
A Novel Multistart Hyper-heuristic Algorithm
on the Grid for the Quadratic Assignment Problem

Tansel Dokeroglu1*, Ahmet Cosar2

1Computer Engineering Department, Turkish Aeronautical Association University, Ankara, TURKEY
2Computer Engineering Department, Middle East Technical University, Universities Street, Ankara, TURKEY

Abstract

Hyper-heuristics introduce novel approaches for solving challenging combinatorial optimization problems by operat-
ing over a set of low level (meta)-heuristics. This is achieved by an evolutionary selection mechanism that controls and
combines the strengths of the low level (meta)-heuristics. In this study, we propose a high-performance MultiStart
Hyper-heuristic algorithm (MSH-QAP) on the grid for the solution of the Quadratic Assignment Problem (QAP).
MSH-QAP algorithm makes use of state-of-the-art (meta)-heuristics, Simulated Annealing (SA), Robust Tabu Search
(RTS), Ant Colony Optimization (FAnt), and Breakout Local Search (BLS) that have been reported among the best
performing algorithms for the solution of difficult QAP instances in standard benchmark libraries. In the first phase
of the algorithm, the most appropriate (meta)-heuristic with its near-optimal parameter settings is selected by using a
genetic algorithm optimization layer that uses a self-adaptive parameter setting method for the given problem instance.
In the second phase, if an optimal solution cannot be found, selected best performing (meta)-heuristic (with its finely
adjusted parameter settings) is executed on the grid using parallel processing and performing several multistarts in
order to increase the quality of the discovered solution. MSH-QAP algorithm is tested on 134 problem instances of
the QAPLIB benchmark and is shown to be able to solve 122 of the instances exactly. The overall deviation for the
problem instances is obtained as 0.013% on the average.
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1. Introduction

The Quadratic Assignment Problem (QAP) is an NP-Hard combinatorial optimization problem introduced by Koop-
mans and Beckmann in 1957 to model the location selection problem of indivisible economic activities [1]. Although
facility location is the most popular form of the QAP, traveling salesman, bin-packing, maximum clique, scheduling,
the graph-partitioning problem, statistical data analysis, minimum-inbreeding seed orchard layout, signal processing,
transportation systems, typewriter keyboard design, layout design, backboard wiring, and data allocation are among
the possible applications of the QAP [2][3][4][5][6][7].

The QAP is the problem of assigning facilities to locations with a varying installation costs for each location. The
objective of the problem is to find an allocation such that the total cost is of installation and transporting required
amounts of materials between the facilities is minimized. The QAP can be formally modeled by using three n×n
matrices, A, B, and C.

A = (aik) (1)

where aik is the flow amount from facility i to facility k.
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B = (b jl) (2)

where b jl is the distance (i.e, the transportation cost) from location j to location l.

C = (ci j) (3)

where ci j is the cost of placing facility i at location j.
The Koopmans-Beckmann form of the QAP can be written as:

minφεS n (
n∑

i=1

n∑
k=1

aikbφ(i)φ(k) +

n∑
i=1

ciφ(i)) (4)

where Sn is permutation of integers 1,2 ,..., n. Each term aikbφ(i)φ(k) is the transportation cost from facility i at location
φ (i) to facility k at location φ (k). Each term ciφ(i) is the total cost for installing facility i, at location φ(i), plus the
transportation costs to all other facilities k, installed at locations φ(1), φ(2) ,..., φ(n) (the range of the indexes i, j, k l,
is 1,...,n). The QAP (A, B) is an instance where A, B, and C are input matrices given with Equations 1,2,3. If there is
no C term, we can write it as a QAP (A, B).

The QAP instances larger than size 35 cannot be solved with exact algorithms due to the computational limita-
tions [8]. (Meta)-heuristic approaches produce high-quality solutions under these conditions with their high perfor-
mances [9][10][11][12][13]. Genetic Algorithms (GA)[18], Simulated Annealing (SA) [19], Ant Colony Optimization
[20][21], Tabu Search (TS) [22][23], and Breakout Local Search [16] are some of these well-known methods that have
been successfully applied to the QAP.

In this study, we propose a novel two-phase high-performance Multistart Hyper-heuristic Algorithm (MSH-QAP)
on the grid for the QAP. MSH-QAP makes use of an emerging approach, hyper-heuristics, a selection mechanism that
controls and combines the strengths of several heuristics to find the best solution for an optimization problem [25].
Due to the No Free Lunch (NFL) theorem, heuristics do not demonstrate the same performances when the domain
and/or the structure of the problem is changed [26]. We think that applying more than a single heuristic to the same
problem with parallel computation is a good idea where most probably one of the proposed heuristics will have a
better performance than the others. MSH-QAP algorithm uses the state-of-the-art (meta)-heuristics, SA, Robust Tabu
Search (RTS), Fast Ant System (FAnt), and and Breakout Local Search (BLS) that have been reported among the best
performing algorithms for large problem instances of the QAP [14][16]. MSH-QAP is a two phase algorithm. In the
first phase of the algorithm, a GA layer selects the best heuristic and tunes the parameters of the selected heuristic
adaptively while trying to find the best solution for the given QAP. If an optimal solution is not found in the first phase,
then in the second phase, the selected best heuristic is run on several processors by applying a multistart technique.
This phase of the algorithm behaves as a stagnation prevention mechanism and restarts the exploration of the search
space from different starting points and attempts to further improve the quality of the solutions. MSH-QAP also
benefits from the high performance capabilities of a parallel computing environment by running the time-consuming
calculations of each heuristic on a different processor. It explores the search space and uses the delta calculation
approach for the fitness evaluation of the neighbors, which is a very efficient way of reducing the computation time
[12].

We can summarize the contributions of our study as follows. A novel parallel multistart hyper-heuristic algorithm
is proposed for the intractable QAP. The proposed MSH-QAP algorithm significantly reduces the total execution time
of the optimization while improving the solution quality of the problems. The reduction is obtained through parallel
execution of the heuristics on the grid. State-of-the-art heuristics SA, RTA, FAnt, and BLS are used as low-level
heuristics for the solution of the QAP. The MSH-QAP algorithm has an adaptive parameter setting mechanism for each
heuristic with respect to the given problem instance. MSH-QAP algorithm obtains 122 of the benchmark problems
optimally while producing only 0.013% deviation from the best known results for the remaining 12 problems.

In section 2, related studies for the state-of-the-art hyper-heuristic algorithms and the QAP are given. Our proposed
algorithm, MSH-QAP, new genetic operators, the low-level heuristics SA, RTS, FAnt, and BLS that are used in the
proposed algorithm are briefly explained in section 3. The setup of the experimental environment, obtained results,
and comparison with state-of-the-art (meta)-heuristics are presented in section 4. Concluding remarks are provided in
the last section.
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2. Related Work

Several optimization problems have been reported to be successfully solved by using hyper-heuristics. In this
section, we give information about the most important ones that are related with combinatorial optimization problems.
We also give short information about Genetic Algorithms (GA) and the state-of-the-art QAP solution algorithms.
Finally we make a comparison between the existing solutions and our proposed algorithm.

The term hyper-heuristic was first described as a technique to combine different artificial intelligence techniques
for improving the performance of automated theorem proving systems in 1997 [24]. Contemporary use of hyper-
heuristics involves a set of (meta)-heuristics that are used for solving NP-hard search problems. Heuristics are se-
lected and adapted for each problem instance, automatically, by using a selection algorithm. By using hyper-heuristic
techniques, general applicability of heuristic search methods is improved without requiring intervention by a hu-
man expert to adjust the parameters of employed search heuristics [25][32][33][45]. The hyper-heuristics differ from
(meta)-heuristics by performing a search within the search space of heuristics, while (meta)-heuristics search within
the space of problem solutions. Thus, a hyper-heuristic works by selecting the best search method or sequence of
heuristics for a given problem instance [25][45][35].

