
Sko100b 153890 10 0 0 7665 255 [n - n x n x 10]
Sko100c 147862 10 0 0 2898 255 [n - n x n x 10]
Sko100d 149576 10 0 0 2755 255 [n - n x n x 10]
Sko100e 149150 10 0 0 2525 255 [n - n x n x 10]
Sko100f 149036 10 0 0 1699 255 [n - n x n x 10]
Ste36a 9526 10 0 0 8 1 [n - n x n x 10]
Ste36b 15852 10 0 0 2 1 [n - n x n x 10]
Ste36c 8239110 10 0 0 5 1 [n - n x n x 10]
Average - 9.54 0.0 0.0 1394.2 - -

TABLE 7: Results obtained for the problem instances Taia and Taib.

Instance BKS found APD BPD sec. #proc. aspiration
Tai12a 224416 10 0 0 0.1 1 [n - n x n x 10]
Tai12b 39464925 10 0 0 0.1 1 [n - n x n x 10]
Tai15a 388214 10 0 0 0.1 1 [n - n x n x 10]
Tai15b 51765268 10 0 0 0.1 1 [n - n x n x 10]
Tai17a 491812 10 0 0 0.1 1 [n - n x n x 10]
Tai20a 703482 10 0 0 2 1 [n - n x n x 10]
Tai20b 122455319 10 0 0 0.1 1 [n - n x n x 10]
Tai25a 1167256 10 0 0 4 1 [n - n x n x 10]
Tai25b 344355646 10 0 0 0.1 1 [n - n x n x 10]
Tai30a 1818146 10 0 0 10 1 [n - n x n x 10]
Tai30b 637117113 10 0 0 6 1 [n - n x n x 10]
Tai35a 2422002 10 0 0 26 1 [n - n x n x 10]
Tai35b 283315445 10 0 0 0.1 1 [n - n x n x 10]
Tai40a 3139370 10 0 0 242 255 [n - n x n x 10]
Tai40b 637250948 10 0 0 9 255 [n - n x n x 10]
Tai50a 4938796 0 0.312 0.286 1190 255 [n - n x n x 10]
Tai50b 458821517 10 0 0 94 255 [n - n x n x 10]
Tai60a 7205962 0 0.449 0.422 2039 255 [n - n x n x 10]
Tai60b 608215054 10 0 0 42 255 [n - n x n x 10]
Tai64c 1855928 10 0 0 9 255 [n - n x n x 10]
Tai80a 13499184 0 0.817 0.783 5012 255 [n - n x n x 10]
Tai80b 818415043 10 0 0 482 255 [n - n x n x 10]
Tai100a 21044752 0 0.614 0.578 10379 255 [n - n x n x 10]
Tai100b 1185996137 10 0 0 9879 255 [n - n x n x 10]
Tai150b 498896643 0 0.074 0.065 16665 255 [n - n x n x 10]
Tai256c 44759294 0 0.096 0.082 71129 255 [n - n x n x 10]
Average - 7.69 0.092 0.085 4508.5 - -
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TABLE 8: Results obtained for the problem instances Tho and Wil.

Instance BKS found APD BPD sec. #proc. aspiration
Tho30 149936 10 0 0 0.1 1 [n - n x n]
Tho40 240516 10 0 0 0.1 1 [n - n x n x 10]
Tho150 8133398 0 0.014 0.009 41817 255 [n - n x n x 10]
Wil50 48816 10 0 0 89 255 [n - n x n x 10]
Wil100 273038 0 0.036 0.020 621 255 [n - n x n x 10]
Average - 6.0 0.010 0.008 8516.6 - -

There are some studies that apply ABC to special assignment problems. None of these algorithms use
Tabu search or solve the benchmark problems given in the QAPLIB. There is no parallel implementation
of these algorithms and none of them is hybrid like our algorithm. Baykasoğlu et al. propose a bee
algorithm for generalized assignment problems [54]. Behzadi & Sundarakani propose an ABC algorithm
and applied to minimize the total cost of the developed quadratic model including weighted distance
and fixed locating cost by adopting optimal assignment decision. This study does not report any solution
for the problems in QAPLIB but results for some synthetic problems [55]. Sultan et al. propose an ABC
algorithm to optimize the QAP (A Hospital Case Study). The main idea is to use different crossover
techniques for employee and onlooker bee stages and use exchange position operator for scout bee stage
[56].

