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Abstract

Conventional malicious webpage detection methods use blacklists in order to decide whether a webpage is malicious
or not. The blacklists are generally maintained by third party organizations. However, keeping a list of all malicious
web sites and updating this list regularly is not an easy task for the frequently changing and rapidly growing number
of webpages on the web. In this study, we propose a novel context-sensitive and keyword density based method for the
classification of webpages by using three supervised machine learning techniques, Support Vector Machine (SVM),
Maximum Entropy (MaxEnt), and Extreme Learning Machine (ELM). Features (words) of webpages are obtained
from HTML contents and information is extracted by using feature extraction methods: existence of words, keyword
frequencies, and keyword density techniques. The performance of proposed machine learning models are evaluated
by using a benchmark data set which consists of one hundred thousand webpages. Experimental results show that
the proposed method can detect malicious webpages with an accuracy of 98.24%, which is a significant improvement
compared to state-of-the-art approaches.

Keywords: Malicious, Webpage, Classification, SVM, Maximum Entropy, Extreme Learning Machines, Keyword
Density

1. Introduction

The Internet usage has become essential for our common daily activities such as shopping, education, and entertain-
ment. In accordance with the statistics of International Telecommunication Union (ITU), the number of individuals
using the Internet was over three billion throughout the world in 2015 [1]. Unfortunately, the huge number of users of
the Internet and its facilities may cause great danger in security because of cyber criminal activities. Webpages used
to have static HTML content but now they include technologies that interact with users. This situation may cause
significant risks in online security of the computers.

Webpages containing threats for users are called malicious webpages and the most important security threats
included in these pages are Phishing and Cross Site Scripting (XSS). Phishing (Fishing), is an attempt to obtain
personal information of the Internet users by making use of social engineering. Malicious webpages that use phishing
try to steal user names, passwords, e-mail addresses, phone numbers, photos, social security numbers and even credit
card details of victims [2]. The operation mechanism of phishing is based on impersonating another user and/or
official web site. For example, webpages may include links to web sites different from where the user thinks he/she
is reaching. These links can download a harmful executable to victims’ computers or can open another malicious or
undesirable document. The phishing webpages may request personal information and users can be easily deceived
(see Figure 1). The users may be exposed to fake advertising and counterfeit products purchases because of the
fake webpages. If the user buys a product, the sold item can be an imitation, an illegal one or even an empty box.
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The technique, XSS, gives opportunities to attackers to inject malicious code into webpages. After the injection,
the victim’s browser/computer becomes vulnerable to further attacks and/or sensitive information leaks [3]. It has
become a major issue especially after the advances in webpage design by using the scripting technologies. The drive-
by-download techniques make the web service development easier, powerful and flexible [4]. However, the power and
flexibility in recent webpages provides a new tool that can be misused by attackers. A recent study shows that there
are too many malicious webpages in search results [5]. Because of their importance , variety, and intensity, filtering
malicious webpages has become an important research topic.

Figure 1: Flow of Phishing process [6]

In order to handle this problem, various solutions have been proposed. The most widely known technique is the
blacklist approach. Browsers and security tools have these lists that contain malicious web domains and URLs. If
a requested URL is found on the blacklist of Google Safe Browsing, browser does not accept the page. However,
blacklist approach has deficiencies; (1) the lists include only the crawled webpages, (2) crawlers can not reach in-
tranets, (3) crawled pages may be hacked after the crawling, (4) they need a malicious webpage detection mechanism
or human assistance during the production of the list [7]. The second method is the creation of honeypots with Vir-
tual Machines (VM). By using VM environments, visiting a webpage is simulated and its effects may be observed.
It is a successful method but not efficient due to its high execution time. Therefore, this method may help creation
of blacklists but it is not a suitable real time classification processes [8]. The third method is signature check that
is implemented only for classifying executable codes, not for phishing or scripting. Its performance is not good [9]
[10]. Recent studies have focused on automated solutions using Machine Learning (ML) methods. In this study, we
propose novel context-sensitive and keyword density based supervised ML algorithms using Support Vector Machine
(SVM), Maximum Entropy (MaxEnt), and Extreme Learning Machine (ELM).

Since it is easy to prepare data and training is fast with a small number of features, non-content based features
have been preferred generally on malicious webpage detection with ML techniques. However, in our opinion, each
word of an HTML content can provide some clues about the behavior of the webpage. Therefore, we focus on the
content of the webpages rather than adding other features like URLs, screen-shots, DNS server relationships etc.
These mentioned features may have totally different characteristics/semantics and they may degrade the expected
results. By considering the data as not only a text but also a webpage, we propose a new method (keyword density)
for deciding weights of features while the other studies use conventional methods, existence or frequency of keywords.
In addition to feature modifications, we study the ML techniques, SVM, MaxEnt, and ELM.

SVM has been used in most of the related works and proved its success on text classification. We propose MaxEnt
because of its success on document classification [11] [12] and it has not been implemented for any malicious webpage
detection study until now. ELM provides faster learning speed and less human intervention than SVM [13] [14]. We
study with ELM because of its learning speed with 100 thousand webpages and 800 thousand features. By increasing
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the efforts on data processing phase, we are able to increase the accuracy level of detecting the malicious webpages
up to 98.28% true positive ratio [10]. Even the most successful recent studies provide 97.8% true positive ratio with
2.2% false positive. Therefore, our method can be reported among the best performing state-of-the-art approaches.

The outline of the study is as follows. In section 2, we explain related works about malicious webpage detection
studies. In section 3, we give an overview of the supervised ML techniques used in this study. Section 4 presents infor-
mation about the experimental setup, data preparation and the observed performances of the proposed ML algorithms.
Finally, we give our concluding remarks and future work in Section 5.