Burke et al, report on two distinct timetabling and rostering problems using three randomly prepared sets of
problem instances and investigate the performance of a tabu-search based hyper-heuristic [46]. This study uses rein-
forcement learning principles to come up with rules that will competitively evaluate and choose the most preferable
heuristic. In order to prevent some heuristics from being chosen for a certain period a tabu list of heuristics is main-
tained. The work successfully shows that for various problem instances acceptable quality solutions can be obtained
by using a tabu-search hyper-heuristic. Burke et al., propose a study of a simple generic hyper-heuristic on a set of
constructive graph coloring heuristics for the timetabling problem. The proposed technique searches for permutations
of exam and course timetabling heuristics combinations also making use of a tabu search approach [58].

The frequency assignment problem (FAP) in TD-SCDMA network of mobile communications industry is studied
by Yang et al. [63]. The authors define six low-level heuristics (LLHs) search strategies based on the computation
of interference, and then use genetic algorithm (GA) at a high-level to find the best combination sequence of LLH
strategies to reduce interferences of the overall network. GA uses two-point crossover, uniform mutation, and Minimal
Generation Gap (MGG) as the generation alternation model. This high level approach controls and combines the
strengths of three well-known multi-objective evolutionary algorithms by utilizing them as the low level heuristics
[61]. This study has some similarities with our approach in a sense that GA is also used in our proposed algorithm as
a heuristic selection layer but the solved problems are different.

An investigation of a simple generic hyper-heuristic approach for a set of widely used constructive heuristics
(graph coloring heuristics) in timetabling is proposed by Burke et al. [58]. In this study, a tabu search approach is
employed to search for permutations of graph heuristics which are used for constructing timetables in exam and course
timetabling problems. Beyaz et al., propose a set of novel hyper-heuristic algorithms that select/combine the state-of-
the-art heuristics and local search techniques for minimizing the number of 2D bins [47]. A historical perspective on
automated algorithm design, and similarities and differences between meta-learning in the field of supervised machine
learning (classification) and hyper-heuristics in the field of optimization is provided by Pappa et al. [59].

A set of approaches used to deal with the frequency assignment problem (FAP) is proposed for the design of GSM
networks [50]. The formulation of FAP focuses on aspects of real-world GSM networks. A memetic algorithm in-
cluding local search and variation operators is presented. A parallel hyper-heuristic-based model is used to parallelize
the approach and to avoid the requirement of the adaptation step of the memetic algorithm. The model is a hybrid and
combines a parallel island-based scheme with a hyper-heuristic approach. From this point of view, our approach is
not an island model.

A hyper-heuristic approach based on genetic programming, which is called as genetic hyper-heuristic, is intro-
duced for evolving an enhanced version of the Sloan algorithm [62]. A hyper-heuristic algorithm by Salcedo et al.,
is designed for solving the Jawbreaker puzzle [67]. Topcuoglu proposed a novel hybrid strategy by integrating mem-
ory/search algorithms with hyper-heuristic techniques on dynamic environments [68]. Sim et al., proposed a continu-
ously learning system based on hyper-heuristics in order to solve a combinatorial optimization problem. This system
is inspired by artificial immune system methods and works by generating new heuristics and sampling problems in its
environment [64].
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A parallel hyper-heuristic approach for two-dimensional rectangular strip-packing problems is proposed in [36].
This is an island model with a master-slave structure. All the islands run a memetic algorithm-based hyper-heuristic.
The basic technique uses Extended Virtual Loser (EVL). The memory-based technique memorizes the past events.
It can influence the operations of the evolutionary algorithms using the memory. The EVL technique learns the
bad values of the variables based on the worst solutions of the population and computes probabilities to control the
mutation steps.

GAs are used as a heuristic selection and parameter tuning layer in our proposed algorithm. GAs have been used
to solve search and optimisation problems [27]. They use a computational model similar to the natural processes of
selection and evolution. Individuals with better quality have more probability of surviving. GAs can perform efficient
search operations in several problem areas. A random population is generated and by applying selection, crossover,
and mutation operations, GAs create new solutions through the generations [28]. The best individual becomes the
solution of the problem. GAs select the individuals to crossover or mutate. Tournament, roulette wheel, and truncation
are the most frequently used selection methods in this process.

Several algorithms have been proposed for both exact and approximate solutions of the QAP. Exact algorithms
are limited to solving small data sets of the QAP (up to problem size 35) with massively parallel computers, whereas
(meta)-heuristics such as SA, RTS, FAnt, and BLS can provide near-optimal solutions within reasonable optimization
times for larger problem instances [7][48][49]. An efficient parallel hybrid genetic algorithm (HGA) is proposed by
Tosun [60]. Battiti and Tecchiolli proposed a PGA for the QAP [29]. This PGA subdivides the population of solutions
and migration of solutions among the processors occurs during the execution. Detailed information about these
algorithms can be found in [30]. James, Rego, and Glover introduced a cooperative parallel TS algorithm (CPTS)
for the QAP [39]. The CPTS provides high-quality solutions for the problem instances in QAPLIB with acceptable
computational times. A detailed survey about the classical QAP optimization algorithms can be found in [8].

To the best of our knowledge, our proposed algorithm (MSH-QAP) is the first parallel hyper-heuristic algorithm in
the literature that has been developed for the solution of the QAP so far. We use four different low-level heuristics and
implement a GA layer on the master node with a global population to select the heuristics and tune their parameters.
Parallel MSH-QAP significantly reduces the overall execution time of the hyper-heuristic algorithms and provides a
high performance means of exploring NP-Hard optimization problems. Several heuristics are imported into MSH-
QAP with respect to the NFL theory [26]. Low-level heuristics that are used by MSH-QAP algorithm are explained
in the third section of our study.

3. Multistart Hyper-heuristic Algorithm (MSH-QAP)

In this section, we introduce our proposed algorithm, Multistart Hyper-heuristic Algorithm for the QAP (MSH-QAP).
There exist two phases for the execution of the MSH-QAP algorithm. In the first phase, a GA is run on the grid
and parameters of the heuristics are optimized and the best heuristic is decided among RTS, SA, FAnt, and BLS for
the given problem instance. The solution quality is improved by using several heuristic mechanisms on a parallel
computation environment. The execution of these heuristics is a time consuming process therefore, all of the fitness
evaluations of the chromosomes are calculated on a separate slave node by using MPI communication paradigm. If
the solution found by the first phase of the MSH-QAP is not an optimal one with respect to the solutions in the QAP
benchmark library then the second phase of the MSH-QAP is started. In this phase, the best selected heuristic and its
near-optimal parameter settings are given to all of the slave nodes and executed with multistarts.

The flowchart of the MSH-QAP can be found in Figure 1. The MSH-QAP pseudocode for the master and slave
nodes can be found in Algorithms 1 and 2 respectively.

3.1. Chromosome Structure
The chromosome structure of the MSH-QAP algorithm consists of three segments (see Figure 2). The leftmost

segment of the chromosome keeps control of the solution vector for the QAP. The segment in the middle is the
heuristic part that holds the information of search heuristic to be applied to the solution vector (SA, RTS, FAnt, and
BLS are the alternatives for this segment). The rightmost segment contains the parameters of the selected heuristic.
Parameters of the heuristics such as number of failures, tabu list size, and etc. are the data preserved in this field in
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Figure 1: Flowchart of the MSH-QAP algorithm (green boxes are executed at the slaves).

