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Abstract

This study proposes a new parallel local search algorithm (Par-LS) for solving
the maximum vertex weight clique problem (MVWCP) in large graphs. Solving
the MVWCP in a large graph with millions of edges and vertices is an in-
tractable problem. Parallel local search methods are powerful tools to deal with
such problems with their high performance computation capability. The Par-LS
algorithm is developed on a distributed memory environment by using Message
Passing Interface (MPI) libraries and employs a different exploration strategy
at each processor. The Par-LS introduces new operators parallel(ω,1)-swap
and parallel(1,2)-swap, for searching the neighboring solutions while improving
the current solution through iterations. During our experiments, 172 of 173
benchmark problem instances from the DIMACS, BHOSLIB and Network Data
Repository graph libraries are solved optimally with respect to the best/optimal
reported results. A new best solution for the largest problem instance of the
BHOSLIB benchmark (frb100-40 ) is discovered. The Par-LS algorithm is re-
ported as one of the best performing algorithms in literature for the solution of
the MVWCP in large graphs.

Keywords: Maximum clique problem, parallel search, vertex weight, MPI.

1. Introduction

The maximum vertex weight clique problem (MVWCP) is a general form
of the maximum clique problem (MCP) [1, 2]. The MVWCP decides a clique
with the maximum total value of vertices’ weight. When each vertex of a graph
has weight 1 then MVWCP becomes the classical MCP [3, 4]. The MCP is NP-
complete and MVWCP is at least as hard as MCP [5, 6]. Given an undirected
graph G = (V, E ) with vertex set of V = {1,..., n} and edge set of E ⊆ V ×V .
Let w : V → Z+ be a weighting function that assigns each vertex v ∈ V
a positive value. The MVWCP has many applications in various areas such

Email address: tansel.dokeroglu@tedu.edu.tr (Tansel Dokeroglub)

Preprint submitted to Soft Computing June 6, 2019



as computer vision [7], coding theory [8], bioinformatics [9], protein structure
prediction [10], community (cluster) detection [11], combinatorial auctions [12,
13].

Exact (brute-force) algorithms that are proposed for solving the MVWCP
requires too much time and computation power due to the intractable nature of
this problem. Therefore, local search techniques and heuristics are more feasible
approaches for large and dense graph instances, because they can obtain high
quality solutions in practical times. Here, we can list some of the most impor-
tant algorithms that are proposed for the solution of the MC and MVWCP.
Kumlander proposes a backtrack tree search algorithm that relies on a heuristic
coloring-based vertex order [14]. The algorithm is a brute-force algorithm that
is based on a fact that vertices from the same independent set could not be
included in the same maximum clique. Those sets are obtained from a heuris-
tic vertex coloring. Color classes and a backtrack search are used for pruning
branches of the maximum-weight clique search tree. Warren & Hicks propose
three B&B algorithms for the maximum weight independent set problem [15].
The algorithms use weighted clique covers to generate upper bounds, and all
perform branching and using according to the method of Balas & Yu [16]. Pullan
& Hoos propose a new stochastic local search algorithm (DLS-MC) for the max-
imum clique problem [17]. The DLS-MC algorithm alternates between phases
of iterative improvement, during which suitable vertices are added to the cur-
rent clique, and plateau search, during which vertices of the current clique are
swapped with vertices not contained in the current clique. Wu et al. introduce a
tabu search heuristic whose key features include a combined neighborhood and
a dedicated tabu mechanism using a randomized restart strategy for diversifi-
cation [4]. Benlic & Hao present Breakout Local Search (BLS) algorithm. The
BLS can be applied to both MC and MVWCP problems without any particular
adaptation. BLS explores the search space by a joint use of local search and
adaptive perturbation strategies [18]. Wang et al. recast the MVWCP into
a model which is solved by a probabilistic tabu search algorithm designed for
Binary Quadratic Programming (BQP) [19]. El Baz et al. propose a parallel
ant colony optimization based meta-heuristic (PACOM) for solving MVWCP
[20]. Zhou et al. introduce a move operator called PUSH that generalizes the
conventional add and swap operators commonly used and can be employed in
a local search process for the MVWCP [21]. Nogueira et al. introduce a hy-
brid iterated local search technique for the maximum weight independent set
(MWIS) problem, which is related to MVWCP [22]. Nogueira et al. present a
CPU-GPU local search heuristic for solving the MWCP in massive graphs [23].
The neighborhoods are explored using an efficient procedure that is suitable to
be mapped onto a GPU-based massively parallel architecture. The algorithm
outperforms the best-known heuristics for the MWCP with its speed-up of up
to 12 times over the CPU-only implementation. Kiziloz & Dokeroglu propose a
robust and cooperative parallel tabu search algorithm (PTC) for the MVWCP
[24].
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Cai et al. propose a new method that interleaves between clique construc-
tion and graph reduction [25]. They propose three novel approaches and design
FastWClq algorithm. Wang et al. introduce two heuristics and propose two lo-
cal search algorithms for the MWCP, strong configuration checking (SCC), and
develop a local search algorithm named LSCC [26]. In order to improve the per-
formance, a low-complexity heuristic Best from Multiple Selection (BMS) is ap-
plied to select the swapping vertex pair quickly and effectively (LSCC+BMS al-
gorithm). The proposed algorithms outperform the state-of-the-art local search
algorithm MN/TS and its improved version MN/TS+BMS.

An exact algorithm, Branch and Bound (B&B) for the MVWCP (WLMC)
is suited for large vertex-weighted graphs by Jiang et al. [27]. A new B&B
algorithm (TSM-MWC) for the MVWCP is proposed by Jiang et al. [28]. The
proposed algorithm is an exact algorithm and uses MaxSAT reasoning to reduce
the search space. Another B&B MWCP algorithm (WC-MWC) that reduces
the number of branches of the search space incrementally is proposed by Li et
at. [13]. Experimental results show that the algorithm WC-MWC outperforms
some of the best performing exact and heuristic MWCP algorithms on both
small/medium graphs and real-world massive graphs.

Parallel local search algorithms have been reported to be effective tools for
the optimization of NP-Hard problems for the last few decades [24, 29, 30, 31,
32, 33]. In our opinion, a scalable parallel heuristic algorithm with intelligent
and cooperative operators can improve the solution quality of an optimization
process significantly. Our study proposes a novel parallel local search algorithm
(Par-LS) for the solution of the MVWCP in large graphs. The Par-LS algo-
rithm is specially developed for very large in-memory graphs with millions of
edges and vertices. Exploring and exploiting the search space of large graphs
requires a great deal of computation power. The search space is intractable and
exact (brute-force) algorithms are not efficient enough to solve the MVWCP
in feasible execution times. The Par-LS algorithm introduces a new parallel
local search technique with new operators parallel(ω,1)-swap and parallel(1,2)-
swap for searching neighboring solutions. The operators are adapted to parallel
computation to diversify the exploration by selecting different vertices during
the addition and deletion of the vertices. These operators are used in parallel
for the first time in literature [34, 35]. The local search Par-LS algorithm uses
some algorithmic parameters as it is required by most of the meta-heuristic al-
gorithms. As we experience from our previous studies, tuning the parameters
of a heuristic algorithm increases the performance of a local search algorithm
significantly. Therefore, we develop and employ a simple and efficient parameter
setting technique for the optimization process of the Par-LS. At each processor,
we use a different set of parameters for the Par-LS algorithm. The parameters
are randomly selected from a range of values.