2. Related Work

In this section, we give information about the related studies and existing approaches to detect malicious webpages.
This summary combines utterly diverse concepts which have different evolution processes, usage areas, history, and
effect types. We explain related works of each sub topic in four different parts:

(1) Malicious Webpage Identification and Detection without Using Machine Learning Techniques: Chen and Guo
show that phishing emerges as a recent type of network attack using webpages that cheats users in order to reach
personal information in 1990s [15]. They suggest an end-host based anti-phishing algorithm to detect and prevent
phishing attacks by using generic characteristics of the hyperlinks. They successfully detect 195 out of 203 phishing
e-mail attacks. Moshchuk et al. design a proxy-based anti-malware tool that uses Virtual Machines (VM) [16][14].
User reaches the webpage after the tool renders it in a VM. Execution-based detection is a new approach instead of
signature control of other anti-malware tools. Invernizzi et al. do not filter webpages in client side in run-time [17] [18]
[19], instead, they focus on crawling malicious webpages. Therefore, they search the web by starting from a known
malicious webpage and crawl only malicious ones by comparing with an initial seed. These studies put forward the
importance of malicious webpage problem and provide different perspectives for the solution of the problem.

(2) Document and Webpage Classification (Web Filtering) Using ML with Content Features: Malicious webpage
detection may be thought as a sub class of document classification and webpage filtering. There are too many studies
related with these topics but we choose to focus on three of them because of their high correlation with our study.
Nigam et al. propose a Maximum Entropy usage in text classification because of its similarity with language modeling,
part-of-speech tagging and text segmentation [11]. They show that Maximum Entropy is a valid technique for text
classification for obtaining better results in some conditions when compared with Naive Bayes. Pang et al. publish a
research about binary classification of documents and it attracted so much attention [12]. The study compares three
successful ML techniques for sentiment classification of HTML documents. The performance of SVM, Maximum
Entropy, and Naive Bayes are similar. Chau and Chen focus on the search of related webpages and implement neural
network and SVM techniques with content and link features in order to be used for topic specific search engines [20].
They use HTML tags in order to decide the importance of words in a webpage document. Because, the location of the
words in an HTML document also provide considerable information. Similar to these studies, we extract valid ML
techniques and importance of HTML tags for the calculation of keyword density.

(3) Using Machine Learning with Non-Content Features: Malicious web sites include other common features as
well as content. There are studies that use the count or length of some static features because feature count is small
and execution times of classification are low when the count of items are selected as features. Six DNS and server
related features are used by Seifert et al. [21]. These features are the number of unique HTTP servers, redirects,
redirects to different countries, domain name extensions and unique DNS servers. Decision Tree ML technique is
used with nearly 20 thousand samples and resulted with 74.5% true positive and 97.4% true negative results. Seifert
et al. use eight different static features that are the numbers of applet and object tags, script tags, XML processing
instructions, frames and iFrames, indications of redirects, source script tags, functions that indicate script obfuscation,
visibility of iFrames [22]. Decision Tree ML technique is used with almost 22 thousand samples and resulted with
94.1% true positive and 53.8% true negative results. 171 features are used by [6]. 154 of them are counts of native
JavaScript functions such as abs(), acos(), apply(), etc. Nine of them are static features of HTML documents such
as word count, line count, symmetry of tags, etc. Eight of them are the counts of the use of ActiveX objects such
as Scripting.FileSystemObject, WScript.Shell, Adodb.Stream, etc. Naive Bayes, Decision Tree, SVM and Boosted
Decision Tree algorithms are trained and tested with almost 1,100 samples and Boosted Decision Tree showed best
results with 92.6% true positive and 92.4% true negative rates. 77 static features are used by Canali et al. [23]. 19
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of them are HTML related features such as iFrame tag count, hidden element count, the percentage of white spaces,
known malicious pattern count. 25 of them are JavaScript related features such as the number of occurrences of
eval(), setTimeOut(), setnterval() functions, number of built-in functions commonly used for obfuscation routine,
the number of long variable names, the number of string modification functions, etc. 33 of them are URL link and
host features such as suspicious URL pattern count, presence of IP address, presence of sub-domain, value of TTL,
registration date, etc. SVM, Random Tree, Random Forest, Naive Bayes, Logistic, J48 and Bayes Net are used with
almost 200 thousand samples. As a result, 94.5% true positive and 95.8% true negative results were obtained. 39 static
features are used by [4]. Ten of them are URL features such as number of words, length of hostname, etc. 29 of them
are page content related features such as applet count, embedded script count, abnormal visibility style, etc. SVM,
Decision Tree, Naive Bayes, KNN and ANN are used with almost 30 thousand benign samples. As a result, 96.01%
accuracy is obtained with ANN. These studies are related with our study considering the problem and the sample data
sets. However, feature set size and the characteristics, algorithms and experiment processes are completely different.

(4) Using Machine Learning with Content Features: The most recent studies are listed in this part. Bannur et al.
use conventional URL features, number of page links, semantic, and visual features of web contents [8]. They choose
to implement SVM and Logistic Regression ML methods. They decrease the error rate down to 1.9% with SVM.
Abbasi et al. put forward a similar research with medical webpages [24]. Their study is rich in classification method
varieties because they implement 21 classification methods. Graph-based methods are listed from the most successful
to the least successful as RTL-GC, QoC, Mass Estimation, QoL, TrustDistrust, TrustRank, AntiTrustRank, BadRank,
Cautious Surf, PageRank, and ParentPenalty. On the other side, content-based methods are RTL-CC, AZProtect,
SVM-Linear, Logistic Regression, SVM-RBF, SVM-Poly, Bayes Network, Neural Network, C4.5 and Naive Bayes
sequentially. Last related study is done by Kazemian and Ahmed [10]. They use URL, page links, semantic and
visual features together as previous studies did. They employ three supervised ML techniques KNN, SVM, and Naive
Bayes, and two unsupervised ML techniques K-Means and Affinity Propagation. Their study proposes that RBF-
SVM technique is the best one with the whole feature types. The true positive ratio is 97.8% and true negative ratio is
55.1%.