Algorithm 1: Pseudocode for the Master Node of Multistart Hyper-heuristic Algorithm (MSH-QAP)

1 /*First Phase*/

2 p: population;
3 generate initial population(p);
4 for i← 1 to number of generations do
5 for k← 1 to number of slaves do
6 crossover(p);
7 mutation(p);
8 send offspring chromosome to slavek // to execute the selected heuristic at the slave side
9 receive calculated offspring chromosome from slavek

10 insert offspring chromosome into the population if better than any individual

11 /*Second Phase*/

12 if (the fitness value of the best individual is not the same with the fitness value of an optimal )
13 for k← 1 to number of slaves do
14 send the selected best chromosome to slavek // to run the best heuristic with multistarts
15 receive the calculated chromosome from slavek

16 report the best chromosome sent by the slaves as the best solution
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Algorithm 2: Pseudocode for the Slave Nodes of Multistart Hyper-heuristic Algorithm (MSH-QAP)

1 /*First Phase*/

2 for i← 1 to number of generations do
3 receive chromosome from Master Node
4 calculate the fitness of the received chromosome
5 send the calculated chromosome to the Master Node

6 /*Second Phase*/

7 if (the fitness value of the best individual is not the same with the fitness value of an optimal )
8 receive the currently best available heuristic and its parameters from Master Node

9 iterator i← 0;
10 while (i++ < number of multistarts) do
11 execute the meta-heuristic encoded in the selected chromosome with well-tuned parameters

12 send the best discovered solution to Master Node

accordance with the type of the chosen heuristic. Parameters segment of the chromosome is a flexible array therefore
it is adaptive and can handle different number of parameters depending on the type of selected heuristic.

For example, if the chromosome represents a robust tabu search heuristic then the leftmost segment is the permu-
tation of the QAP, the second segment is a string (”robust tabu search”), and the rightmost one is an array of size four
that holds parameters such as (5,000*n, 9*n, 11*n, n*n) where n is the size of the QAP.

Figure 2: Chromosome structure for the MSH-QAP Algorithm.

3.2. Crossover and Mutation Operators
Crossover and mutation are the main operators of a GA to explore a search space of a given problem. For every

chromosome, we randomly generate a solution vector before applying the heuristic. We use crossover and mutation
operators for selecting the heuristics and setting the parameters. The use of the heuristics on the population are evenly
distributed, which means that in a population with 24 individuals, we produce the same number of individuals for
each heuristic (6 individuals for each heuristic SA, RTS, FAnt, and BLS) and keep this distribution until the end of
the generations by applying selection, crossover, and mutation on the same chromosomes.

The crossover operator works on the parameters segment by cutting the rightmost 50% part of the segment.
Mutation operator randomly replaces the parameters within the given boundaries. As it can be seen in Figure 2, the
parameters can be chosen between [1...k]. Elitist selection is used at the end of each generation. A child chromosome
with a better fitness value than an existing similar kind of heuristic in the population is replaced (see Figures 3 and 4).

Various parameters of the heuristics used in MSH-QAP algorithm need to be tuned well for its efficiency [52].
Therefore, an adaptive parameter setting mechanism (layer) is used for MSH-QAP algorithm in order to explore the
search space in a more effective way. The crossover and mutation operators of the MSH-QAP algorithm try to tune the
near-optimal parameter settings for the given heuristics while optimizing the solution of the problem. GA is applied
in the first phase of the MSH-QAP algorithm.
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Figure 3: Crossover Operator for the MSH-QAP Algorithm.

Figure 4: Mutation Operator for the MSH-QAP Algorithm.

3.3. Fast Evaluation of New Permutations
Exchanging two units of an existing solution and producing a new permutation is proved to be the best way to

explore the search space of the QAP. This approach allows us to calculate the cost of the new permutation in a very
fast manner by only finding the difference with the former solution [23]. This method is used as a performance
increasing calculation method in our proposed algorithm, MSH-QAP. Starting from a solution φ, a neighbor solution
π is obtained by permuting units r and s:

π(k) = φ(k) ∀k , r, s

π(r) = φ(s)
π(s) = φ(r)

(5)

If the matrices are symmetrical, the value of a move, ∆(φ, r, s) is:

∆(φ, r, s) =

n∑
i=1

n∑
j=1

(ai jbφ(i)φ( j) − ai jbπ(i)π( j))

= 2 ·
n∑

k,r,s

(ask − ark)(bφ(s)φ(k) − bφ(r)φ(k))

(6)

3.4. Communication Topology of the Algorithm
MSH-QAP algorithm uses a master and slave communication topology (star) during the generations. The master

node keeps the population and sends the heuristics to be executed to the slaves. In addition to the type of the heuristic
to be run on the slave, the message also keeps the parameters of the executed heuristic. After the execution of the
heuristic by the slave node, the master node receives the solution and inserts the information of the new chromosome
to the population if it is better than any existing solution (see also Figure 1). Through the generations, the parameters
of the heuristics and the solution quality of the problem are improved with this method. Figure 5 presents the master-
slave (star) communication topology of the MSH-QAP algorithm.

3.5. Low-level Heuristics Used in the MSH-QAP Algorithm
This section gives brief information about the (meta)-heuristics used by our proposed algorithm, MSH-QAP. The

(meta)-heuristics are the algorithms, Simulated Annealing (SA), Robust Tabu Search (RTS), Fast Ant System (FAnt),
and Breakout Local Search (BLS) that have been reported to be among the best performing ones for the solution of the
QAP. Although only these four algorithms are used in the MSH-QAP algorithm, there is no constraint for the number
of heuristics that MSH-QAP algorithm can import into the search process.
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Figure 5: Communication Topology of the Algorithm (master node sends the information of the heuristics and gets back the
solution of the problem and the execution information of the heuristic). There are slaves and a master in the communication
topology. Each slave is executing a different heuristic and sending the evaluated chromosome to the master node.

3.5.1. Simulated Annealing
Simulated Annealing (SA) is inspired from the annealing process in metallurgy [40][41][42]. If metal cools very

fast, the atoms cannot get chance to produce a powerful lattice and are settled in a random manner, resulting in a
fragile metal. If the temperature is decreased very slowly, the atoms have more time to construct strong crystals and
this increases the quality of the product. The SA algorithm implemented for the QAP uses a temperature reheating
technique during the execution [43]. The temperature reheating is intended to allow the algorithm to escape from
particular local minima regions when the temperature reaches to a very low value. This permutation is the current
best solution πbest and current best evaluation is f (πbest). The initial temperature is T0= 0.005. f (πbest). In function
GenerateRandomNeighbor(π), a neighbor π′ of π is obtained by swapping the position of two items i and j. Pair-swaps
are applied sequentially for each solution π for all k = 1,...,n.

All moves that improve the current solution are accepted. Moves that worsen it are accepted based on the Metropo-
lis condition. This acceptance criterion is implemented by the function Accept(Tn, π, π

′). For the cooling schedule,
we retain the temperature level for c.n consecutive swaps, where c is a parameter. Some initial experiments show that
c = 100 gives a nice performance. Geometric cooling is used with the temperature at iteration i+1 being set to Ti+1
= α.Ti with α= 0.9. When the temperature is below 1, the temperature value is set to T0 and restarted with the same
cooling process. This temperature schedule is implemented in function SetTemperature(Tn, Iterations, c). The SA
algorithm continues until the maximum computation time limit. The numbner of iterations and initial temperatures
are the parameters to be set for the SA algorithm. Details of the SA algorithm are given in Algorithm 3.