When developing deterministic parallel algorithms, the first thing that comes to mind is to try to get
the same results faster by accelerating the working times. However, in addition to providing acceleration,
meta-heuristic algorithms are able to find (near)-optimal results in shorter times than the deterministic
algorithms with their intelligent way of searching. For very large problems, this may not be always
possible. Parallelization of the meta-heuristics is interesting that the main purpose becomes increasing the
possibility of finding the optimal value rather than speeding-up the execution time of the algorithms only.
With deterministic algorithms, computers can spend years for discovering an optimal value, whereas this
may be provided by parallel meta-heuristics in a few hours with well-coordinated work of a few hundred
of processors. From this perspective, the PABC-QAP algorithm is a very powerful parallel meta-heuristic
algorithm that balances the exploration and exploitation of the Tabu search [57][58][59]. The scalability
property of the PABC-QAP algorithm is good that with the additional processors it does not spend more
time because of its well-granularity. The software architecture of the algorithm is flexible that there is no
limitation on the number of processors that can be added to the parallel computation environment.

TABLE 9: Comparison of the ABC optimization algorithms with state-of-the-art algorithms on taia problem instances.
Three best results of the algorithms are given as bold numbers.

TLBO-RTS JRG-DivTS ITS SC-Tabu ABC
Instance BKS APD min. APD min. APD APD min. APD min.
Tai20a 70382 0.0 5.2 0.0 0.2 0.0 0.246 0.001 0.0 0.03
Tai25a 1167256 0.0 8.3 0.0 0.2 0.0 0.239 0.03 0.0 0.06
Tai30a 1818146 0.0 12.1 0.0 1.3 0.0 0.154 0.07 0.0 0.16
Tai35a 2422002 0.0 16.7 0.0 4.4 0.0 0.280 0.18 0.0 0.043
Tai40a 3139370 0.074 57.5 0.222 5.2 0.220 0.561 0.20 0.0 4.03
Tai50a 4938796 0.550 127.6 0.725 10.2 0.410 0.889 0.23 0.312 19.83
Tai60a 7205962 0.643 128.5 0.718 25.7 0.450 0.940 0.41 0.449 33.98
Tai80a 13499184 0.771 244.8 0.753 52.7 0.360 0.648 1.0 0.827 172.98
Tai100a 21052466 1.045 385.7 0.825 142.1 0.300 0.977 1.99 0.644 335.6
Average 0.342 109.5 0.360 26.88 0.193 0.548 0.45 0.248 35.2
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TABLE 10: Comparison of the ABC optimization algorithms with state-of-the-art algorithms on sko problem
instances. Three best results of the algorithms are given as bold numbers..

TLBO-RTS JRG-DivTS ACO/GA/LS GA/SD LagSA ABC
Instance BKS APD min. APD min. APD min. APD min. APD min. APD min.
Sko42 15812 0.0 7.7 0.0 4.0 0.0 0.7 0.014 0.16 0.42 3.71 0.0 0.21
Sko49 23386 0.014 4.1 0.008 9.6 0.056 7.6 0.107 0.28 0.14 6.96 0.0 7.5
Sko56 34458 0.003 18.5 0.002 13.2 0.012 9.1 0.054 0.42 0.12 13.6 0.0 0.9
Sko64 48498 0.003 27.5 0.0 22.0 0.004 17.4 0.051 0.73 0.12 24.15 0.0 2.4
Sko72 66256 0.022 39.2 0.006 38.0 0.018 70.8 0.112 0.93 0.26 43.1 0.0 7.01
Sko81 90998 0.023 56.6 0.016 56.6 0.025 112.3 0.087 1.44 0.11 66.2 0.0 15.2
Sko90 115534 0.029 79.4 0.026 89.6 0.042 92.1 0.139 2.31 0.16 116.9 0.0 14.7
Sko100a 152002 0.040 109.5 0.027 129.2 0.021 171.0 0.114 3.42 0.13 170.8 0.008 170.5
Sko100b 153890 0.027 109.4 0.008 106.6 0.012 192.4 0.096 3.47 - - 0.0 127.7
Sko100c 147862 0.016 109.6 0.006 126.7 0.005 220.6 0.075 3.22 - - 0.0 48.3
Sko100d 149576 0.035 109.3 0.027 123.5 0.029 209.2 0.137 3.45 - - 0.0 45.91
Sko100e 149150 0.020 109.7 0.009 108.8 0.002 208.1 0.071 3.31 - - 0.0 42.08
Sko100f 149036 0.024 109.5 0.023 110.3 0.034 210.9 0.148 3.55 - - 0.0 28.31
Average 0.019 69.06 0.012 72.1 0.020 117.1 0.093 2.1 0.183 55.7 0.0 39.3

TABLE 11: Comparison with state-of-the-art parallel algorithms.

Instance BKS TLBO-RTS TB-MTS COSEARCH CPTS QAP-IPGA PABC-QAP
APD min. APD APD APD min. APD min. APD min.