Non-content features have been preferred generally for malicious webpage detection with ML techniques. There
are two main reasons; easy data preparation and fast training with small size of features. However, each word of an
HTML content may give a clue about the meaning and behavior of web sites. Therefore, in this study, we focus on the
content of the webpages. We do not prefer adding other features like URLS, screen-shots, DNS server relationships
etc. These features have totally different characteristics and they may distort the expected results. By considering
the data as not only a text but also as a webpage, we propose a new methodology (keyword density) for deciding
weights of features while the other studies use conventional methods, existence or frequency of keywords. In addition
to feature modifications, we work with different ML techniques, Maximum Entropy (MaxEnt) and Extreme Learning
Machine (ELM). We propose MaxEnt because of its success on document classification [11] [12] and it has not been
implemented for any malicious webpage detection study until now. Secondly, ELM provides faster learning speed
and less human interference is required than SVM [13]. We study with ELM because of its learning speed (there are
approximately 800 thousand features and 100 thousand webpages). Third ML technique is SVM that has been used in
most of the related works and proved its success. Our aim by using SVM is that it can be a base classification technique
in order to obtain meaningful comparison with less studied ML techniques, MaxEnt and ELM. Last contribution of
this study is the accuracy level of the obtained results. By increasing the efforts on data processing step phase, we
achieve to improve the level of accuracy, even when compared to a recent and similar study by [10] which has achived
97.8% true positive ratio with 2.2% false positive.



3. Applied Machine Learning Models

In this section, we give an overview of the supervised ML techniques used in this study. The first ML technique
is Support Vector Machine (SVM) which has been widely used in the literature for malicious web page detection.
Second one is Maximum Entropy (MaxEnt) which has never been used for malicious web page detection before but
it is reported in the literature with very good results provided for document and web page classification. Third one
is Extreme Learning Machine (ELM) which has never been used for web page classification even though its learning
speed is very high. SVM obtains the best results compared to most of the recent/popular classification models such as
Logistic Regression (LR), Bayes Network, Neural Network, Naive Bayes, K-Nearest Neighbors, K-Means, Affinity
Propagation etc. Therefore, SVM can be reported as one of the best binary classification methods by producing best
results in similar malicious webpage detection studies [8] [10]. Besides, we intend to experiment with previously
unused techniques, MaxEnt and ELM. Although rationale behind these three supervised ML techniques are quite
different, the reasons for using them can be summarized with their efficiencies and similar uses in previous studies.
MaxEnt has been shown to be an effective method on text categorization and document classification but it has not
been used for webpage classification so far [12]. ELM is a popular classification method and very suitable for text
classification because of its learning speed and it has not been used as a web content classification tool either [25].

3.1. Support Vector Machines (SVM)

SVM is one of the most widely used data classification techniques for binary classification of high dimensional
data. The concept of SVM is introduced by Boser et al. [26]. SVM is a binary classification technique that finds op-
timal margin between the training patterns and the decision boundary on separable data. Costes and Vapnik designed
the present and more convenient form of SVM for non-separable data [27]. The main target of the SVM model is to
determine an optimal hyperplane which separates the examples of different classes for given training data points. The
decision hyperplane is constructed by maximizing the distance of hyperplane and the nearest examples from different
classes that are called support vectors. SVM can be formulated as given below [28]:
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Training vectors x; are mapped into a higher dimensional space by using the function ¢. SVM produces a hy-
perplane with the maximal margin in this space. Lastly, C is the penalty parameter and K(x;, x;) = ¢(x;)" ¢(x;) is
the kernel function. The kernel function of SVM is important in many cases because it is crucial for non-separable
patterns. If a pattern has separable data, SVM can find an optimal hyperplane between two classes easily. However, if
the pattern is non-separable, SVM needs to map the current data into new space by transformations in order to make
the current pattern separable. The transformation is processed with a predefined Kernel Function.

Mostly used kernel functions are Radial Basis Function (RBF), Linear, Sigmoid and Polynomial. In this study we
prefer Linear and RBF functions Linear Function Radial Basis Function(RBF). Because RBF is the most popular and
commonly used function for SVM and Linear function is suggested for solving large-scale classification problems
such as text classification [29].

K(x;, x)) = x] x; (Linear Function)

K(x;, xj) = exp(=yllx; — xj||2) ,y>0 (Radial Basis Function(RBF))



3.2. Maximum Entropy (MaxEnt)

MaxEnt is a statistical classification modeling technique which was introduced by Berger et al. (1996) [30] in
order to solve several natural language processing problems. Since then, the method has been used for lots of text
classification studies [11] [12] [31] [32] (see Figure 2).
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Figure 2: Maximum Entropy Model

Training data include relationship information between features and class types. The maximum entropy model
uses these relationships in order to estimate probabilities. If training data is a text, this algorithm models conditional
distribution of the words of texts in classes. Probabilistic distribution of a text classification model is computed as
given in [30] :

1
pleld) = Zexp() aifid,e) @)

where Z(d) in Equation 2 is a partition function which makes normalization. It is computed as:

2(d) = ) exp() | aifi(d,c)) 3)

In Equations 2 and 3, ¢ indicates class type, d indicates document. The parameter «; refers weight of feature and
it must be learned by estimation. Various estimation algorithms could be used for this step such as Limited-Memory
Variable Metric (L-BFGS) [33], Orthant Wise Limited-memory Quasi Newton (OWLQN) or Stochastic Gradient
Descent (SGD) [34]. fi(d,c) indicates the impact of a feature i. The impact of the function could has binary or
positive integer value. While binary value is used for occurrence of a word in text, integer value could give more
information such as frequency of word. More precisely the function is formulated as [32]:

o {o, ifc # ¢/ @
e\ €) =4 N(dw) .
N otherwise

where N(d,w) in Equation 4 is the density of word w in document d and N(d) is the total density of words d.