3.5.2. Robust Tabu Search
Glower proposed and formalized Tabu Search (meta)-heuristic as a better local search method for the optimization

problems [22]. In general, a local search method begins with a starting solution and attempts to improve the solution
by visiting neighbor solutions. Neighbor solutions can be generated by changing the initial solution with minor
changes. Therefore, local search method explores neighbors of the initial solution for finding a better solution. Local
search method can terminate in local optima or on a landscape where all neighbors have similar quality. When this
happens, local search method stops with a suboptimal solution which might be far away from the global optima. In
order to remove this drawback of local search, Tabu search introduces two novel properties. To avoid getting stuck
into local optima, Tabu Search can prefer a neighbor solution with a worse quality if other neighbors do not provide a
better solution than the initial solution. This move can make Tabu search get rid of the local optima.

As a second property, Tabu Search does not visit previous neighbor solutions if they have been visited before or if

8



Algorithm 3: Simulated Annealing for the QAP

1 T0 is the initial temperature
2 π is a solution vector
3 generate initial solution π
4 πbest ← π
5 T0 ← initial value

6 while (termination condition is not satisfied) do
7 π′ ← GenerateRandomNeighbour(π)
8 π′′ ← Accept(Tn, π, π

′)
9 if ( f (π′) < f (πbest)) then

10 πbest ← π′′

11 Tn+1 ← S etTemperature (Tn, Iterations, c)
12 π← π′′

13 return πbest

they are marked by the user as forbidden locations. To implement this property, a taboo list is kept to store the visited
solutions. Because of this property, the method name is termed as Tabu. In practice, taboo list can be implemented
with various data structures held in memory. This list can hold the visited and forbidden solutions. By limiting the size
of the list, it can be used as a short-term memory. When the list is filled, the oldest entry is deleted as First-In First-Out
(FIFO) queue. RTS has been applied to solve QAP very effectively so far [12, 23]. The algorithm of RTS is presented
in Algorithm 4. Maximum number of failures, tabu tenure upper limit, tabu tenure lower limit, and aspiration value
are the parameters to be set for the RTS heuristic.
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Algorithm 4: Robust Tabu Search Algorithm [23]

1 Authorized: If a move is not tabu, it is authorized.
2 Aspired: Allow tabu moves if they are decided to be interesting.
3 Tabu List: A list to forbid reverse move.
4 Neighbor: Each location in the permutation is considered as neighbor.

5 RTS (FLOW, DIST, MaxIter, BestPerm, MinSize(<n×n/2), MaxSize(<n×n/2), Aspiration(>n×n/2));
6 TABU LIST← {};
7 CurCost← QAP Cost(BestPerm);
8 CurSol← BestPerm;
9 Delta[i][j]← ComputeDelta(); /* i = 0,...,n, j = 0,...,n */

10 TABU LIST[i][j]← - (n×i+j); /* i = 0,...,n-1, j = 0,...,n-1 */

11 for (iteration← 1; iteration < MaxIter; iteration++) do
12 i retained← infinite;
13 MinDelta← infinite;
14 Already Aspired← false;

15 for (each Neighbor (i, j)) do
16 current1← TABU LIST[i][CurSol[j]];
17 current2← TABU LIST[j][CurSol[i]];
18 Authorized← (current1 < iteration) or (current2 < iteration);
19 Aspired← (current1 < iteration-Aspiration) or (current2 < iteration-Aspiration) or (CurCost +

Delta[i][j] < BestCost);
20 if ( (Aspired and Already Aspired) or (Aspired and Delta[i][j] < MinDelta) or
21 (!Aspired and !Already Aspired and Delta[i][j] < MinDelta and Authorized) ) then
22 i retained← i;
23 j retained← j;
24 MinDelta← Delta[i][j];
25 if (Aspired) then
26 Already Aspired← true;

27 if (i retained , infinite)) then
28 SWAP(CurSol[i retained], CurSol[j retained]);
29 CurCost← CurCost + Delta[i retained][j retained];
30 TABU LIST[i retained][CurSol[j retained]]← iteration + getRandom(MinSize, MaxSize);
31 TABU LIST[j retained][CurSol[i retained]]← iteration + getRandom(MinSize, MaxSize);
32 if (CurCost < BestCost) then
33 BestCost← CurCost;

34 UPDATE MOVE COSTS(FLOW, DIST, CurSol, Delta, i, j, i retained, j retained);
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3.5.3. Fast Ant System (FAnt)
The Ant Colony Optimization (ACO) algorithms have evolved since their first introduction [14][15]. With Fast Ant

System (FAnt) algorithm, a general model developed from the real ant model is presented. This model is called the Ant
System (meta)-heuristic and defined by a set of principles for the development of heuristics for several combinatorial
optimization problems. Artificial ant systems are developed by making three analogies. (1) Processes simulate real
ants that are in charge of building solutions to the combinatorial problem and they are called as Artificial ants. (2) The
pheromone trails of the ants corresponds to a common memory that is revised each time that a new solution is found.
(3) The queen is a central process in charge of activating and coordinating artificial ants and of managing the common
memory. An ant (meta)-heuristic can be described by a set of processes that work through a common memory. The
first set of processes, corresponding to the ants, built solutions in a probabilistic way, with probabilities depending on
information stored in memory. All these artificial Ant processes are coordinated by a Queen process that also manages
the common memory.

Matrix M of size n × n is the common memory. Matrix entry mir is the facility i placed on location r in solutions
previously generated by the algorithm. The higher the quality and the larger the number of solutions generated with
facility i placed on location r, the higher the mir value is.

The idea of the Fast Ant System is to design a simple method that incorporates diversification and intensification
strategies. This is achieved by reinforcing the attractiveness of the mir values, the best solution found so far by the
search, and clearing the common memory if the process appears to be stagnating. The Ant process builds a new
solution by choosing the location r of facility i with a probability proportional to mir. Then the current solution is
improved with a local search technique and sent to the Queen process (see Algorithm 5 for the pseudocode of the ANT
process). While implementing intensification and diversification, the Queen process manages the memory matrix M,
a variable v and the best solution π∗ obtained by the system. Initially v = 1 and mir = v , ∀i, r. The Queen repeats the
process given in Algorithm 6.

Algorithm 5: Ant Process Pseudocode for FAnt Algorithm [14]

1 Receive problem data, memory state and other parameters from the Queen process,
2 Build a new solution probabilistically
3 Send the new solution to Queen process.

Algorithm 6: Queen Process Pseudocode for FAnt Algorithm [15]

1 Start an Ant Process
2 Wait for a solution π from an Ant process
3 if (π = π∗) then
4 set v← v + 1
5 set mir = v ∀i, r

6 if (π is better than π∗) then
7 set π∗ ← π
8 set v← 1
9 set mir ← v ∀i, r

10 set miπi ← miπi + v, ∀i
11 set miπ∗i ← miπ∗i + R, ∀i //R is a parameter used by Queen process
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3.5.4. Breakout Local Search (BLS)
Breakout local search (BLS) implements a technique similar to Iterated Local Search (ILS) algorithm [17][16]. It

changes between a local search phase and a dedicated perturbation phase iteratively to obtain new promising solution
areas. BLS starts from an initial solution, π0, and applies the steepest descent procedure to π0 for reaching a local
optimum π. Each round of the steepest descent explores the neighbors and selects the best one. If there is no solution
in the neighborhood, it means that a local optima is reached. BLS attempts to escape from this local optimum π by
applying dedicated perturbation moves to π (with a suitable number L). π is said to be perturbed with these moves.
This perturbed solution becomes a new starting point.