The Par-LS is an enhanced parallel version of a recent algorithm called a hy-
brid iterated local search (ILS-VND) that is proposed for the maximum weight
independent set problem [22]. We adapt this algorithm to the MVWCP by
evolving its operators to the parallel environment, introducing a new parallel
parameter tuning technique and a seeding mechanism for each processor that
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provides a diversified searching capability. 173 problem instances are optimized
from the DIMACS, BHOSLIB and Network Data Repository graph libraries.
172 problems are solved optimally with respect to the optimal/best known so-
lutions of the problem instances. A new best solution for the largest problem
instance of the BHOSLIB benchmark (frb100-40 ) is discovered. The evaluation
of the experiments shows that the Par-LS algorithm can outperform most of
the state-of-the art heuristic algorithms and can be reported as one of the best
algorithms.

The Par-LS algorithm is introduced in Section 2. Section 3 gives the details
for the performance evaluation of the experimental results and comparison of
the algorithm to the state-of-the-art algorithms on selected a set of large graphs.
Concluding remarks and future work are provided in the last Section.

2. Proposed parallel local search algorithm, Par-LS

In this section, we present our proposed Par-LS algorithm for the MVWCP.
Par-LS is an enhanced parallel version of the ILS-VND algorithm introduced
by Nogueira et al. [22]. The Par-LS is developed by using C++ and Message
Passing Interface (MPI) library. A seeding function is used to diversify random
number generation at each node while initializing a starting point. A star com-
munication topology is used between processors. The master node/processor
controls the slaves and receives their best solutions at the end of the optimiza-
tion process.

Parallel (ω,1)-swap operator : adds a new vertex, v, to the existing
solution and deletes vertices that are neighbors of the v. This is the newer
parallel version of the operators introduced by Nogueira et al. [22]. The total
weight of the new generated clique is calculated and if its vertex weight is
better than the existing one it replaces the older clique. With its distributed
nature and a seeding function that makes use of the ranks of the processors in
the environment, parallel (ω,1)-swap operator generates and searches the new
cliques efficiently by selecting diversified vertices at each processor. In Figure 1,
we can see how the parallel (ω,1)-swap operator works on the current solutions
at different processors concurrently. If there are n number of processors in the
computation environment, randomly selected vertices are inserted to the current
solution and its neighbors inside the clique are removed. The parallel (ω,1)-swap
operator provides a diversified exploration search space and it is a very efficient
way of optimizing the maximum vertex weight clique.

Parallel (1,2)-swap operator : deletes one vertex and adds two vertices to
the current solution. Depending on the rank number of the processors, the selec-
tion of the vertices for insertion and deletion are executed from well-diversified
locations. Therefore, our new enhanced operators, parallel (ω,1)-swap and par-
allel (1,2)-swap operators are very efficient while exploring the search space of
large graphs. In Figure 2, we can follow how the parallel(1,2)-swap operator
works on different candidate solutions concurrently. The parallel(1,2)-swap se-
lects two vertices from outside of the current solution.
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Figure 1: Parallel (ω,1)-swap operator is concurrently operating with several processors on
different solution candidates that are different than one another. Processor 1 inserts vertex d
into the current solution and removes vertices a, b, and c. Processor n inserts vertex c into
the current solution while vertices a and b are being removed.

Figure 2: parallel(1,2)-swap operator is concurrently operating with several processors. Pro-
cessor 1 inserts the vertices a and b into the current solution and removes the vertices c.
Processor n inserts vertices a and b into the current solution while vertex c is being removed.

Generate a random Clique function: selects a random vertex number
and continues adding new vertices to construct an initial maximum vertex weight
clique. This procedure is repeated until there is no examined vertex left. The
perturbation function changes the current clique by adding new vertices and
removing older ones randomly depending on the seeding mechanism of the pro-
cessor. Local Search function uses our two new distributed operators parallel
(ω,1)-swap and parallel (1,2)-swap during the optimization. The selection of
the new vertices continues until the new vertex fails to improve the quality of
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Figure 3: Flowchart of the Par-LS algorithm.

the solution.
Acceptance function: monitors the exploration and intensification pro-

cesses during the optimization. If a new clique is better, it is always accepted.
Parameters (p1, p2, p3, p4) are used as search exploration and intensification pa-
rameters in the Par-LS algorithm. p1 is for shrinking the non-solution vertices
set where uniformly chosen non-solution vertices into the current solution. The
smaller the size is, the shorter the search time is. p2 is for limiting the search
space whenever a local maximum is met. This will decrease the search time. p3
is similar to p2. When a global maximum is reached, the counter is adjusted
for less exploring the search space. p4 is similar to p1 which commonly takes
the values between 1 and 4. It again forces and squeezes the search space for
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spending less exploration time. The flowchart of the algorithm is presented in
Figure 3. Algorithms 1, 2, and 3 give the details of the Par-LS Algorithm.

Parameter tuning technique of the Par-LS algorithm : The perfor-
mance of the local search algorithms mostly depends on selecting the best al-
gorithmic specific parameters. Deciding the algorithmic parameters is a crucial
process for good performance. In order to provide (near-)optimal settings for
the Par-LS algorithm we apply a simple mechanism that generates different sets
of parameters at each processor. The Par-LS algorithm uses these four param-
eters during the optimization and each parameter set is selected as a different
set at each processor. The parameters are randomly decided within a range of
values. This technique provides an efficient way to optimize with a different
set of values. In addition to this, the structure of the optimization problems is
varied. Therefore, an optimized set of parameters may not be a good preference
for all the problem instances [36].

Algorithm 1: Proposed parallel local search algorithm, Par-LS

Input: G = (V, E ), termination limit
Output: Maximum Vertex Weight Clique C∗

1 if (Master node) then
2 receive results from slaves();
3 find the best result();
4 report the best result();

5 else
6 (Slave node)
7 C0 = Generate a random Clique(G);
8 C= Local Search(C0, G); // current clique
9 C∗= C ; // best clique solution

10 best weight = Weight(C ); //best local weight
11 counter = 0 ; // iterations
12 k = 1; // local iterations

13 while (counter ++ ≤ termination limit) do
14 C ′ = Perturb(p1, C, G);
15 C ′ = Local Search(C ′, G);
16 (C, C∗, k , best weight) = Accept(C, C∗, C ′, k, best weight, G)

17 end

18 send C∗ to the master node;

19 end
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Algorithm 2: Local search procedure

Input: Clique C, Graph G = (V, E )
Output: Maximum vertex weight clique C

1 k=1; // structure selector
2 while k ≤ 2 do
3 C ′ = FirstImprovement(k, C, G)
4 if Weight(S′) ≤ Weight(C) then
5 k ++ ;
6 else
7 k = 1; C = C ′;
8 C = AddFreeVertices(C, G); // add free vertices randomly

9 end

10 end

11 return C ;

3. Performance Evaluation of the Experimental Results

We give details of our high performance computation environment, problem
instances, solution quality, execution time, speed-up, and scalability evaluations
of the Par-LS algorithm. We discuss the Par-LS algorithm and compare its per-
formance with state-of-the-art MVWCP algorithms for DIMACS 1, BHOSLIB
2, and selected large graphs from Network Data Repository 3.

3.1. Experimental setup and problem instances

Our experiments are performed on a high performance cluster (HPC) com-
puter, HP ProLiant DL585 G7, that has AMD Opteron 6212 CPU running at
2.6 GHz and having 8 cores. CPU has 64-bit computing capacity and AMD
SR5690 chipset. The server uses 128 GB PC3-10600 RAM and 1.5 TB hard-
disk. The software comprises; a Scientific Linux v4.5 64-bit operating system,
Open MPI v1.2.4, and C++. We have performed our experiments with 64 pro-
cessors. We carry out our experiments with large graphs that fit in our main
memory and does not use virtual memory. Because using virtual memory has
a dramatic negative effect on the performance of the optimization process. We
observe that it may cause thousands of times longer execution time due to the
paging process of virtual memory. The selected large graph instances are run
10 times and their best/average results and execution times are reported. The
time to read the problem instance from the disk is not included in the execution
time of the Par-LS algorithm.