3.3. Extreme Learning Machine (ELM)

ELM is a learning algorithm for single-hidden layer feed-forward neural networks (SLEN) (see Figure 3 for SLFN)
[25]. The main deficiency of feed-forward neural networks is the slowness problem because of slow gradient-based
algorithms used in training step and tuning operation of all the parameters of the network iteratively. In order to handle
this bottleneck, Huang et al. developed an algorithm that chooses the input weights randomly and decides analytically
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Figure 3: Single-hidden layer feed-forward network.

the output weights in order to obtain best generalization performance with extremely fast learning speed [13][25] [35]

The output of SLFN having L number of hidden nodes can be represented with the formula below;

L
fL(x) = ZﬁiG(ai, bi, x), X € Rn, a; € R" (5)
i=1

where learning parameters of hidden nodes are @; and b; and g; is the connection weight between the ith hidden
node and the output node. G(a;, b;, x) is the output of the hidden node with the input x. Generally, the additive hidden
node based on activation function is g(x) : R — R. G(a;, b;, x) is given by

G((li, bi, )C) = g(ai.x + b,‘), b,’ S R, (6)

where a;.x represents the inner product of a; € R" and x € R" vectors. For the training samples {(x;, t,-)}f; , C
R" x R™, if output of the network is equal to the targets, we have

L
Julxy) = Z:Big(ai~xj +b)=t,j=1,..,.N 7
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Equation 7 could be written as:
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where H is the hidden layer output matrix of the SLFN, the ith column of H is the jth hidden node output that is
relevant to the input xy, x, ..., xy. A(x) is the hidden layer feature mapping. h(x;) is relevant to the the ith input x;. It
has been proved, if the activation function G is infinitely differentiable in any interval then the hidden layer parameters
could be randomly generated [35].

3.4. Implementation of the Machine Learning techniques

There are some important issues that have significant influence on SVM performance/results [28]. First issue is
scaling. If data is not scaled, greater numeric ranges may dominate smaller numeric ranges. Therefore, scaling ranges
[-1,+1] and [0,1] are generally suggested and the range [0,1] is used in our study. Second issue is the model selection.
RBF Kernel is suggested as the first choice because of its accuracy and popularity for SVM. Besides, Linear-SVM is
also suggested for text classification with its speed and convenience for large-scale data. Codes of LIBSVM [36] for
RBF-SVM and LIBLINEAR [37] for Linear-SVM are used in the experiments.

The last issue is finding the best parameters for these models. In order to handle this issue, we use cross-validation
and grid-search solution. Basically, we divide our training set into five subsets and use four of them for training
and one of them for testing with various pairs of parameters. After that, we chose C for Linear-SVM and (C, y) for
RBF-SVM which belongs to the best accuracy on grid-searches. They are 32,64, 64,128, 32 for Linear-SVM and
(128.0,0.125), (8, 8), (8, 8), (32, 8), (8, 8) for RBF-SVM in order to model training set sizes 500, 2500, 5000, 25000,
and 50000 respectively. All values are powers of two because parsed values in grid are 275,273, ..., 2" for C and
2715271323 for y. After the parameters are obtained, models are created for each algorithm and training set.
Feature vectors of each webpage are predicted with created model and predictions are saved. In the final phase, we
obtain true positive, false positive, true negative and false negative ratios by comparing actual results and predicted
results of webpages.

Maximum Entropy Settings : A MaxEnt classification library MAXENT that is implemented at Tsujii Laboratory
in University of Tokyo [38] is used in our study. The library supports L1 and L2 regularization. Besides, OWLQN,
LBFGS and SGD algorithm are used for optimization. First, we need to update input sets because the values of the
method should be integers in range [0,255]. Binary representation is not a problem but other types of inputs including
floats are scaled again. As recommended, we execute L1 regularization with OWLQN and L2 regularization with
LBFGS. Iteration count is selected as 300. Bigger iteration counts consume more computation time and increases
accuracy. This program, firstly, saves all training data in a model. Then, it performs training and checks test set like
SVM. As a result, models are saved in order to use again and also true positive, false positive, true negative and false
negative ratios are obtained. Models of this algorithm include actively used features and their effects with a list as
given in Table 1.

Extreme Learning Machine Settings : ELM implementation used in the experiments is obtained from the web
site of Nanyang Technological University [39]. Samples of this library suggests random data selection and more
than one trial for each data set because each trial gives different results which is caused by random input weights on
decision of output weights. Random selection of data samples is unnecessary for our problem because we already
created different size sample sets. On the other hand, we get average performance for 50 trials of each sample set as
recommended. The library is implemented for small size feature sets. However, feature set size is very large in our
problem so that matrix is very big and sparse. Therefore, we modify the source code by using sparse matrices. We
obtain averages of true positive, false positive, true negative and false negative ratios in 50 trials results.



Table 1: Small part of MaxEnt model.

Class Label | Feature ID | Lambda Weight of Feature
0 10496 0.122787
1 1052 -0.220663
0 1052 0.220663
1 1060 -0.043466
0 1060 0.043466
0 10730 0.033599
0 1076 0.118291
1 11 0.004689
0 11 -0.004689
0 1102 0.092983
1 1103 -0.317303

4. Data Preparation and Performance Evaluation of the Proposed Algorithms

In this section, experimental setup, data preparation and the observed performances of the proposed Machine Learning
(ML) algorithms are presented. Data preparation tasks and the experiments are carried out on an Intel Core 15-4570
3.20 GHz computer having 8 GB RAM.

4.1. Preparation of the data to be used in the machine learning models

Two data sets are used in this study, Phistank (2016) [40] for malicious web sites and Alexa (2016) [41] for safe
(benign) web sites. Both of the data sets have been used by most of the recent studies [4] [10] [17]. Phistank is a
community site to submit, verify, track, and share phishing data. The community provides current malicious web site
list of URLs. Alexa is an analytic tool and provides a list of top ranked one million web site URLs. We assume that
pages of Alexa are benign because they are extremely popular and top ranked pages over the world. These data sets
provide us two hundred thousand of the benign page URLs. Details of the data sets are given in Table 2.

Counts Malicious | Safe(Benign)
URL 28848 200000
Crawled Webpage 26039 181665
English Webpage 20799 99974

Table 2: Details of the data sets used in the experiments [40][41].

Data preparation is a time consuming process of data mining. First, we extract meaningful data from the web-
pages. In order to handle this issue in a short time and with least error rate, we use a keyword density extractor library
designed by Comodo Group ® [42]. Although the preparation of the data is not the main focus of our study, we observe
that the data preparation phase before processing with machine learning techniques can be a time consuming process.
Parallel computing and big data processing techniques can be efficiently used in this area. The data preparation tasks
are explained in the following parts.