A successful local search depends on the right degree of diversification applied to the search. An optimal diver-
sification degree for at a certain solution may not be necessarily optimal for another one. The diversification degree
that is applied by a perturbation mechanism depends on the number of perturbation moves (jump magnitude) and the
type of moves. In a weak diversification environment, the local search has a higher probability of getting stuck into
local optimal solutions. This is called stagnation. Conversely, a strong diversification may lead to a random restart
with a low probability of obtaining better solutions. The perturbation mechanism of BLS tries to find the most suit-
able degree of diversification required at a certain stage of the search. BLS does this by dynamically determining the
number L of perturbation moves and by adaptively choosing between three types of perturbation moves of different
intensities.

The Algorithm 7 presents the solution of BLS for the QAP. Details of the algorithm can be found in [16]. Starting
solution of the BLS is randomly chosen and uses the descent procedure to reach a local optimum π. The jump
magnitude L is decided depending on the search escaped or returned to the previous local optimum. BLS uses L
perturbation moves to π in order to get a new starting point. Initial jump magnitude, maximal jump magnitude,
maximum number of non-improving attractors visited before strong perturb, tabu tenure, smallest probability for
applying directed perturbation, and probability for applying random over recency-based perturb are the parameters to
be set for the BLS heuristic.
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Algorithm 7: Breakout Local Search Heuristic Algorithm [16]

1 distance and flow matrices d and f of size n × n.
2 a permutation π over a set of facility locations.
3 π← random permutation of {1, ..., n}
4 c← C(π) // is the objective value of the current solution
5 Compute the initial n × n matrix δ of move gains
6 πbest ← π // πbest is the best solution found so far
7 cbest ← c // cbest is the best objective value reached so far
8 cp ← c // cp is the best objective value of the last descent
9 ω← 0 // ω is the counter for consecutive non-improving local optima

10 L← L0 //set the number of perturbation moves L to its default value L0
11 while the termination condition is not satistfied do
12 while ∃ swap(u, v) such that (c + δ(π, u, v)) < c do
13 πbest ← π ⊕ swap(u, v) // perform the best-improving move
14 c← c + δ(π, u, v)
15 Huv ← Iter // update iteration number when move uv was last performed
16 Update Matrix δ
17 Iter ← Iter + 1

18 if (c < cbest) then
19 πbest ← π; cbest ← c; // update the recorded best solution
20 ω← 0; // reset counter for consecutive non-improv. local optima

21 if (c , cp) then
22 ω← ω + 1;

23 // determine the perturbation strength L to be applied to π
24 if (ω > T ) then
25 // search seems to be stagnating, set L to a large value
26 L← Lmax;ω← 0;

27 if (c = cp) then
28 L← L + 1 // search returned to the previous local optimum, increase jump magnitude by one
29 else
30 L← L0 // search escaped from the previous local optimum, reinitialize jump magnitude

31 // perturb the current local optimum π with L perturb. moves
32 cp < c; // update the objective value of the previous local optimum
33 π← Perturbation(π, L,H,T ER, δ, ω);
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4. Performance Evaluation of Experimental Results

In this section, we present the results of our experiments that are obtained with the MSH-QAP algorithm. 134 prob-
lem instances given in the QAP benchmark, QAPLIB, are solved during the experiments [3]. Since most of the
state-of-the-art QAP algorithms are evaluated on these problem instances, QAPLIB provides a fair ground to compare
the solutions with the other algorithms in the literature. The QAP instances are analyzed on four types of problem
instances categorized by Stützle [56]. The classified instances given by Stützle are:

Type 1. Unstructured, randomly generated instances have distance matrix that is randomly generated based on a
uniform distribution.

Type 2. Instances with Grid-based distances contain instances in which the distances are the Manhattan distance
between points on a grid.

Type 3. Real-life instances are produced from real-life QAP applications.
Type 4. Real-life-like instances are generated instances that are similar to real-life QAP problems.

We compare our results with those of the recent state-of-the-art (meta)-heuristics in terms of solution quality and
computational effort and discuss the robustness and scalability issues of the proposed algorithm. Experiments are
performed on a High Performance Cluster (HPC) computer which has 46 nodes, each with 2 CPUs giving 92 CPUs.
Each CPU has 4 cores giving a total of 368 cores. Each node has 16GB of RAM giving 736 GB of total memory.
High-bandwidth communication is available among nodes, using two 24 port Gbps ethernet switches, and one 24
port infiniband switch, providing very low latency messaging with a capacity of 8Gbps. C++ and the MPI libraries
are used during the development [44][57]. Tests are performed 10 times for each problem instance and the average
values are reported. Table 1 presents the parameters used for the GA phase of the MSH-QAP algorithm during the
experiments.

Table 2 presents the ranges of the parameters for the low-level heuristics that are optimized during the experiments.
The last column of the Table gives the overall best ranges of the parameters that are used by the heuristics. Some of
the parameters increase with respect to the problem size n.

Table 1: Parameter settings for the MSH-QAP algorithm

Parameter Setting
Population Size 24

Number of generations 10

Number of processors 64

Number of multistarts 5

Crossover ratio 50%

Mutation ratio 1%

Settings the right parameters has a significant impact on the performance of a heuristic algorithm [65][66]. There
is no exact method defined for this process and previously prepared parameters may not produce good performance
for every problem instance. In the first phase of our algorithm, the parameters used for the SA, RTS, FAnt, and BLA
algorithms are tuned adaptively by using crossover and mutation operators. For the SA algorithm, the acceptance
probability, the annealing schedule temperature, and initial temperatures are set. For the RTS algorithm, maximum
number of failures, tabu tenure, and aspiration values are optimized and for the FAn algorithm, number of FAnt
iterations, ant memory, parameter for managing the traces, and iteration counters are optimized. For BLS, initial
jump magnitude, maximal jump magnitude, maximum number of non-improving attractors visited before strong
perturb, tabu tenure, smallest probability for applying directed perturbation, and probability for applying random over
recency-based perturb are tunes. How the heuristic algorithms perform through the generations (initial population and
20 generations) is given in the Table 3. The table shows the deviation percentages of the heuristics.
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Table 2: Ranges of the parameters for the low-level heuristics that are optimized during the experiments. The last column of the
table shows the optimized parameter ranges for the heuristics (n is the QAP size).

Heuristic parameter name range observed best range

SA
initial temperature [1, 200] [45, 70]

number of iterations [100 × n , 3000 × n] [ 2500 × n , 3000 × n]

RTS
max. number of failures [100 × n , 10000 × n] [9000 × n , 10000 × n]

tabu tenure lower limit [2 × n , 10 × n] [8 × n , 9 × n]

tabu tenure upper limit [11 × n , 20 × n] [11 × n , 12 × n]

aspiration value [n × n , 10 × (n × n)] [n × n , 2 × (n × n)]

FAnt
number of iterations [10 × n , 5000 × n] [4000 × n , 5000 × n]

parameter for managing the traces (R) [1,n] [1, 0.2 ×n ]

parameter for managing the traces (increment) [1,n] [1, 0.3 ×n]

BLS

initial jump magnitude [0.01 × n, 0.5 × n] [0.04 × n, 0.18 × n]

maximal jump magnitude [0.1 × n, 0.9 × n] [0.5 × n, 0.7 × n]

maximum number of non-improving attractors [100, 5000] [2500, 2900]

tabu tenure [2 × n , 18 × n] [8 × n , 12 × n]

Table 3: Deviation percentages of the heuristics from the best known solutions through generations. Initial population (having
randomly selected parameters for the heuritics) and optimized parameters after 20-generations are presented. The experiments are
carried out 30 times for nug30 problem instances.