1http://www.cs.hbg.psu.edu/txn131/clique.html
2http://iridia.ulb.ac.be/
3http://networkrepository.com/
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Algorithm 3: Algorithm of the acceptance function

Input: Current solution C, best solution C∗, candidate solution C ′

Output: New current solution C, new best solution C∗

1 Acceptance(C, C∗, C ′, i, local best w, G)
2 if Weight(C)< Weight(C ′) then
3 C = C ′ // accept a solution that improves the current one
4 i = 1;
5 if local best w < Weight(C) then
6 local best w = Weight(C )
7 i = i - (| C | / c2);

8 end
9 if Weight(C∗) < Weight(C) then

10 C∗ = C ;
11 i = i - (| C | * c3);

12 end

13 else
14 if i ≤ | C |/c2 then
15 i++;
16 else
17 // if the current solution is not improved and i >| C |/c2
18 local best w = Weight(C );
19 C = Perturb(c4, C, G);
20 i = 1;

21 end

22 end
23 return C, C∗, i, local best w

The Par-LS algorithm is tested on 173 graphs from DIMACS benchmark (80
problem instances), the BHOSLIB benchmark (40 instances) and the Network
Data Repository (53 instances). All the benchmark instances are originally
unweighted. In order to provide the standard weighted instances, we use the
literature and give each vertex i a weight given by (i mod 200) + 1 [36]. In Table
4, we give the details of the large graphs that are used in our experiments. The
number of nodes, the number of vertices, the density of the graph, the best and
average results discovered by the Par-LS algorithm, the execution time, and the
number of processors used during the optimization are presented in the Table.
At first, we try to solve the problem instances with five processors. These are
the easier problem instances like bio-dmela, bio-yeast, and ca-AstroPh. At the
next step, we apply 64 processors for harder problem instances that need more
computation power. hamming10-4, p-hat1000-2, and san1000 are the examples
of harder large graphs in the problem set.
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3.2. The effect of iterations and increasing the number of processors

In Figure 4, we give the effect of the iterations for the Par-LS algorithm. The
experiments are run with the MANN-a45 problem instance from BHOSLIB
benchmark library. The Figure presents the obtained results with increasing
number of iterations. Increasing the number of iterations has a positive effect
on the optimization process of the Par-LS algorithm. 1,800,000 iterations are
used during the optimization process of all problem instances. Most of the time,
the Par-LS algorithm was able to obtain the optimal/best results at earlier iter-
ations. The reported the execution time of the Par-LS algorithm is the average
execution time of the ten runs that the optimal/best results are discovered.
The improvement of the optimization is observed to be 0.6% in the average
when the number of iterations is increased from 1 to 100,000. Although there
is an improvement in the quality of the solutions, the robustness of the Par-
LS algorithm is also affected significantly, which means that larger number of
iterations can guarantee the same results with less deviation than lower number
of iterations.

Figure 4: The effect of increasing the number of iterations on MANN-a45 problem instance.

We analyze the effect of increasing the number of processors for the Par-
LS algorithm. Table 1 gives the effect of increasing the number of processors
for the MANN-a45 problem instance. The number of processors is 1 with the
initial tests and we double this value by two with every new experiment up
to 128 processors. The positive effect of the increasing number of processors is
observed during the experiments. 0.4% improvement is obtained. It can be seen
that optimizations performed with larger number of processors are less prone to
stagnation. As the number of processors is increased, better results are observed
at earlier phases of the optimization.
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Table 1: The effect of increasing the number of processors for the MANN-a45 problem in-
stance. The number of processors is increased from 1 to 128 for the instance and the perfor-
mance is observed. 0.4% improvement is obtained.

#processors result
1 34252.1
2 34253.3
4 34256.2
8 34258.4

16 34260.4
32 34263.7
64 34264.6

128 34265.0

3.3. Experiments with DIMACS-W and BHLOBS-W benchmark instances

In this part of our experiments, we carry out some experiments with the well-
known problem instances from the graph libraries DIMACS-W and BHLOBS-
W. Although most of the problem instances of these benchmarks are not large
graphs, obtaining the performance results of the PAR-LS algorithm will give
valuable evaluations about the robustness, scalability, and speed-up perfor-
mance of the algorithm. The size of the maximum vertex weight clique size,
execution time of the algorithm, and obtained best results are reported for the
problem instances. At the last column of Tables 2 and 3, we report the number
of the processors that we use during the optimization process. For easier prob-
lem instances, we try to minimize the number of processors while we are using
64 processors for harder problems.

During the experiments performed with DIMACS-W problem instances, all
the problem instances are observed to be solved optimally with respect to the
reported optimal/best results. The average execution time of the algorithm is
79.4 seconds. These results outperform those of the state-of-the-art algorithms
in literature. Except the frb50-23-4 problem instance (the optimal result is re-
ported to be 5454, we discover 5453) from BHOSLIB library, all the problems
are solved optimally by finding the best/optimal results. For the problem in-
stance frb53-24-3, the BHLOBS-W library reports 5,640 as the optimal solution.
We obtain 5,665 value for the same problem instance during our experiments,
which has been only reported by ILS-VND algorithm so far. The average exe-
cution time of the algorithm is reported to be 20.4 seconds for the problems in
BHLOBS-W library. It is interesting that we discover some maximum vertex
size clique sizes that are smaller than the maximum clique of the optimized
graph. It shows that the size of the maximum vertex weight clique can be
smaller than maximum clique in the graph but the weight of the vertices can be
larger. Although ILS-VND algorithm obtains most of the optimal/best results
reported in the benchmark libraries, Par-LS is better in the average results and
also there are new best results that have been reported by the Par-LS algorithm.

We compare our results with state-of-the-art heuristic algorithms in liter-
ature for the DIMACS-W and BHLOBS-W problem instances. Phased Local

11



Search (PLS) [36], Multi-Neighborhood Tabu Search (MN/TS) [4], Breakout
Local Search (BLS) [18], ReTS-I [21], Iterated Local Search Variable Neighbor-
hood Descent (ILS-VND) [22], and BQP problem with the Probabilistic Tabu
Search algorithm (BQP-PTS) [5]. For the other 119 instances, the Par-LS al-
gorithm provides better or the same results that have been found by the other
algorithms. Even for the hard problem instances, MANN-a45 and MANN-a81,
the Par-LS performs better than the other algorithms. Detailed performance
comparison of the Par-LS algorithm is presented in Table 8 for large graph
problem instances.