In the crawling step, 28,848 malicious and 200 thousand benign URLSs are used in order to request HTML contents
of the webpages. However, significant part of them are eliminated as shown in Table 2 (9% of the URLSs are eliminated
because thay are not reachable). Language detection is executed by JLangDetect [43] on crawled HTML contents and
42% of them are filtered since their language is not English or word count is smaller than five. If there is not sufficient
content, both language detection and classification with content are meaningless issues. At the end of the crawling
step, we obtain 20,799 malicious and 99,974 benign English webpage HTML content saved in text files. Getting the



HTML content of web sites, saving them to text files, detecting of their language, and delay of unreachable URLs take
hours of computation even with 20 second timeout limit used for unreachable URLs.

We examine HTML content of webpages in order to extract keywords. In order to obtain correct feature set, these
contents are parsed and conventional content processing methods are used. Implemented processes can be summarized
as below:

Article Extraction: Webpages may contain both valuable information and irrelevant texts. Article extraction helps
obtaining only valuable information from a webpage. In order to filter irrelevant texts, it removes navigation links,
advertisements, menu items, selection items, videos, images etc.

Removing Some Special Characters: Removal of special characters, punctuations, apostrophes, words containing
only one or two characters etc. increase clearness of text analyzing.

Stemming: This process is summarized briefly as reducing derived or inflected words in order to obtain base form
of the word. For instance, ’stems’, ’stemmer’, stemming’ and ’stemmed’ have same root ’stem’ so each of them can
be considered as root word.

Stop Word Elimination: generally refers to most common words in a language. Using them in text processing
does not express a meaning. Some example stop words are 'but’, ’are’, ’some’, 'the’, 'who’, ’and’, ’etc’.

The second issue of feature extraction is scoring. Recent studies generally use binary representation or TF-IDF
because they are simple methods and they present satisfying results for text classification. However, webpages have
more features than a regular text such as HTML tags so we obtain keyword frequencies of the HTML contents and
compare them with conventional methods. In other words, we prefer to use both Binary Representation, TF-IDF and
Keyword Density.

Binary Representation: This feature type is only interested in a keyword that occurs in a text or not. If the text
T contains the keyword k, value of feature k in the feature vector of 7 is 1. Otherwise, its value is 0. This method is
easy and efficient in size and time when values are binary.

Keyword Frequency and TF-IDF: Frequency of a word shows its importance in the text. However, some words

create noise like stop words. Therefore, Term Frequency Inverse Document Frequency (TF-IDF) is one of the mostly
used approaches in text mining rather than Term Frequency (TF). TF-IDF is the division of term frequency which is
the frequency of the word within the document. It is used to inverse the document frequency which is the number of
documents containing that word. This approach helps highlighting words that occur rarely in all data set but frequently
in the document [8].
For a keyword frequency instance, Wikipedia keyword extraction link (https:// en. wikipedia. org/ wiki/ Key-
word_extraction) is analyzed and 159 keywords are extracted. Frequencies of the top ranked ten keywords are listed
in Table 3. According to the Table, languag’, ’"document’, 'method’, *process’ and ’text’ keywords are more relevant
with this webpage although frequency of "term’ is higher than their frequencies.

Rank | Keyword | TF TF-IDF
1 keyword | 14 | 0.00706714
2 extract 9 | 0.01345291
3 wikipedia | 8 | 0.02346041
4 method 6 | 0.00215750
5 term 5 | 0.00017319
6 languag 4 | 0.00048309
7 text 4 | 0.00090930
8 assign 3 | 0.00262467
9 document | 3 | 0.00029898
10 process 3 | 0.00046418

Table 3: Top ten Keyword Frequencies of a Wikipedia Webpage

Keyword Density: is a successful and commonly used feature for document classification but HTML contents
include more valuable properties. Title, meta keywords, headers and other HTML tags are some of these valuable
information holders. It is clear that a word found in header or title is more valuable than a word in text body. We an-
alyze HTML content of a webpage considering tags of HTML, and score each keyword by considering its frequency
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and tags. This score is used as density in the rest of this study.

Rank | Keyword | Density Score | Density Ratio
1 keyword 117.2 0.12752587
2 extract 111.5 0.12129783
3 edit 33.1 0.03600859
4 assign 27.3 0.02969893
5 languag 27.1 0.02948135
6 term 21.3 0.02317169
7 text 18.2 0.01979928
8 method 18.2 0.01979928
9 search 18.1 0.01969050
10 process 18.1 0.01969050

Table 4: Top 10 Keyword Densities of a Wikipedia Webpage

Feature Set Generation: In order to generate feature vectors, a feature set should be defined so that all keywords
in feature files and document frequencies of them are saved. The most time consuming step is the construction of this
table because of the large number of select and update transactions on the database. After all keywords are obtained,
the table is simplified to keep only small and meaningful sets. As a result, we create five tables, one of them keeps all
keywords which are found in keywords of one hundred thousand webpages and four of them are simplified versions
of the all keywords table as shown in ER Diagram (see Figure 4).

allkeywords
keyword(PK®)
documentfrequency

Isuhset of

—-I-—subset of ————

——— subset ofI subset of

featureset25 featureset50 featureset100 featureset200
featureid featureid featureid featureid
keyword keyword keyword keyword
documentfrequency documentfrequency documentfrequency | |documentfrequency

Figure 4: Entity Relationship Diagram

allkeywords table: is created by using the words used in all webpages and the table contains 800 thousand
items. Each row keeps a unique keyword which will be used as feature and its document frequency. In order to
decrease effort, this step could be handled by using a predefined common English keywords list instead of composing
“allkeywords’ table but self constructed table contains lots of words which are not contained in English dictionary but
exist in web. Sample row from the table shows that download keyword is found in 17,162 distinct documents as a
keyword.

featuresetN tables: The whole rows in the allkeywords table are not considered as features because the table
includes words with spelling errors, concatenated words, and language interfere such as ’installatiebedrijf’, *'moving-
forwardtrademarklogo’, ’strategisch’. Luckily, frequencies of such problematic words give a clue about their validity.
In order to handle this problem, feature sets are created by simplifying allkeywords table. In other words, the fea-
ture set tables are subsets of allkeywords table. They are simplified tables containing the keywords whose document
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frequencies are above the threshold n. We create and use featureset25, featureset50, featureset100, and featureset200
tables which contain 33148, 20638, 12988 and 8288 rows respectively. Each row indicates a feature by keeping id,
keyword and document frequency.