Heuristic initial population deviation (%) deviation after 20-generations (%) improvement percentage (%)
SA 164.40 0.50 99.7%

RTS 267.71 0.04 99.9%

FAnt 51.01 0.05 98.9%

BLS 142.42 0.03 99.9%
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4.1. The Effect of Multistart Process
Multistarting a heuristic from a different point is an efficient technique that has been used for most of the state-

of-the-art algorithms [37][38][39]. It helps the algorithm prevent from stucking into local optima by restarting the
exploration with a new beginning solution randomly. In Figure 6, we can observe its positive effect on the average of
the solution quality when the number of multistarts is increased for tai100a problem instance. The experiments are
performed with a single, 5, and 50 multistarts respectively for 30 times. 27.1% improvement in the average deviation
of the obtained results is observed with 50 multistarts with respect to a non-multistarting solution method. The results
are given with respect to the Best Known Solution (BKS) of the tai100a problem instance in the QAPLIB.

Figure 6: The effect of multistart for tai100a (having the same parameter settings for each run of RTS).

4.2. Fitness Distance Landscape Analysis of the QAP instances
Fitness Distance Correlation (FDC) defines an efficient analysis of the QAP landscape and local optima with

respect to the fitness value and similarities to the best known solutions [51][53][54]. FDC is a parameter to decide
which type of heuristic to apply to a problem instance depending on its FDC analysis. The QAP instances are reported
to have very unstructured landscapes [55]. The local optima of the QAP instances are not restricted to small search
spaces and they are not very correlated with each other (tal100b is an exception to this evaluation). Therefore, most of
the QAP instances have no exploitable structure with respect to the distribution of the local optima. For that reason,
we use a random number generator for different starting points of the QAP instances during GA and multistart phases
of the algorithm.

4.3. Comparison with the state-of-the-art (meta)-heuristics
Optimal results obtained with MSH-QAP algorithm for 122 QAPLIB problem instances are presented in Table 4.

Although the number of generations is 10 for the MSH-QAP algorithm and there exists a second phase, optimal results
of these instances are found at the very early generations (mostly at the first generation) and terminated the execution
of the algorithm for the next generations. The second phase of the MSH-QAP algorithm is not started for these
instances. The execution time of these results are shorter than the other problem instances of whose optimal solutions
are not found by MSH-QAP algorithm. SA and FAnt algorithms are observed to outperform RTS and BLS for the
small problem instances (up to 30 problem size) with their performances however, RTS and BLS outperform both of
these algorithms as the problem size increases and dominates the population of the genetic phase of the algorithm.

The state-of-the-art algorithms in the literature, Multi-Start TS Algorithm JRG-DivTS [38], Iterated Tabu Search
(ITS) [12], Self Controlling Tabu Search (SC-Tabu) [11], Ant Colony Optimization GA/Local Search Hybrid ACO/GA/LS
[9], GA Hybrid with Concentric TS Operator GA/C-TS [10], GA Hybrid with a Strict Descent Operator GA/SD [10],
Parallel Hybrid Algorithm (PHA) [60], Memetic search for the QAP (BMA) [48], Great Deluge and Tabu Search
(GDA) [49] are selected to be compared with MSH-QAP algorithm during our experiments. Tables 5-8 present the
results of our experiments with respect to the four categories defined by Stützle respectively (the best performing first
three results are given in bold face).
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Table 4: 122 optimal solutions found by our proposed algorithm, MSH-QAP.

Instance BKS Found APD BPD min. Instance BKS Found APD BPD min.
bur26a 5426670 10 0 0 1.3 lipa60b 2520135 10 0 0 3.0
bur26b 3817852 10 0 0 1.3 lipa70a 169755 10 0 0 3.5
bur26c 5426795 10 0 0 1.3 lipa70b 4603200 10 0 0 3.5
bur26d 3821225 10 0 0 1.3 lipa80a 253195 10 0 0 4.0
bur26e 5386879 10 0 0 1.3 lipa80b 7763962 10 0 0 4.0
bur26f 3782044 10 0 0 1.3 lipa90a 360630 10 0 0 4.5
bur26g 10117172 10 0 0 1.3 lipa90b 12490441 10 0 0 4.5
bur26h 7098658 10 0 0 1.3 nug14 1014 10 0 0 0.7
chr12a 9552 10 0 0 0.6 nug15 1150 10 0 0 0.8
chr12b 9742 10 0 0 0.6 nug16a 1610 10 0 0 0.8
chr12c 11156 10 0 0 0.6 nug16b 1240 10 0 0 0.8
chr15a 9896 10 0 0 0.8 nug17 1732 10 0 0 0.9
chr15b 7990 10 0 0 0.8 nug18 1930 10 0 0 0.9
chr15c 9504 10 0 0 0.8 nug20 2570 10 0 0 1.0
chr18a 11098 10 0 0 0.9 nug21 2438 10 0 0 1.1
chr18b 1534 10 0 0 0,9 nug22 3596 10 0 0 1.1
chr20a 2192 10 0 0 1.0 nug24 3488 10 0 0 1.2
chr20b 2298 10 0 0 1.0 nug25 3744 10 0 0 1.3
chr20c 14142 10 0 0 1.0 nug27 5234 10 0 0 1.4
chr22a 6156 10 0 0 1.1 nug28 5166 10 0 0 1.4
chr22b 6194 10 0 0 1.1 nug30 6124 10 0 0 1.5
chr25a 3796 10 0 0 1.3 rou12 235528 10 0 0 0.6
els19 17212548 10 0 0 1.0 rou15 354210 10 0 0 0.8
esc16a 68 10 0 0 0.8 rou20 725522 10 0 0 1.0
esc16b 292 10 0 0 0.8 scr12 31410 10 0 0 0.6
esc16c 160 10 0 0 0.8 scr15 51140 10 0 0 0.8
esc16d 16 10 0 0 0.8 scr20 110030 10 0 0 1.0
esc16e 28 10 0 0 0.8 sko42 15812 10 0 0 2.1
esc16f 0 10 0 0 0.8 sko49 23386 10 0 0 2.8
esc16g 26 10 0 0 0.8 sko56 34458 10 0 0 2.8
esc16h 996 10 0 0 0.8 sko64 48498 10 0 0 3.2
esc16i 14 10 0 0 0.8 sko72 66256 10 0 0 3.6
esc16j 8 10 0 0 0.8 sko81 90998 10 0 0 4.1
esc32a 130 10 0 0 1.6 sko90 115534 10 0 0 4.5
esc32b 168 10 0 0 1.6 sko100e 149150 10 0 0 75.0
esc32c 642 10 0 0 1.6 sko100f 149036 10 0 0 75.0
esc32d 200 10 0 0 1.6 ste36a 9526 10 0 0 1.8
esc32e 2 10 0 0 1.6 ste36b 15852 10 0 0 1.8
esc32f 2 10 0 0 1.6 ste36c 8239110 10 0 0 1.8
esc32g 6 10 0 0 1.6 tai12a 224416 10 0 0 0.6
esc32h 438 10 0 0 1.6 tai12b 39464925 10 0 0 0.6
esc64 116 10 0 0 3.2 tai15a 388214 10 0 0 0.8
esc128 64 10 0 0 6.4 tai15b 51765268 10 0 0 0.8
had12 1652 10 0 0 0.6 tai17a 491812 10 0 0 0.9
had14 2724 10 0 0 0.7 tai20a 703482 10 0 0 1.0
had16 3720 10 0 0 0.8 tai20b 122455319 10 0 0 1.0
had18 5358 10 0 0 0.9 tai25a 1167256 10 0 0 1.3
had20 6922 10 0 0 1.0 tai25b 344355646 10 0 0 1.3
kra30a 88900 10 0 0 1.5 tai30a 1818146 10 0 0 1.5
kra30b 91420 10 0 0 1.5 tai30b 637117113 10 0 0 1.5
kra32 88700 10 0 0 1.6 tai35a 2422002 10 0 0 1.8
lipa20a 3683 10 0 0 1.0 tai35b 283315445 10 0 0 1.8
lipa20b 27076 10 0 0 1.0 tai40b 637250948 10 0 0 2.0
lipa30a 13178 10 0 0 1.5 tai50b 458821517 10 0 0 3.0
lipa30b 151426 10 0 0 1.5 tai60b 608215054 10 0 0 3.2
lipa40a 31538 10 0 0 2.0 tai64c 1855928 10 0 0 3.3
lipa40b 476581 10 0 0 2.0 tai80b 818415043 10 0 0 4.0
lipa50a 62093 10 0 0 2.5 tai100b 1185996137 10 0 0 75.0
lipa50b 1210244 10 0 0 2.5 tho30 149936 10 0 0 1.5
lipa60a 107218 10 0 0 3.0 tho40 240516 10 0 0 2.0
tai50b 818415043 10 0 0 4.0 wil50 8133398 10 0 0 2.5
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The overall deviation percentage of the MSH-QAP algorithm for the problems categorized by Stützle is 0.035%
which is among the best three algorithms that are reported in this study. This is a high performance result and proves
the robustness of the algorithm when compared with the other the state-of-the-art algorithms in the literature. For Type
1, MSH-QAP is the third algorithm with respect to the performance of the other algorithms. The average deviation of
the first two algorithms (BMA and PHA) is 0.130% on the average, whereas MSH-QAP has only 0.174% deviation
from the BKS. The deviation of MSH-QAP for the well-known problem instance tai100a is the best performing one
among the selected algorithms. For Type 2 problems, algorithms BHA, BMA, and CPTS perform 0.0% deviation,
whereas MSH-QAP has only 0.001% deviation. For problem Types 3 and 4, MSH-QAP is among the best performing
algorithms in literature having 0.0% deviation with respect to the BKS results reported in the QAPLIB.