Table 2: Detailed results of the Par-LS algorithm on 80 DIMACS W benchmark
instances node is the number of vertices ω is the maximum clique size, W best
is the best value that is found until now, best is the best value found by the
algorithm, |C| is the cardinality of the obtained maximum weighted clique,
avg-sum is the average of the results, #proc is the number of processors
used during the optimization process.

instance node ω W best) best) |C| avg-sum time (s) #proc.
brock200 1 200 21 2821 2821 19 2821 0.1 2
brock200 2 200 12 1428 1428 9 1428 0.1 2
brock200 3 200 15 2062 2062 13 2062 0.4 2
brock200 4 200 17 2107 2107 13 2107 36.2 2
brock400 1 400 27 3422 3422 21 3422 0.1 2
brock400 2 400 29 3350 3350 21 3350 0.3 2
brock400 3 400 31 3471 3471 23 3471 0.1 2
brock400 4 400 33 3626 3626 22 3626 0.8 2
brock800 1 800 23 3121 3121 20 3121 0.1 2
brock800 2 800 34 3043 3043 18 3043 0.1 2
brock800 3 800 25 3076 3076 20 3076 0.1 2
brock800 4 800 26 2971 2971 26 2971 0.1 2
C125.9 125 34 2529 2529 30 2529 0.7 2
C250.9 250 44 5092 5092 40 5092 0.1 2
C500.9 500 57 6955 6955 48 6955 0.1 2
C1000.9 1000 68 9254 9254 61 9254 176.3 2
C2000.5 2000 16 2466 2466 14 2466 1.7 2
C2000.9 2000 80 10999 10999 72 10999 1600.2 64
C4000.5 4000 18 2792 2792 16 2792 30.4 64
Dsjc500.5 500 13 1725 1725 12 1725 4.2 64
Dsjc1000.5 1000 15 2186 2186 13 2186 1.4 64
keller4 171 11 1153 1153 11 1153 0.1 10
keller5 776 27 3317 3317 27 3317 0.1 10
keller6 3361 59 8062 8062 56 8062 58.4 64
MANN a9 45 16 372 372 16 372 0.2 10
MANN a27 378 126 12283 12283 126 12283 0.8 10
MANN a45 1035 345 34254 34254 342 34254 2445.2 10
MANN a81 3321 1100 111400 111400 1100 111395.4 3401.8 64
hamming6-2 64 32 1072 1072 32 1072 0.1 2
hamming6-4 64 4 134 134 4 134 0.1 2
hamming8-2 256 128 10976 10976 128 10976 0.1 10
hamming8-4 256 16 1472 1472 16 1472 0.1 10
hamming10-2 1024 512 50512 50512 512 50512 0.1 10
hamming10-4 1024 40 5129 5129 35 5129 8.5 64
gen200 p0.9 44 200 44 5043 5043 37 5043 0.1 10
gen200 p0.9 55 200 55 5416 5416 52 5416 0.1 10

Continued on next page
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Table 2 – continued from previous page
instance node ω W best) best) |C| avg-sum time (s) #proc.
gen400 p0.9 55 400 55 6718 6718 47 6718 0.1 10
gen400 p0.9 65 400 65 6940 6940 48 6940 0.1 10
gen400 p0.9 75 400 75 8006 8006 75 8006 0.1 10
c-fat200-1 200 12 1284 1284 12 1284 0.1 10
c-fat200-2 200 24 2411 2411 23 2411 0.1 10
c-fat200-5 200 58 5887 5887 58 5887 0.1 10
c-fat500-1 500 14 1354 1354 12 1354 0.1 10
c-fat500-2 500 26 2628 2628 24 2628 0.1 10
c-fat500-5 500 64 5841 5841 62 5841 0.1 10
c-fat500-10 500 126 11586 11586 124 11586 0.1 10
johnson8-2-4 28 4 66 66 4 66 0.1 10
johnson8-4-4 70 14 511 511 14 511 0.1 10
johnson16-2-4 120 8 548 548 8 548 0.1 10
johnson32-2-4 496 16 2033 2033 16 2033 0.1 10
p hat300-1 300 8 1057 1057 7 1057 0.1 10
p hat300-2 300 25 2487 2487 20 2487 0.1 10
p hat300-3 300 36 3774 3774 29 3774 0.1 10
p hat500-1 500 9 1231 1231 8 1231 0.1 10
p hat500-2 500 36 3920 3920 31 3892 0.1 10
p hat500-3 500 50 5375 5375 42 5375 0.1 10
p hat700-1 700 11 1441 1441 9 1441 0.1 10
p hat700-2 700 44 5290 5290 40 5290 0.1 10
p hat700-3 700 62 7565 7565 58 7565 0.1 10
p hat1000-1 1000 10 1514 1514 9 1514 0.1 10
p hat1000-2 1000 46 5777 5777 40 5777 0.1 10
p hat1000-3 1000 68 8111 8111 58 8111 0.1 10
p hat1500-1 1500 12 1619 1619 10 1619 0.1 10
p hat1500-2 1500 65 7360 7360 58 7360 0.1 10
p hat1500-3 1500 94 10321 10321 84 10321 0.1 10
san200 0.7 1 200 30 3370 3370 30 3370 0.1 10
san200 0.7 2 200 18 2422 2422 14 2422 0.1 10
san200 0.9 1 200 70 6825 6825 70 6825 0.1 10
san200 0.9 2 200 60 6082 6082 60 6082 0.1 10
san200 0.9 3 200 44 4748 4748 34 4748 0.1 10
san400 0.5 1 400 13 1455 1455 8 1455 0.1 10
san400 0.7 1 400 40 3941 3941 40 3941 3.4 10
san400 0.7 2 400 30 3110 3110 30 3110 1.4 10
san400 0.7 3 400 22 2771 2771 18 2771 0.2 10
san400 0.9 1 400 100 9776 9776 100 9776 14.3 64
san1000 1000 15 1716 1716 9 1716 0.1 10
sanr200-0.7 200 18 2325 2325 15 2325 0.1 10
sanr200-0.9 400 42 5126 5126 36 5126 0.1 10
sanr400-0.5 400 13 1835 1835 11 1835 0.1 10
sanr400-0.7 400 21 2992 2992 18 2992 0.1 10
average 97.4
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Table 3: Detailed results of the Par-LS algorithm on BHLOBS-W benchmark instances.

instance node ω W best best |C| avg-sum time(s) #proc.
frb30-15-1 450 30 2990 2990 27 2990 2.1 64
frb30-15-2 450 30 3006 3006 28 3006 1.4 64
frb30-15-3 450 30 2995 2995 27 2995 1.6 64
frb30-15-4 450 30 3032 3032 28 3032 1.3 64
frb30-15-5 450 30 3011 3011 27 3011 0.1 64
frb35-17-1 595 35 3650 3650 33 3650 8.9 64
frb35-17-2 595 35 3738 3738 33 3738 11.5 64
frb35-17-3 595 35 3716 3716 33 3716 2.6 64
frb35-17-4 595 35 3683 3683 35 3683 5.7 64
frb35-17-5 595 35 3686 3686 33 3686 1.8 64
frb40-19-1 760 40 4063 4063 37 4063 17.8 64
frb40-19-2 760 40 4112 4112 36 4112 4.7 64
frb40-19-3 760 40 4115 4115 36 4115 16.8 64
frb40-19-4 760 40 4136 4136 37 4136 7.5 64
frb40-19-5 760 40 4118 4118 36 4118 3.6 64
frb45-21-1 945 45 4760 4760 41 4760 24.2 64
frb45-21-2 945 45 4784 4784 41 4784 15.7 64
frb45-21-3 945 45 4765 4765 43 4765 7.7 64
frb45-21-4 945 45 4799 4799 42 4799 2.9 64
frb45-21-5 945 45 4779 4779 43 4779 15.4 64
frb50-23-1 1150 50 5494 5494 47 5494 64.8 64
frb50-23-2 1150 50 5462 5462 47 5462 34.2 64
frb50-23-3 1150 50 5486 5486 47 5486 34.2 64
frb50-23-4 1150 50 5454 5453 46 5453 28.1 64
frb50-23-5 1150 50 5498 5498 47 5498 21.8 64
frb53-24-1 1272 53 5670 5670 50 5670 20.8 64
frb53-24-2 1272 53 5707 5707 48 5707 33.6 64
frb53-24-3 1272 53 5640 5655 49 5655 38.4 64
frb53-24-4 1272 53 5714 5714 48 5714 28.4 64
frb53-24-5 1272 53 5659 5659 49 5657.6 9.6 64
frb56-25-1 1400 56 5916 5916 53 5912.4 37.2 64
frb56-25-2 1400 56 5872 5872 52 5868.1 32.6 64
frb56-25-3 1400 56 5859 5859 51 5847.2 41.5 64
frb56-25-4 1400 56 5892 5892 51 5888.1 47.1 64
frb56-25-5 1400 56 5839 5839 51 5834.3 3.4 64
frb59-26-1 1534 59 6591 6591 55 6591 29.7 64
frb59-26-2 1534 59 6645 6645 56 6645 26.4 64
frb59-26-3 1534 59 6608 6608 56 6608 19.2 64
frb59-26-4 1534 59 6592 6592 54 6592 29.3 64
frb59-26-5 1534 59 6584 6584 53 6584 84.2 64
average 20.4
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3.4. Performance analysis of the Par-LS algorithm on large graphs