Conversion into Feature Vectors: Last step is the expression of each webpage as feature vector in order to use on
ML methods. On this step, we create three vectors for each webpage; existence based, TF-IDF based and keyword
density based. All feature vectors contain maximum 100 features in order to reduce data size. Existence based feature
vectors keep only distinct first 100 keywords in text because we do not have more meaningful data due to binary
representation. TF-IDF based feature vectors contain top ranked 100 TF-IDF scores per webpage. Similarly, KD
based feature vectors contains ratios of top ranked 100 keyword density for each webpage. Lastly, TF-IDF values are
scaled to [0,1]. Existence values do not need scaling because their value set is 0,1. Also, keyword density ratio values
do not need to be scaled since these values are already in range [0,1].

4.2. The performance evaluation of the Machine Learning algorithms

In this part of the experiments, supervised machine learning methods, SVM, ELM, and MaxEnt are executed with
a benchmark for the detection of malicious webpages. For this process, we use extracted feature vectors for training
and testing data sets. For the evaluation of these ML methods, models are created with training sets and class labels
of test sets are predicted with a created model as given in Figure 5. The performance of algorithms are examined in
the following parts.

Web Page Feature

Documents : Vectors
[ Supervised

Machine
Learning
— Labels Model

— 1 |(Malicious, Safe)

:I_‘

]

Single
Web Page Expected
Document Label

Feature Vector

[

Figure 5: Supervised Machine Learning Model

The Effect of Data Set Size for the Machine Learning algorithms: Machine learning methods are executed with
different data set sizes that are randomly selected as 20 thousand malicious and 80 thousand safe webpages. Properties
of the data sets are described in Table 5.

Although researches show that the percentage of malicious webpages in the real world is roughly 0.1% [17], this
percentage is not suitable to generate a predictive model with ML algorithms during the experiments. Therefore,
we use 20% malicious webpages in our data set. 50% of the webpages are used for training and other half is used
for testing. The same ratio of malicious webpages to safe webpages is used in testing and training sets. Keywords
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1000 | 5000 | 10000 | 50000 | 100000
Fold count 100 20 10 2 1
Train set size 500 | 2500 | 5000 | 25000 | 50000
Test set size 500 | 2500 | 5000 | 25000 | 50000
Malicious count | 100 500 1000 5000 10000
Safe count 400 | 2000 | 4000 | 20000 | 40000

Table 5: Properties of input sets

density percentages in webpages are used as features so that feature values are between [0.0, 1.0] and their sum is
1 for each webpage feature vector. Feature vector size is limited with maximum weighted 100 features for each
webpage. Besides, used feature set, featureset25, includes the features whose document numbers are bigger than 25.
Averages of accuracies are listed in Table 6 where the accuracy is defined as successfully labeled webpages divided
by all webpages.

1000 | 5000 | 10000 | 50000 | 100000
RBF-SVM 94.60 | 97.24 | 97.44 | 98.24 | 98.01
Linear-SVM | 94.80 | 97.36 | 97,26 | 97.75 | 97.55

ME-LI 94.80 | 96.56 | 96.72 | 97.33 | 96.94
ME-L2 95.00 | 96.72 | 97.20 | 97.28 | 96.81
ELM 87.29 | 88.26 | 88.13 | 88.74 | 88.05

Table 6: The Effect of Data Set Size and ML Algorithms on Accuracy percentage. Numbers in the column headings show the size
of the data sets

Results are obtained by getting average accuracies of n different parts of 100000/n data sets. For instance, different
10 tests are done with the data including 10 thousand sample and averages are listed on the Table 6. We compare the
algorithms with 50 thousand samples because most successful results are obtained with this sample size. Their accu-
racies percentages in descending order are RBF-SVM (98,24), Linear-SVM (97,75), MaxEnt-L1 (97,33), MaxEnt-L2
(97,28) and ELM (88,74).

Another concern for a successful detection is the confusion matrix that is used for describing the performances
of implemented classification models. It contains not only successfully detected malicious webpage percentage but
also the percentages of mislabeled webpages. False positive rate is an important value in this study. In Figure 6, the
confusion matrix gives four sections. True positive section indicates the percentage of successfully detected malicious
webpages. True negative section indicates the percentage of successfully detected safe webpages. False positive
represents that safe webpages labeled as malicious incorrectly. False negative represents that malicious webpages
labeled as safe incorrectly.

The success of the algorithm is determined with high True Positive (TP) and low False Positive (FP) ratios. Their
TP ratios, also called recalls, in descending order is MaxEnt-L.1 (94,68), MaxEnt-L2 (94,36), Linear-SVM (94,08),
RBF-SVM (93,22) and ELM (48,93). On the other side, their FP ratios in ascending order is RBF-SVM (0.50), ELM
(1.31), Linear-SVM (1.33), MaxEnt-L2 (1.99) and MaxEnt-L1. Even FP ratio of ELM is low, it does not show success
of this method due to the very low TP ratio.

4.3. The effect of feature type

One of the biggest contributions of this study is the selection of feature type. The other studies generally use
binary representation or TF-IDF. In addition to these conventional methods, we try to represent results of keyword
densities. In this section, we compare their performances. These experiments are conducted with ten fold data sets
including ten thousand samples that contain five thousand training and five thousand test samples. These tests are
executed with Linear-SVM and MaxEnt-L1 algorithms.

Feature vector sizes are limited with 100 features which are scaled into [0,1] for each webpage. According to the
Tables 7 and 8, Keyword Density is the best option as accuracy, result and f-measure and gaps are very small with
binary representation.