Bur26d 3821225 0.0 9.2 0.0 0.0 0.0 0.4 0.0 14.7 0.0 0.2
Nug30 6124 0.0 14.8 0.0 0.0 0.0 1.7 0.0 28.6 0.0 0.03
Tai35b 283315445 0.0 22.4 0.0 0.0 0.0 2.4 0.820 33.3 0.0 0.01
Ste36c 8239110 0.0 24.1 0.0 0.0 0.0 2.5 0.0 34.7 0.0 0.08
Lipa50a 62093 0.0 68.8 0.0 0.0 0.0 11.2 0.840 35.5 0.0 0.23
Sko64 48498 0.0 119.3 0.004 0.003 0.0 42.9 0.350 44.1 0.0 2.4
Tai64c 1855928 0.0 117.7 0.0 0.0 0.0 20.6 0.0 44.2 0.0 0.08
Tai100a 21052466 0.596 483.3 0.814 0.544 0.589 261.2 0.893 52.1 0.644 172.9
Tai100b 1185996137 0.0 508.2 0.397 0.135 0.001 241.0 0.0 52.3 0.0 164.7
Sko100a 152002 0.003 594.3 0.073 0.054 0.0 304.8 0.290 52.4 0.008 170.5
Wil100 273038 0.0 482.6 0.035 0.009 0.0 316.6 0.0 52.7 0.036 10.35
Tai150b 498896643 0.015 428.5 1.128 0.439 0.076 1,549.4 0.790 57.3 0.074 277.7
Tho150 8133398 0.030 556.6 0.012 0.065 0.013 1,991.7 0.94 57.3 0.014 696.9
Tai256c 44759294 - - 0.270 - 0.136 7377.8 - - 0.096 1185.5
Average 0.049 263.8 0.195 0.098 0.058 866.1 0.385 43.1 0.059 191.5

5.5 Theoretical analysis of the proposed algorithms
ABC algorithms proposed in our study are hybrid meta-heuristic algorithms. These algorithms are non-
deterministic and they make use of probabilistic intelligent methods to search and obtain the best/optimal
solutions. Theoretically, there is no guarantee that the meta-heuristic algorithms will always return the
optimal solutions. However, the meta-heuristic algorithms are one of the best tools to deal with NP-Hard
problems in literature. With respect to the No Free Lunch Theorem (NFL), a particular meta-heuristic
may have promising results for a set of problems but the same algorithm may have poor performance
on a different set of problems [59]. Therefore, we know that developing a good algorithm for a specific
problem is not going to be a generalized solution for all classes of problems. In this sense, we propose
hybrid algorithms that can perform better and provide higher probabilities for obtaining the optimal
results.

The main drawback of the meta-heuristic algorithms is that they execute numerous evaluations for each
new solution that is generated during the optimization process. Increasing the speed of these calculations
by using dynamic programming and parallel computation techniques ensure that the proposed algorithm
will explore/exploit more of the search space and thus have a higher chance of finding better results in
the same amount of time.

Termination criterion and the parameter settings of the proposed algorithms are crucial issues to be
discussed in our study. Of course, running the algorithms with higher number of iterations provides a
higher chance for finding better solutions. However, being stuck around local optima and the effect
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of well-tuned parameter settings are the most important factors of meta-heuristic algorithms when
increasing the number of iterations. In order to provide a mechanism to avoid being stuck at the
local optima, we develop a parallel version of the algorithm. By this way, processors are working on
diversified parts of the problem. This technique reduces the possibility of our algorithm getting stuck
at local optima. A substantial improvement is observed in our solutions. Tuning the parameters can be
considered as another important problem of meta-heuristic optimization algorithms. Simple parameter
tuning techniques can provide significant improvements for these algorithms.

6 Conclusions and future work
In this study, we present novel ABC optimization algorithms for the optimization of the QAP. ABC meta-
heuristic is observed to perform well for the solution of the QAP. Large problem instances of the QAP
are still challenging. Therefore, we need to develop a parallel (MPI) version of the ABC algorithm. A
distributed memory parallel version of the ABC is proposed. A state-of-the-art trajectory optimization
method, Tabu search, is adapted for the exploration and exploitation of the ABC algorithms. Tabu list and
aspiration values of this local search method are tuned during our experiments for better optimization
results. Majority of the benchmark problem instances are solved optimally with the new ABC algorithms.
By providing a good balance between exploration and exploitation phases, better results are reported.

There are still good opportunities to obtain better results with higher number of processors, better
tuned parameters or new introduced meta-heuristic techniques. As future work, we plan to apply ABC
for the other well-known combinatorial problem instances. There are many meta-heuristics introduced
recently. Applying parallel computation and tuning their parameters in run-time can be interesting and
has potential to improve the solution of existing NP-Hard combinatorial problems. Black box optimization
function is an effective tool to evaluate the performance of the new algorithms. It consists of a wide range
of benchmark problems. We plan to use this tool to evaluate the performance of our new hybrid algorithm
on different problem domains.
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