Experiments are carried out with 61 different large graph instances from
DIMACS, BHOSLIB, and Network Data Repository. The number of vertices,
edges and the density of the edges of the graphs are presented in Table 4. We
report two weight results (the best and the average). The best results are the
maximum values obtained during experiments. Average results are the mean of
ten different executions. First, we try to solve the problem instances with five
processors. If we cannot get good performance then we increase the number
of processors up to 64. Tables 5, 6, and 7 report the selected vertices of the
maximum vertex weight cliques for some of the large graphs. A new best solution
is reported for the largest graph instance of BHOSLIB benchmark (frb100-40 ).
All of the other results are the best/optimal results that have been reported by
researchers up to now. The average of the execution time is observed as 268.9
seconds. The simple parameter setting mechanism of the Par-LS algorithm is
observed to provide better results. We carried out a set of experiments on the
MANN-a81 problem instance. It was possible to obtain the maximum vertex
weight value as 111,400 when we use different parameters for each processor.
With 10 different runs, it was not possible to get the value, 111,400, when the
simple parameter setting mechanism is not used.
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Table 4: The properties of the large graph instances that are used during our experiments
and the obtained solutions by the Par-LS algorithm. A new best solution is discovered for the
largest problem instance of the BHOSLIB benchmark, frb100-40.

instance name |V | |E| edge density best average time (sec.) #processors
bio-dmela 7,393 25,569 0.000936 805 805 199.1 5
bio-yeast 1,458 1948 0.001834 629 629 0.4 5
C.1000.9 1,000 450,079 0.901059 954 954 176.3 64
C.2000.5 2,000 999,836 0.500168 2466 2466 1.7 64
C.2000.9 2,000 1,799,532 0.900216 10,999 10,9999 1,600.2 64
C4000.5 4,000 4,000,268 0.500159 2792 2,792 30.4 64
ca-AstroPh 17,903 196,972 0.001229 5,338 5,338 95.0 5
ca-CondMat 21,363 91,286 0.000400 2,887 2,887 14.2 5
ca-CSphd 1,882 1,740 0.000983 489 489 4.32 5
ca-Erdos992 6,100 7515 0.000404 958 958 4.6 5
ca-GrQc 4,158 13,422 0.001553 4,279 4,279 4.3 5
ca-HepPh 11,204 117,619 0.001874 24,533 24,533 18.9 5
DSJC1000-5 1,000 249,826 0.500152 2,186 2,186 1.4 64
frb100-40 4,000 7,425,226 0.928385 10,709 10,681.4 2,645.7 64
hamming10-2 1,024 518,656 0.990225 50,512 50,512 5.2 64
hamming10-4 1,024 518,656 0.990225 5,129 5,129 6.4 64
ia-email-EU 32,430 54,397 0.000103 1,350 1,350 153.4 5
ia-email-univ 1,133 5,451 0.008500 1,473 1,473 1.8 5
ia-enron-large 33,696 180,811 0.000319 2,490 2,490 152.3 5
ia-fb-messages 1,266 6,451 0.008056 791 791 1.8 5
ia-reality 6,809 7,680 0.000331 374 374 7.4 5
inf-power 4,941 6,594 0.000540 888 888 8.0 5
keller6 3,361 4,619,898 0.818191 8,062 8,062 58.4 64
MANN-a45 1,035 533,115 0.996300 34,265 34,265 2,445.2 64
MANN-a81 3,321 5,506,380 0.998825 111,400 111,400 3,401.8 64
p-hat1000-1 1,000 122,253 0.244751 1,514 1,514 2.3 64
p-hat1000-2 1,000 244,799 0.490088 5,777 5.777 2.4 64
p-hat1000-3 1,000 371,746 0.744236 8,111 8,111 1.9 64
p-hat1500-1 1,500 284,923 0.253434 1,619 1,619 2.3 64
p-hat1500-2 1,500 568,960 0.506080 7,360 7,360 2.1 64
p-hat1500-3 1,500 847,244 0.753608 10,321 10,321 1.9 64
san1000 1,000 250,500 0.501502 1,716 1,716 1.8 64
sc-nasasrb 54,870 1,311,227 0.000871 4,548 4,548 620.2 5
soc-brightkite 56,739 212,945 0.000132 3,672 3,672 728.1 5
soc-buzznet 101,163 2,763,066 0.000540 2,981 2,981 6.4 5
soc-epinions 26,588 100,120 0.000283 1,657 1,657 111.7 5
socfb-Berkeley13 22,900 852,419 0.003251 4,906 4,906 86.8 5
socfb-CMU 6,621 249,959 0.011406 4,141 4,141 8.7 5
socfb-Duke14 9,885 506,437 0.010367 3,694 3,694 64.6 5
socfb-Indiana 29,732 1,305,757 0.002954 5,412 5,412 242.9 5
socfb-MIT 6,402 251,230 0.012261 3,658 3,658 10.9 5
socfb-OR 63,392 816,886 0.000407 3,523 3,523 88.7 5
socfb-Penn94 41,536 1,362,220 0.001579 4,738 4,738 485.9 5
socfb-Stanford3 11,586 568,309 0.008468 5,769 5,769 20.4 5
socfb-Texas84 36,364 1,590,651 0.002406 5,546 5,546 695.7 5
socfb-UCLA 20,453 747,604 0.003574 5,595 5,595 98.8 5
socfb-Uconn 17,206 604,867 0.004087 5,733 5,733 41.4 5
socfb-UCSB37 14,917 482,215 0.004334 5,669 5,669 29.6 5
socfb-UF 35,111 1,465,654 0.002378 6,043 6,043 666.0 5
socfb-Uillinois 30,795 1,264,421 0.002667 5,730 5,730 215.7 5
socfb-Wisconsin87 23,831 835,946 0.002944 4,239 4,239 117.9 5
tech-as-caida2007 26,475 53,381 0.000152 1,869 1,869 87.1 5
tech-internet-as 40,164 85,123 0.000106 1,692 1,692 219.8 5
tech-p2p-gnutella 62,561 147,878 0.000076 703 703 609.6 5
tech-routers-rf 2,113 6,632 0.002972 1,460 1,460 1.2 5
tech-WHOIS 7,476 56,943 0.002038 6,154 6,154 35.3 5
web-edu 3,031 6,474 0.001410 2,077 2,077 1.0 5
web-google 1,299 2,773 0.003289 1,749 1,749 0.5 5
web-indochina-2004 11,358 47,606 0.000738 6,997 6,997 33.0 5
web-spam 4,767 37,375 0.003290 2,503 2,503 3.4 5
web-webbase-2001 16,062 25,593 0.000198 3,574 3,574 11.8 5
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Table 5: Selected #vertices for the reported best resulting maximum vertex weight cliques.
weight is the total sum of the weights of the nodes. A new best solution is reported for the
instance frb100-40 with weight 10,709.