The number of evaluations is an important criterion for the heuristics while judging their performances. For
example, MSH-QAP and TLBO-RTS [7] use the same fast evaluation technique that only calculates the delta part of
the new solution. The study given in [18] uses a calculation that evaluates every new solution from scratch. This is a
very costly operation and therefore the number of evaluations in this paper is lower than our study and its performance
is worse than our solution quality. The authors report that even the number of evaluations is increased, their stagnation
mechanism does not work as well as our local search techniques. MSH-QAP and TLBO-RTS have almost the same
number of evaluations. The number of processors used by TLBO-RTS is larger than that of our experiments. Even
with these experimental setups, MSH-QAP outperforms the TLBO-RTS. The number of evaluation performed by
MSH-QAP can be reported as having a good performance when compared with the state-of-the-art heuristics.

Table 5: Comparison of the MSH-QAP algorithm with state-of-the-art algorithms on Type-1 problem instances.

MSH-QAP JRG-DivTS ITS SC-Tabu ACO/GA/LS GDA BMA PHA CPTS
Instance BKS APD min. APD min. APD APD min. APD min. APD APD APD APD
tai20a 70382 0 1.0 0 0.2 0 0.246 0.001 - - 0 0 0 0
tai25a 1167256 0 1.3 0 0.2 0 0.239 0.03 - - 0 0 0 0
tai30a 1818146 0 1.5 0 1.3 0 0.154 0.07 0.341 1.4 0.091 0 0 0
tai35a 2422002 0 1.8 0 4.4 0 0.280 0.18 0.487 3.5 0.153 0 0 0
tai40a 3139370 0.261 30.0 0.222 5.2 0.220 0.561 0.20 0.593 13.1 0.261 0.059 0 0.148
tai50a 4941410 0.165 37.5 0.725 10.2 0.410 0.889 0.23 0.901 29.7 0.276 0.131 0 0.440
tai60a 7205962 0.270 45.0 0.718 25.7 0.450 0.940 0.41 1.068 58.5 0.448 0.144 0 0.476
tai80a 13499184 0.530 60.0 0.753 52.7 0.360 0.648 1.0 1.178 152.2 0.832 0.426 0.644 0.570
tai100a 21059006 0.338 75.0 0.825 142.1 0.300 0.977 1.99 1.115 335.6 0.874 0.405 0.537 0.558
Average 0.174 28.1 0.360 26.88 0.193 0.548 0.45 0.812 84.9 0,326 0.129 0.131 0.243

Table 6: Comparison of the MSH-QAP algorithm with state-of-the-art algorithms on Type-2 problem instances.

MSH-QAP JRG-DivTS ACO/GA/LS GA/SD GA/C-TS GDA BMA PHA CPTS
Instance BKS APD min. APD min. APD min. APD min. APD min. APD APD APD APD
sko42 15812 0 2.1 0 4.0 0 0.7 0.014 0.16 0 1.2 0 0 0 0
sko49 23386 0 2.5 0.008 9.6 0.056 7.6 0.107 0.28 0.009 2.1 0.005 0 0 0
sko56 34458 0 2.8 0.002 13.2 0.012 9.1 0.054 0.42 0.001 3.2 0.001 0 0 0
sko64 48498 0 3.2 0 22.0 0.004 17.4 0.051 0.73 0 5.9 0 0 0 0
sko72 66256 0 3.6 0.006 38.0 0.018 70.8 0.112 0.93 0.014 8.4 0.007 0 0 0
sko81 90998 0 4.1 0.016 56.6 0.025 112.3 0.087 1.44 0.014 13.3 0.019 0 0 0
sko90 115534 0 4.5 0.026 89.6 0.042 92.1 0.139 2.31 0.011 22.4 0.031 0 0 0
sko100a 152002 0.003 75.0 0.027 129.2 0.021 171.0 0.114 3.42 0.018 33.6 0.029 0 0 0
sko100b 153890 0.004 75.0 0.008 106.6 0.012 192.4 0.096 3.47 0.011 34.1 0.015 0 0 0
sko100c 147862 0.003 75.0 0.006 126.7 0.005 220.6 0.075 3.22 0.003 33.8 0.013 0 0 0
sko100d 149576 0.004 75.0 0.027 123.5 0.029 209.2 0.137 3.45 0.049 33.9 0.013 0 0.006 0
sko100e 149150 0 75.0 0.009 108.8 0.002 208.1 0.071 3.31 0.002 30.7 0 0 0 0
sko100f 149036 0 75.0 0.023 110.3 0.034 210.9 0.148 3.55 0.032 35.7 0.013 0 0 0,003
Average 0.001 36.4 0.012 72.1 0.020 117.1 0.093 2.1 0.013 19.9 0.011 0 0 0
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Table 7: Comparison of the MSH-QAP algorithm with state-of-the-art algorithms on Type-3 problem instances.

MSH-QAP JRG-DivTS ACO/GA/LS GA/SD ITS GA-C/TS SC-TABU GDA BMA PHA CPTS
Instance BKS APD min. APD BPD APD APD APD APD APD APD APD
kra30a 88900 0 1.5 0 0 - 0 - 0.714 - 0 0 -
kra30b 91420 0 1.5 0 0 0.253 0 0 0.178 - 0 0 -
kra32 88700 0 1.6 0 0 0.037 - 0 - - 0 0 -
ste36a 9526 0 1.8 0 0 - 0.04 - - - 0 0 0
ste36b 15852 0 1.8 0 0 0.246 0 0.005 - - 0 0 -
ste36c 8239110 0 1.8 0 0 0.015 0 0 - - 0 0 0
esc32b 168 0 1.6 0 0 0 0 0.039 - - 0 0 -
esc32c 642 0 1.6 0 0 0 0 0 - - 0 0 -
esc32d 200 0 1.6 0 0 0 0 0 - - 0 0 -
esc32e 2 0 1.6 0 0 0 0 0 - 0 0 0 -
esc32g 6 0 1.6 0 0 0 0 - - 0 0 0 -
esc32h 438 0 1.6 0 0 0 0 - - 0 0 0 -
esc64a 116 0 3.2 0 0 0 0 0 - 0 0 0 -
esc128 64 0 6.4 0 0 0 0.01 0 - - 0 0 -
Average 0 2.1 0 0 0.045 0 0.004 0.446 0 0 0 0

Table 8: Comparison of the MSH-QAP algorithm with state-of-the-art algorithms on Type-4 problem instances.