13



M

Actual
Value

M

Actual
Value

S

L2 Reg MaxEnt-Prediction

M

Actual
Value

Prediction

Malicious Safe

True False
Positive Negative

False True
Positive Negative

Linear-SVM-Prediction

Malicious Safe
94 08 5.92
1.33 98.67

Malicious Safe
94.36 5.64
1.99 98.01

M

Actual
Value

L1 Reg MaxEnt-Prediction

M

Actual
Value

S

M

Actual
Value

RBF-SVM-Prediction

Malicious Safe
9322 6.78
0.50 99.50

Malicious Safe
94.68 5.32
2.01 97.99
ELM-Prediction

Malicious Safe
4893 51.07
1.31 98.69

Figure 6: Confusion Matrix of the algorithms for 50 thousand webpages
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Linear-SVM Accuracy(%) | TP(%) | TN(%) | FP(%) | FN(%)
Binary Representation 96.98 91.70 | 98.30 1.70 8.30
TF-IDF 96.12 84.00 | 99.15 0.85 3.88
Keyword Density 97.26 92.00 | 98.58 1.42 2.74
MaxEnt-L1 Accuracy(%) | TP(%) | TN(%) | FP(%) | FN(%)
Binary Representation 96.26 91.10 | 97.55 2.45 3.74
TF-IDF 93.18 90.90 | 93.75 6.25 6.82
Keyword Density 96.72 9240 | 97.80 2.20 3.28

Table 7: The Effect of Feature Types on Accuracy

Linear-SVM Recall(%) | Precision(%) | F-Measure(%)
Binary Representation 91.70 93.10 92.39
TF-IDF 84.00 96.11 89.65
Keyword Density 92.00 94.19 93.08
MaxEnt-L1 Recall(%) | Precision(%) | F-Measure(%)
Binary Representation 91.10 90.29 90.69
TF-IDF 90.90 78.43 84.21
Keyword Density 92.40 91.30 91.85

Table 8: The Effect of Feature Types on Statistical Analysis

4.4. The effect of feature set size

We save extracted keywords from 10 thousand webpages in order to use them as our feature set. However, we
need to put a lower limit to their document frequencies due to the problematic words. In order to check efficiency of
this limit, different number of document frequency limits are put into the keywords Table and results are compared.
These experiments are conducted by ten fold data sets including ten thousand samples which contain five thousand
training and 5 thousand test samples. Feature vector sizes is limited with 100 features for each webpage. These
tests are executed with Linear-SVM and MaxEnt-L1 Regularization. All keywords Table (FeatureSet0) is reduced to
four Tables. As shown in Table 9, row count of these tables are decreased from 800 thousand to almost 8 thousand.
Average number of different features in vectors of training set, that is used for modeling, is also decreased five times.

Table Row Count | Number of Features
FeatureSetO 789,946 41,230
FeatureSet25 33,148 21,980
FeatureSet50 20,638 17,169
FeatureSet100 12,988 12,257
FeatureSet200 8,288 8,173

Table 9: Row counts and number of features for feature sets

According to the results in Tables 10 and 11, there is no difference on the accuracy of methods although feature
set size is significantly decreased. Equality on results despite of relatively feature count could be explained by active
feature count. Actually, even fewer features are used for classification actively. For example, due to the active feature
lists of MaxEnt-L.1 models approximately one thousand features are used for classification according to the Table 12
although training sets have up to 41,230 different features.

4.5. The execution time of the proposed algorithms

In this section, we compare the execution times of ML algorithms on the data set having 5,000 training and 5,000
test feature vectors of web pages obtained by using featureset200 and having a 1:4 ratio of malicious to safe web
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Linear-SVM | Accuracy(%) | TP(%) | TN(%) | FP(%) | FN(%)
FeatureSetO 97.34 89.50 99.30 0.70 10.50
FeatureSet25 97.26 92.00 | 98.58 1.42 8.00
FeatureSet50 97.30 89.80 | 99.18 0.82 10.20
FeatureSet100 97.34 89.90 | 99.20 0.80 10.10
FeatureSet200 97.00 88.10 | 99.23 0.77 11.90
MaxEnt-L1 Accuracy(%) | TP(%) | TN(%) | FP(%) | FN(%)
FeatureSet0 96.74 90.70 | 98.25 1.75 9.30
FeatureSet25 96.72 92.40 | 97.80 2.20 7.60
FeatureSet50 96.60 90.10 | 98.23 1.77 9.90
FeatureSet100 96.74 91.50 | 98.05 1.95 8.50
FeatureSet200 96.64 90.20 | 98.25 1.75 9.80

Table 10: The Effect of Feature Set Size on Accuracy

Linear-SVM | Recall(%) | Precision(%) | F-measure(%)
FeatureSetQ 89.50 96.97 93.09
FeatureSet25 92.00 94.19 93.08
FeatureSet50 89.80 96.48 93.02
FeatureSet100 89.90 96.56 93.11
FeatureSet200 88.10 96.62 92.16
MaxEnt-L.1 Recall(%) | Precision(%) | F-measure(%)
FeatureSetO 90.70 92.84 91.76
FeatureSet25 92.40 91.30 91.85
FeatureSet50 90.10 92.71 91.39
FeatureSet100 91.50 92.15 91.82
FeatureSet200 90.20 92.80 91.48

Table 11: The Effect of Feature Set Size on Statistical Analysis

Number of Features | Active Feature Count
FeatureSet0 41230 1008
FeatureSet25 21980 1048
FeatureSet50 17169 1060
FeatureSet100 12257 1059
FeatureSet200 8173 1071

Table 12: Active Feature Counts

pages. Since the execution times for larger data set sizes were prohibitely long (several days) we have limited our
experiment to 10,000 data items and featureset200.

As shown in Table 13, the best algorithms considering the execution time are Linear-SVM and ELM as expected.
MaxEnt with L1 shows a poor performance in training however, testing time is more important. Therefore, it can be
accepted as successful. Performances of RBF-SVM algorithm and MaxEnt with L2 are really problematic so using
them on a live system may not be suitable.