instance name weight #vertices selected vertices

C2000-9 10,999 72

138, 141, 155, 177, 178, 244, 287, 323, 328, 385, 387, 390, 394, 396, 439, 511, 526, 561, 566, 578, 625, 669, 749, 757,
765, 768, 770, 780, 791, 796, 938, 942, 970, 976, 987, 997, 1120, 1133, 1152, 1155, 1168, 1181, 1184, 1186, 1196, 1353,
1363, 1385, 1429, 1457, 1527, 1533, 1548, 1572, 1586, 1591, 1595, 1599, 1695, 1727, 1732, 1733, 1764,
1784, 1794, 1797, 1917, 1975, 1977, 1980, 1986, 1997

ca-CondMat 2,887 26
846, 1345, 2331, 2561, 2861, 3187, 3511, 4789, 6763, 6826, 7176, 7185, 7278, 8045, 8380, 10312, 10455, 13145, 14213,
14841, 15464, 15699, 15850, 17707, 17873, 17992

ca-GrQc 4279 44
5, 97, 117, 250, 350, 436, 470, 529, 673, 739, 1002, 1064, 1103, 1266, 1419, 1553, 1759, 1783, 1923, 1942, 1994, 2004,
2211, 2250, 2276, 2386, 2753, 2759, 2984, 3074, 3174, 3206, 3283, 3297, 3347, 3387, 3418, 3487, 3613, 3653, 3714,
3951, 4011, 4079

frb100-40 10,709 89

26, 69, 108, 155, 192, 277, 286, 354, 362, 442, 519, 531, 595, 634, 643, 719, 740, 797, 837, 867, 906, 958, 996, 1063,
1118, 1156, 1174, 1277, 1319, 1355, 1397, 1428, 1468, 1515, 1553, 1594, 1672, 1717, 1757, 1792, 1838, 1875, 1918,
1948, 1976, 2069, 2114, 2157, 2189, 2233, 2264, 2313, 2339, 2396, 2438, 2474, 2503, 2557, 2587, 2621, 2657, 2715,
2752, 2793, 2838, 2913, 2950, 2987, 3076, 3113, 3127, 3195, 3277, 3319, 3356, 3388, 3504, 3558, 3590, 3631, 3660,
3713, 3751, 3796, 3809, 3857, 3911, 3951, 3967

keller6 8,062 56
93, 157, 250, 257, 278, 292, 300, 366, 373, 393, 432, 514, 684, 692, 706, 723, 777, 778, 791, 797, 994, 1172, 1180,
1182, 1388, 1506, 1515, 1597, 1706, 1708, 1716, 1748, 1986, 1994, 1996, 2154, 2156, 2164, 2281, 2288, 2308, 2388,
2482, 2509, 2583, 2587, 2592, 2594, 2785, 2790, 2843, 2960, 2987, 3145, 3354, 3359

sc-nasasrb 4,548 24
48186, 48187, 48188, 48189, 48190, 48191, 48192, 48193, 48194, 48195, 48196, 48197, 48978, 48979, 48980, 48981,
48982, 48983, 48984, 48985, 48986, 48987, 48988, 48989

soc-brightkite 3,672 37
250, 2809, 2810, 2813, 2817, 2828, 2838, 2856, 2898, 2913, 6885, 6901, 6903, 6906, 10314, 10320, 10329, 10331,
10343, 10363, 10571, 10574, 10576, 10580, 10584, 10586, 10587, 10593, 10598, 10601, 10603, 10608, 10627,
10631, 10674, 10683, 10695

soc-buzznet 2,981 21
504, 731, 791, 1997, 2577, 2585, 2586, 2592, 2594, 2603, 2714, 2719, 2896, 28143, 30979, 31699, 82695, 82890, 83197,
99278, 99369

socfb-Berkeley13 4,906 41
381, 548, 594, 597, 797, 1060, 1125, 1322, 1491, 1499, 1580, 1749, 2139, 2685, 2714, 3148, 3259, 3570, 4686, 4894,
5009, 5781, 8133, 8255, 8562, 9699, 10757, 10796, 11169, 11245, 14303, 14682, 14993, 17043, 17544, 18271, 20408,
21731, 22073, 22332, 22600

socfb-Texas84 5,546 54
1861, 1999, 3097, 3210, 3256, 3787, 3790, 4572, 4680, 4982, 5124, 5330, 5738, 5751, 6476, 7772, 7811, 7864, 8456,
9327, 10715, 10750, 15251, 15724, 15988, 16229, 16398, 16513, 16830, 18155, 22854, 23370, 23435, 23471, 25951,
26381, 26936, 27463, 27561, 27613, 28055, 28166, 28689, 28971, 29121, 29328, 29714, 31240, 32576, 34315

socfb-UIllinois 5,730 50
797, 1169, 1960, 3290, 3929, 4656, 4722, 6495, 7141, 7991, 8049, 8182, 10240, 10403, 10587, 10650, 11190, 12159,
12385, 12667, 12801, 12888, 13895, 15789, 17270, 17393, 18287, 18670, 18904, 19546, 19778, 20499, 20522, 20534,
20726, 20985, 21729, 21977, 22443, 22446, 23324, 23623, 23638, 24460, 24786, 25032, 25531, 29112, 29537, 30643

tech-WHOIS 6,154 56
271, 364, 385, 454, 455, 472, 498, 543, 547, 702, 707, 741, 771, 773, 814, 844, 963, 1086, 1319, 1341, 1438, 1467,
1744, 1843, 1854, 2054, 2131, 2262, 2453, 2479, 2522, 2644, 2739, 2996, 3127, 3157, 3180, 3787, 3819, 3929,
3941, 3966, 3995, 4072, 4176, 4271, 4570, 4636, 4801, 4928, 4985, 5209, 5511, 5939, 6040, 6127

web-indochina-2004 6,997 40
7358, 7359, 7360, 7361, 7362, 7363, 7364, 7365, 7366, 7367, 7368, 7369, 7370, 7371, 7372, 7373, 7374, 7375, 7376,
7377, 7378, 7379, 7380, 7381, 7382, 7383, 7384, 7385, 7386, 7387, 7388, 7389, 7390, 7391, 7392, 7393, 7394, 7395,
7396, 7414

Table 6: Selected vertices for the maximum vertex weight of the MANN-a45 problem instance
with weight 34,265.

14, 16, 19, 21, 22, 23, 24, 27, 28, 30, 32, 38, 40, 41, 42, 47, 50, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 83, 86,
88, 92, 95, 98, 101, 103, 107, 109, 112, 116, 119, 121, 125, 128, 130, 134, 137, 140, 143, 146, 148, 152, 153, 156,
159, 163, 167, 169, 172, 174, 178, 182, 185, 186, 189, 194, 197, 198, 209, 210, 215, 218, 221, 223, 227, 229, 232,
236, 238, 242, 245, 246, 249, 254, 257, 260, 263, 265, 269, 272, 275, 278, 280, 284, 285, 289, 292, 296, 299, 301,
304, 306, 311, 314, 317, 320, 323, 324, 327, 332, 333, 338, 341, 344, 346, 349, 352, 356, 359, 362, 365, 368, 369,
374, 377, 380, 383, 384, 389, 390, 393, 396, 401, 404, 405, 408, 411, 416, 419, 422, 425, 428, 430, 433, 437, 439,
443, 446, 449, 451, 453, 456, 461, 464, 467, 470, 473, 476, 477, 482, 483, 488, 491, 494, 496, 500, 503, 506, 509,
512, 515, 516, 521, 523, 525, 530, 532, 535, 537, 541, 543, 546, 550, 552, 557, 560, 563, 564, 569, 572, 575, 578,
580, 584, 587, 590, 593, 595, 598, 600, 603, 607, 611, 614, 615, 619, 621, 626, 629, 632, 635, 638, 640, 642, 647,
648, 653, 656, 659, 661, 663, 667, 671, 674, 676, 680, 681, 684, 689, 692, 693, 698, 699, 702, 707, 709, 713, 716,
719, 722, 725, 728, 731, 734, 735, 740, 742, 746, 749, 751, 755, 756, 761, 764, 766, 770, 771, 776, 779, 782, 785,
788, 791, 792, 797, 798, 803, 806, 809, 810, 815, 818, 821, 824, 827, 830, 831, 836, 838, 841, 845, 847, 850, 852,
856, 858, 862, 865, 867, 872, 875, 878, 880, 884, 886, 890, 891, 894, 899, 902, 904, 908, 909, 913, 917, 918, 923,
926, 929, 932, 935, 938, 941, 944, 945, 950, 952, 956, 959, 961, 965, 967, 971, 974, 976, 980, 981, 986, 989, 991,
995, 997, 1001, 1004, 1007, 1010, 1013, 1014, 1019, 1021, 1024, 1026, 1031, 1034
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Table 7: Selected vertices for the maximum vertex weight of the MANN-a81 problem instance
with weight 111,400.