MSH-QAP JRG-DivTS ITS ACO/GA/LS SC-TABU BMA PHA CPTS
Instance BKS APD min. APD min. APD min. APD min. APD min. APD APD APD
tai20b 122455319 0 1.0 0 0.2 0 0.01 - - 0 0.002 0 0 0
tai25b 344355646 0 1.3 0 0.5 0 0.01 - - 0.007 0.010 0 0 0
tai30b 637117113 0 1.5 0 1.3 0 0.01 0 0.3 0 0.034 0 0 0
tai35b 283315445 0 1.8 0 2.4 0.02 0.08 0 0.3 0.059 - 0 0 0
tai40b 637250948 0 2.0 0 3.2 0.01 0.2 0 0.6 0 0.092 0 0 0
tai50b 458821517 0 3.0 0 8.8 0.02 0.5 0 2.9 0.002 0.23 0 0 0
tai60b 608215054 0 3.2 0 17.1 0.04 1.7 0 2.8 0 0.41 0 0 0
tai80b 818415043 0 4.0 0.006 58.2 0.23 3.0 0 60.3 0.003 1.0 0 0 0
tai100b 1185996137 0 5.0 0.056 118.9 0.14 6.66 0.01 698.9 0.014 1.98 0 0 0,001
Average 0 2.5 0.07 23.4 0.051 1.35 0.001 109.4 0.009 0.47 0 0 0
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4.4. Robustness and Scalability
MSH-QAP algorithm involves randomization therefore, achieving solutions within a desired solution quality range

is an important aspect. In order to prove this issue, each problem instance in the experiments is solved 10 times and
the average of the results are reported. The overall average deviation of the MSH-QAP is 0.013% for 134 problem
instances in the QAPLIB while achieving optimal solutions of 122 instances. The MSH-QAP algorithm is capable of
handling larger number of heuristics and can improve its solution quality by this way.

Another important aspect of the parallel algorithms is the speed-up and scalability obtained by the proposed
algorithm. MSH-QAP algorithm uses a dynamic load balancing method. Whenever a processor finishes the execution
of its current task, it sends a message to the master node to request a new task. This is necessary because the execution
of the heuristics take varying amounts of CPU time. The total execution time of the algorithm is reduced proportionally
with the given number of processors. As the number of processors is increased, the execution time decreases within
a ratio very close to processor number. The architecture of the software is a master and slave paradigm. Slaves
send their results to the master and receive further chromosomes to work on. This architecture is suitable for an
HPC environment like ours. When the number of processors is increased from 20 to 60 (three times more processors
are used) only an overhead of 8.7% is observed in the execution time due to the messaging. Therefore, MSH-QAP
algorithm is a scalable algorithm for HPC environments. The performance of the algorithm can be further improved
by giving larger number of processors. This will reduce the calculation time of the fitness evaluations and give a
higher chance to the user to improve the number of multistarts and explore the landscape of the QAP more effectively.
Figure 7 presents the deviation percentages for the problem instances where our algorithm cannot find the BKS.

Figure 7: The deviation percentages of MSH-QAP algorithm for the solutions whose BKS are not found.

4.5. Overall Evaluation of the Algorithm
No Free Lunch Theorem (NFL) proposes that if a good performance is demonstrated by an algorithm on a certain

class of problems, it will have a trade-off and the performance of the algorithm will decrease for other class of
problems [26]. The (meta)-heuristic approaches can have high performances depending on the method they implement
for the solution of a combinatorial optimization problem. However, due to the assertions of NFL theorem, they may
not demonstrate the same performances when the domain and/or the structure of the problem is changed. From this
perspective, applying many heuristics to the solution of a problem with parallel computation is a good idea where most
probably one of them will have better performance than the others. With this idea, MSH-QAP algorithm proposes a
framework that can import several heuristics into its population-based infrastructure and outperform a single heuristic.

The MSH-QAP algorithm is capable of combining several well-established (meta)-heuristics for the solution of the
QAP. The same approach can also be applied for the other combinatorial optimization problems. The exploration pro-
cess of MSH-QAP algorithm for different problem instances is more powerful than the (meta)-heuristic approaches.
This is proved experimentally on a QAP benchmark with an overall deviation 0.014% for all the instances.

The MSH-QAP algorithm has several diversification and intensification techniques with respect to the given
heuristics. This provides a more efficient use of the available computing power for the search. The intelligent pa-
rameter setting property of MSH-QAP algorithm is another advantage over the other heuristics and it has a significant
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impact on the optimization of the problems [65][66]. The biggest advantage of modifying the parameters generally
comes from increasing the number of iterations of the heuristics. As it might be expected, higher quality solutions are
received by larger number of iterations that the heuristics use during the optimization process. However, it has been
observed that the best success is achieved by using the most suitable heuristic for a given problem instance, and not
by a better selection of parameters.

The parallel computation of the MSH-QAP with a dynamic load balancing is another big advantage the algorithm.
Because within an era of multi-core processors, it is not wise not using several cores during the optimization. In our
opinion, the parallelization of the state-of-the-art heuristic algorithm will be a new promising area for the researcher.
This will either be performed on the instruction level of the computation or with coarse-grained parallel processes like
our approach.

5. Conclusions and Future Work

In this study, we propose a novel parallel MultiStart Hyper-heuristic algorithm (MSH-QAP) on the grid for the solution
of the QAP. MSH-QAP is the first proposed parallel hyper-heuristic algorithm in the literature for the solution of the
QAP. The (meta)-heuristic approaches can have high performances depending on the method they implement for the
solution of a combinatorial optimization problem. However, as the No Free Lunch (NFL) theorem suggests, they may
not demonstrate the same performance when the domain and/or the structure of the problem is changed. At this point,
we think that applying many heuristics to the same problem with parallel computation can be a good idea where most
probably one of the proposed heuristics will have a better performance than others.

By using hyper-heuristics, we decide the right heuristic for a given QAP instance (because each instance can have
a very different structure) and adaptively set the parameters of the heuristic. MSH-QAP algorithm makes use of the
state-of-the-art (meta)-heuristics, Simulated Annealing (SA), Robust Tabu Search (RTS), Ant Colony Optimization-
based (FAnt: Fast Ant System), and Breakout Local Search (BLS) that have been reported among the best performing
algorithms for the solution of large QAP instances. The experiments are executed on a HPC with several processors
by multistarting the heuristics. The proposed technique significantly increased the quality of the solutions on the
problem instances of the QAPLIB benchmark. It is reported to obtain 122 of the problems exactly while producing
only 0.013% average deviation (among the first three algorithms in the literature) from the best known results.

Larger problem instances of the QAP are still very challenging and demand more computation resources/techniques
by diversified search techniques therefore, as future work we plan to add more low-level heuristics (BMA and GDA)
and apply well-known machine learning techniques such as reinforcement learning and support vector machines. Fur-
thermore, we plan to execute MSH-QAP on a more powerful Cloud computing environment with different scalable
communication topologies that are more appropriate for larger number of processors up to tens of thousands.
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