ME-L1 | ME-L2 | Linear-SVM | RBF-SVM | ELM
Training with 5000 samples 12.94 8.21 0.02 5.13 | 0.09
Testing with 5000 samples 0.54 3.49 0.03 4.01 | 0.04

Table 13: Execution time of the proposed ML algorithms (in seconds)
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4.6. Parameter settings of the proposed algorithms

In this part of our study, we present the parameter settings of our proposed algorithms in Tables 14, 15, 16, and

17.
Parameter Value
-s Type of solver | 2: L2-regularized L.2-loss support vector classification (primal)
-p epsilon the epsilon in loss function of epsilon-SVR (default 0.1)
-e epsilon tolerance of termination criterion (default 0.01)
-B bias if bias >= 0, instance X becomes [x; bias]; if < 0, no bias term added (default -1)
-c cost Calculated before training with cross validation and grid search method of LIBLINEAR [37]

Table 14: Parameter settings of Linear SVM

Parameter Value
-g gamma Calculated before training with cross validation and grid search of LIBSVM [36]
-c cost Calculated before training with cross validation and grid search of LIBSVM [36]
-S svm_type type of SVM (default 0: C-SVC)
-t kernel _type type of kernel function (default 2: radial basis function: exp(-gamma* |u — v|?))
-d degree degree in kernel function (default 3)
-r coef0 coef0 in kernel function (default 0)
-e epsilon tolerance of termination criterion (default 0.001)
-m cachesize cache memory size in MB (default 100)
-h shrinking whether to use the shrinking heuristics, 0 or 1 (default 1)
-b probability_estimates | whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)
-wi weight the parameter C of class i to weight*C, for C-SVC (default 1)
Table 15: Parameter settings of LIBSVM
Parameter Value
ELM_TYPE 1 (0 for regression; 1 for (both binary and multi-classes) classification)
Number of Hidden Neurons | 20
Activation Function ’sig’ for Sigmoidal function
Table 16: Parameter settings of ELM
Parameter Value
Optimization Algorithm Selection | OWLQN for L1, LBFGS for L2
Iteration Count 300

Table 17: Parameter settings of MaxEnt
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5. Conclusions and future work

In our opinion, that each word of a webpage gives important clues about the behavior and the content of webpages is
more important than its features that are based on URL and/or domain name for the detection of malicious webpages.
By making use of this idea, we propose a novel context-sensitive and keyword density based method for the classi-
fication of malicious webpages by using supervised Machine Learning techniques, Support Vector Machine (SVM),
Maximum Entropy (MaxEnt), and Extreme Learning Machine (ELM). SVM is a well-known and efficient ML method
for the text classification problems. MaxEnt is known to perform well on document classification and in this study,
it is being used in malicious webpage detection for the first time. ELM provides faster learning speed for very large
number of features (words). It can process on 800 thousand features and 100 thousand webpages very efficiently. By
focusing on much its efforts on data processing phase, we are able to improve the accuracy of detecting the malicious
webpages with up to 98.24% true positive ratio. Even the most successful recent work have reported 97.8% true
positive and 2.2% false positive ratios [10].

By examining the experimental results, SVM and MaxEnt provide similar success rates. RBF-SVM gets the best
accuracy with 98.24% and Linear-SVM, MaxEnt-L1, and MaxEnt-L2 methods closely follow RBF-SVM in terms
of accuracy. MaxEnt-L1 gets the best (true positive, true negative) pair with (94.68%, 97.99%) ratio, MaxEnt-L2,
Linear-SVM and RBF-SVM methods follow it. Considering the execution time, Linear-SVM, ELM and MaxEnt-L1
have similar execution times. Linear-SVM or MaxEnt-L1 show satisfactory results because of their high accuracies,
low false positive rates, and low execution times. We show that these two methods maintain their speed and accuracy
with large number of features and samples. The results of our study are significantly better than any reported method
in the literature. Most similar and recent study [10] gets (true positive, false positive) pairs in the following order RBF-
SVM (97.8%, 55.1%), Linear-SVM (92.4%, 83.2%), Nave Bayes (76.4%, 87.4%) and K-Nearest Neighbor (9.9%,
94.8%). Although, study of Kazemian and Ahmed uses additional features, URL, page link and visual, results of our
study are significantly better than it. The probable reason of this difference is preprocessing the content and feature
extraction issues.

Our contribution with this study can be summarized as below. Firstly, we clear up the keywords by using lots
of conventional methods such as stemming, article extraction, stemming character elimination etc. Secondly, our
study contributes a novel keyword extractor. While the conventional feature value types are binary representation
and TF-IDF on text classification studies, we also extract keyword densities of web pages and used them as features.
Feature value types do not affect very much hence keyword density shows the best results and TF-IDF shows the worst
performance. Therefore, we indicate that preprocessing of web pages should not be considered as only text processing.
Lastly, feature set elimination is applied because total feature count reaches almost eight hundred thousand keywords
and used feature count in the sample set exceeds forty thousand keywords. However, most of these features are
negligible because they are misspelled. In order to clean them, features existing in less than document frequency
threshold are removed. As a result, accuracy or true positive rate does not change although the total feature count has
been decreased from almost 800K to 8K, while in the experiments that we have performed a total of 8,000 features
have been used out of 40,000 resulting in great savings of processing time.

As future work, we plan to apply parallel computation methods for the data preparation phase of our proposed
malicious web site detection process. Therefore, more reliable data can be available and even better results will be
obtained with a higher speed. Another area of research can be application of new machine learning techniques such as
deep learning for the solution of this problem. A hybrid feature set system can be created including not only keyword
densities but also JavaScript functions, ActiveX objects, DNS-Server relationships, and URL features. Each feature
should be analyzed separately so that there is an additional work for weights of their effect on final decision. Feature
selection can be added to this study. Because we showed that even one thousand keywords are sufficient for the solu-
tion of the problem. Decrease in the feature set size will positively improve the execution time of the algorithms.
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