13, 26, 32, 37, 41, 43, 44, 48, 49, 52, 53, 61, 67, 68, 69, 71, 74, 76, 77, 79, 83, 86, 89, 92, 95, 98, 101, 104,
107, 110, 113, 116, 119, 122, 125, 128, 131, 134, 137, 140, 143, 146, 149, 152, 155, 158, 160, 163, 167, 169, 173,
176, 179, 182, 185, 187, 191, 194, 196, 198, 203, 205, 209, 212, 215, 218, 221, 223, 227, 230, 233, 236, 239, 242,
245, 248, 251, 254, 257, 260, 263, 266, 268, 271, 275, 277, 281, 284, 287, 290, 293, 295, 299, 302, 305, 308, 311,
314, 317, 320, 323, 326, 329, 332, 335, 338, 341, 344, 347, 350, 353, 356, 359, 362, 365, 368, 371, 374, 377, 380,
383, 386, 389, 392, 395, 398, 401, 404, 407, 410, 413, 416, 419, 422, 425, 428, 430, 434, 436, 440, 443, 446, 449,
452, 455, 458, 461, 464, 467, 470, 472, 474, 478, 480, 484, 488, 490, 494, 497, 499, 501, 506, 509, 510, 513, 517,
519, 524, 525, 530, 533, 534, 538, 542, 545, 546, 550, 552, 556, 560, 562, 566, 569, 571, 573, 578, 579, 582, 585,
590, 591, 596, 597, 601, 604, 606, 611, 614, 617, 619, 622, 625, 627, 632, 634, 638, 641, 642, 646, 650, 651, 656,
659, 662, 665, 668, 671, 674, 677, 680, 683, 686, 688, 691, 694, 698, 699, 704, 706, 709, 712, 714, 719, 722, 724,
728, 731, 734, 737, 740, 743, 746, 749, 752, 755, 758, 761, 764, 766, 769, 773, 776, 777, 780, 785, 788, 791, 794,
796, 798, 803, 805, 809, 812, 814, 818, 821, 822, 826, 828, 833, 835, 837, 842, 843, 847, 851, 852, 856, 858, 863,
866, 867, 872, 875, 877, 881, 884, 885, 890, 892, 894, 899, 902, 903, 908, 911, 913, 917, 920, 921, 926, 929, 930,
933, 936, 940, 944, 945, 950, 951, 956, 958, 960, 964, 967, 971, 974, 976, 980, 983, 985, 989, 992, 994, 998, 1001,
1004, 1007, 1010, 1013, 1016, 1019, 1021, 1023, 1028, 1031, 1032, 1037, 1039, 1041, 1045, 1048, 1052, 1054, 1058,
1060, 1064, 1066, 1069, 1073, 1076, 1079, 1082, 1085, 1088, 1091, 1093, 1095, 1100, 1103, 1104, 1109, 1112, 1114,
1118, 1119, 1122, 1127, 1129, 1133, 1136, 1139, 1142, 1145, 1146, 1151, 1154, 1156, 1160, 1163, 1165, 1169, 1172,
1174, 1176, 1180, 1184, 1186, 1188, 1193, 1195, 1198, 1202, 1203, 1207, 1209, 1214, 1217, 1219, 1223, 1226, 1227,
1232, 1235, 1236, 1241, 1242, 1246, 1250, 1253, 1254, 1259, 1262, 1264, 1268, 1271, 1273, 1277, 1280, 1281, 1284,
1287, 1290, 1295, 1297, 1301, 1303, 1307, 1308, 1311, 1315, 1318, 1322, 1325, 1327, 1331, 1334, 1336, 1340, 1343,
1344, 1349, 1352, 1355, 1358, 1361, 1364, 1367, 1370, 1371, 1375, 1379, 1382, 1383, 1388, 1390, 1393, 1396, 1398,
1403, 1404, 1409, 1411, 1415, 1416, 1420, 1424, 1427, 1430, 1433, 1436, 1439, 1442, 1444, 1447, 1451, 1454, 1455,
1460, 1463, 1465, 1469, 1471, 1473, 1478, 1479, 1484, 1487, 1490, 1492, 1496, 1499, 1502, 1505, 1508, 1511, 1514,
1517, 1520, 1523, 1524, 1529, 1530, 1533, 1538, 1540, 1544, 1546, 1550, 1551, 1554, 1559, 1561, 1563, 1566, 1569,
1574, 1576, 1580, 1582, 1586, 1587, 1590, 1595, 1597, 1601, 1602, 1605, 1610, 1612, 1616, 1618, 1622, 1623, 1626,
1631, 1632, 1635, 1638, 1643, 1644, 1648, 1652, 1653, 1656, 1661, 1663, 1667, 1670, 1671, 1676, 1679, 1682, 1685,
1688, 1691, 1694, 1697, 1700, 1703, 1704, 1708, 1711, 1715, 1717, 1720, 1724, 1726, 1729, 1733, 1735, 1739, 1742,
1743, 1748, 1751, 1754, 1757, 1760, 1763, 1766, 1769, 1772, 1775, 1776, 1781, 1783, 1786, 1790, 1792, 1796, 1798,
1802, 1804, 1807, 1811, 1814, 1817, 1820, 1821, 1825, 1828, 1832, 1833, 1838, 1841, 1844, 1847, 1849, 1853, 1856,
1858, 1862, 1865, 1867, 1871, 1874, 1876, 1879, 1882, 1886, 1887, 1890, 1895, 1897, 1900, 1904, 1906, 1909, 1911,
1916, 1919, 1921, 1925, 1928, 1930, 1934, 1937, 1939, 1943, 1945, 1948, 1952, 1955, 1957, 1961, 1964, 1966, 1970,
1973, 1975, 1979, 1982, 1984, 1987, 1990, 1993, 1997, 1998, 2003, 2005, 2009, 2011, 2014, 2017, 2020, 2024, 2027,
2028, 2033, 2036, 2038, 2042, 2045, 2047, 2051, 2054, 2057, 2060, 2063, 2066, 2069, 2072, 2074, 2077, 2081, 2084,
2085, 2090, 2091, 2095, 2098, 2101, 2105, 2107, 2111, 2113, 2117, 2119, 2122, 2126, 2129, 2132, 2135, 2138, 2141,
2144, 2146, 2149, 2153, 2156, 2158, 2162, 2165, 2167, 2171, 2173, 2175, 2180, 2182, 2186, 2189, 2192, 2195, 2198,
2201, 2204, 2207, 2210, 2213, 2216, 2219, 2222, 2225, 2228, 2229, 2234, 2237, 2240, 2243, 2246, 2249, 2252, 2255,
2258, 2261, 2264, 2267, 2270, 2273, 2276, 2279, 2280, 2284, 2288, 2291, 2292, 2297, 2300, 2303, 2306, 2309, 2312,
2315, 2318, 2321, 2324, 2327, 2330, 2333, 2336, 2339, 2342, 2345, 2348, 2351, 2354, 2357, 2360, 2363, 2366, 2369,
2372, 2373, 2378, 2381, 2384, 2387, 2390, 2393, 2396, 2397, 2402, 2405, 2408, 2410, 2414, 2417, 2420, 2423, 2426,
2429, 2432, 2435, 2438, 2441, 2444, 2447, 2450, 2452, 2456, 2459, 2460, 2465, 2468, 2469, 2474, 2477, 2480, 2483,
2486, 2488, 2492, 2495, 2497, 2501, 2504, 2506, 2510, 2513, 2516, 2519, 2522, 2525, 2528, 2531, 2532, 2537, 2540,
2543, 2545, 2549, 2552, 2555, 2558, 2561, 2564, 2567, 2570, 2573, 2576, 2578, 2582, 2584, 2587, 2591, 2592, 2597,
2598, 2603, 2604, 2608, 2612, 2613, 2617, 2620, 2623, 2627, 2629, 2633, 2635, 2639, 2641, 2644, 2648, 2650, 2654,
2656, 2659, 2663, 2665, 2669, 2671, 2675, 2677, 2680, 2684, 2686, 2689, 2692, 2696, 2698, 2701, 2705, 2707, 2710,
2714, 2716, 2720, 2723, 2725, 2729, 2732, 2735, 2738, 2741, 2744, 2747, 2750, 2753, 2756, 2758, 2761, 2764, 2768,
2770, 2772, 2777, 2779, 2782, 2786, 2787, 2792, 2795, 2797, 2801, 2804, 2807, 2810, 2813, 2816, 2819, 2822, 2825,
2828, 2829, 2834, 2836, 2839, 2843, 2845, 2849, 2851, 2855, 2857, 2860, 2864, 2867, 2870, 2873, 2875, 2877, 2881,
2885, 2887, 2891, 2894, 2897, 2900, 2903, 2906, 2909, 2912, 2915, 2918, 2921, 2924, 2927, 2930, 2931, 2936, 2939,
2942, 2945, 2948, 2951, 2954, 2957, 2960, 2963, 2966, 2969, 2972, 2975, 2978, 2981, 2982, 2985, 2990, 2993, 2995,
2997, 3002, 3005, 3008, 3011, 3014, 3017, 3020, 3023, 3026, 3029, 3032, 3035, 3038, 3041, 3044, 3047, 3050, 3053,
3056, 3059, 3062, 3065, 3068, 3071, 3074, 3076, 3080, 3083, 3086, 3089, 3092, 3095, 3098, 3101, 3104, 3107, 3110,
3111, 3116, 3119, 3122, 3125, 3128, 3131, 3134, 3137, 3140, 3143, 3146, 3149, 3152, 3154, 3158, 3161, 3163, 3167,
3170, 3171, 3176, 3179, 3182, 3185, 3188, 3189, 3194, 3197, 3198, 3203, 3206, 3208, 3212, 3215, 3218, 3221, 3224,
3227, 3230, 3233, 3234, 3239, 3242, 3245, 3248, 3251, 3254, 3257, 3260, 3262, 3266, 3269, 3272, 3275, 3278, 3280,
3282, 3286, 3290, 3291, 3296, 3299, 3301, 3305, 3306, 3310, 3314, 3315, 3320
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3.5. Comparison with state-of-the-art algorithms

The Par-LS algorithm is compared with state-of-the-art large MVWCP algorithms for
large graphs. LSCC [26], MN/TS [26], ReTS-I [21], and GPULS (CPU)-R [23] are the selected
best performing recent algorithms. Table 8 gives the details of comparison with the algorithms.
LSCC, MN/TS, ReTS-I and GPULS(CPU)-R obtain 57, 56, 57, and 57 of the optimal results
respectively, whereas the Par-LS algorithm is able to find 61 optimal results. When the average
value results are considered, the Par-LS algorithm outperforms the other four algorithms.
Although the Par-LS algorithm spends more time for some of the problem instances, its
execution time can be considered as reasonable when compared with the others. Parallel
ant colony optimization based metaheuristic (PACOM) for solving the MVWCP is a high
performance algorithm [20]. The Par-LS performs better than the PACOM algorithm with
all the instances. WLMC is a recent B&B algorithm that is reported to be very efficient for
large graphs [27]. With its limited (3,600 sec.) optimization process, Par-LS finds the same
or better results than this algorithm. WLMC reports 111,139 for the MANN-a81 instance,
whereas the Par-LS reports 111,400.

In order to evaluate the performance of our algorithm, the available results of experiments
for FastWClq [25] and LSCC+BMS [26] are added to Table 8. The execution time of the
FastWClq is fast. It finds the solutions in a few seconds. Due to space limitation of the page,
we are not able to give the details of each algorithm’s execution time. The cutoff times for
FastWClq and LSCC+BMS are 100 seconds. Some of the problems cannot be solved optimally
by these two algorithms, whereas Par-LS is capable of finding optimal/best results for 172 of
173 problem instances. The execution time of Par-LS is worse than these two algorithms.

TSM-MWC [28] and WC-MWC [13] are algorithms that we can compare Par-LS algorithm
to. In a recent study by Li et al. [13], comprehensive experimental results can be observed
for these algorithms. WC-MWC algorithm has the highest performance on DIMACS and
BHOSLIB problem instances. The Par-LS algorithm again has the longest execution times
(but still reasonable when compared with brute force approaches) when compared with these
algorithms. However, The performance of the Par-LS is higher than the other algorithms
while finding the optimal/best solutions.

3.6. Speed-up and scalability performance

Since the Par-LS algorithm is a kind of island parallel heuristic algorithm, it does not
spend much time due to the dependent jobs that will be sent by the other processors. The
speed-up of an algorithm is described as the ratio of the sequential execution of the algorithm
for solving a problem to the time obtained by the parallel algorithm. The Par-LS algorithm
provides nearly a linear speed-up. This is one of the best properties of this algorithm. For
each processor, a different local search algorithm with different parameter settings and with
a different clique selection is processed. With the increasing number of processors, the delay
of the parallel algorithm is observed to be very small. Therefore, we can evaluate the Par-
LS algorithm as a scalable parallel algorithm with an almost linear speed-up performance.
Stagnation is a critical drawback of local search algorithms. A scalable and diversified parallel
algorithm that performs a (near)-linear speed-up can provide good performance while dealing
with the stagnation problem.
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4. Conclusions and future work

In this study, we introduce a novel parallel local search algorithm for the so-
lution of the MVWCP in large graphs. Single processor computers have reached
to their computation limitations due to the technological restrictions and power
wall problem. Therefore, we believe that large NP-Hard problem instances will
be solved better with parallel computation tools. Our experiments prove that
we have obtained significantly improved results. We report a new best result
for the the largest problem instance of the BHOSLIB benchmark and better
average maximum values for large graph instances. Absolutely, intelligent oper-
ators are still important means of optimization algorithms. We introduce new
operators parallel(ω,1)-swap and parallel(1,2)-swap by using parallel computa-
tion techniques. The Par-LS algorithm is observed to be a scalable algorithm
during the experiments. This means that increasing the number of proces-
sors will positively influence the optimization quality of the Par-LS algorithm.
Stagnation is a common problem of the optimization algorithms. Parallel com-
putation that starts each optimization process from a different starting point
(vertex) and works with diversified vertices can be considered as a mechanism
to prevent stagnation of local search optimization techniques. As future work,
the performance of the Par-LS can be improved by using CUDA programming.
Hyper-heuristics that make use of several heuristic approaches is a hot topic
and it can also be applied to the MVWCP.
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