
A survey on new generation metaheuristic algorithms

Tansel Dokeroglu1*, Ender Sevinc2, Tayfun Kucukyilmaz1, Ahmet Cosar2

1 TED University, Computer Engineering Department, Ankara, TURKEY
2 University of THK, Computer Engineering Department, Ankara, TURKEY

Abstract

Metaheuristics are an impressive area of research with extremely important
improvements in the solution of intractable optimization problems. Major ad-
vances have been made since the first metaheuristic was proposed and numerous
new algorithms are still being proposed every day. There is no doubt that the
studies in this field will continue to develop in the near future. However, there
is an obvious demand to pick out the best performing metaheuristics that are
expected to be permanent. In this survey, we distinguish fourteen new and
outstanding metaheuristics that have been introduced for the last twenty years
(between 2000 and 2020) other than the classical ones such as genetic, particle
swarm, and tabu search. The metaheuristics are selected due to their efficient
performance, high number of citations, specific evolutionary operators, inter-
esting interaction mechanisms between individuals, parameter tuning/handling
concepts, and stagnation prevention methods. After giving absolute foundations
of the new generation metaheuristics, recent research trends, hybrid metaheuris-
tics, the lack of theoretical foundations, open problems, advances in parallel
metaheuristics and new research opportunities are investigated.

Keywords: Survey; Metaheuristic; Algorithm; Optimization.

1. Introduction

The term metaheuristic describes higher level heuristics that are proposed for
the solution a wide range of optimization problems. Recently, many metaheuris-
tics algorithms are successfully being applied for solving intractable problems.
The appeal of using these algorithms for solving complex problems is that they
obtain the best/optimal solutions even for very large problem sizes in small
amounts of time.

The optimization problems that attracted the attention of metaheuristic
approaches have a large variance, ranging from single to multiobjective, con-
tinuous to discrete, constrained to unconstrained. Solving these problems is
not a straightforward task due to their complex behavior. Exact algorithms
are mostly non-polynomial and, although providing best solutions usually have
impractical execution times and/or computational requirements for large data
sizes. Metaheuristic algorithms provide a practical and elegant solution to many

Preprint submitted to Computers & Industrial Engineering August 29, 2019

such problems and are designed to achieve approximate/optimal solutions in
practical execution times for NP-Hard optimization problems (Neumann and
Witt, 2010).

The majority of the state-of-the-art metaheuristics have been developed be-
fore the year 2000. We name these algorithms as “classical” metaheuristic
algorithms in this survey. The aforementioned classical algorithms are: Genetic
Algorithms (GA) (Goldberg, 1989), Particle Swarm Optimization (PSO) (Wei
and Qiqiang, 2004), Ant Colony Optimization (ACO) (Dorigo and Birattari,
2010), Genetic Programming (GP) (Banzhaf et al., 1998), Differential Evolution
(DE) (Storn and Price, 1997), Simulated Annealing (SA) (Van Laarhoven and
Aarts, 1987), Tabu search (TS) (Glover and Laguna, 1998), Greedy Random-
ized Adaptive Search Procedure (GRASP) (Marques-Silva and Sakallah, 1999),
Artificial Immune Algorithm (AIA) (Dasgupta, 2012), Iterated Local Search
(ILS) (Lourenço et al., 2003), Chaos Optimization Method (COM) (Li and
Jiang, 1997), Scatter Search (SS) (Mart́ı et al., 2006), Shuffled Frog-Leaping Al-
gorithm (SFLA) (Eusuff and Lansey, 2003), and Variable Neighborhood Search
(VNS) (Mladenović and Hansen, 1997).

Despite the achievements of the classical metaheuristic algorithms, new and
novel evolutionary approaches also emerged successfully in the last two decades.
Research on metaheuristic algorithms during this era introduces a great number
of new metaheuristics inspired by evolutionary or behavioral processes. In many
instances, this new wave of metaheuristic approaches yield the best solutions
for some of the unsolved benchmark problem sets.

In this survey, we review the last twenty years of metaheuristic algorithms.
Due to the worldwide popularity and success of the studies on metaheuristics
and the increasing publication counts of these studies, we consider that there is
a need for a new survey to review and summarize the most appealing current
studies on this subject for the last 20 years. We have concentrated our ef-
forts on studying fourteen distinguished metaheuristic algorithms that we term
as the “new generation” metaheuristic algorithms. While selecting/deciding
the new generation metaheuristics, we focus on the number of citations that
have been received with respect to the introduction year of the metaheuristic.
Therefore, the metaheuristic becomes verified to be efficient by the experimen-
tal studies of a large number of scientists. The selected metaheuristic should
also introduce a novelty in one of the issues, operators for exploration and ex-
ploitation techniques, parameter tuning/reduction concepts, adaptability to the
solution of a wide range of problems, and stagnation prevention techniques. The
metaheuristic must have been also reported to outperform some of the classical
metaheuristics.

The new generation metaheuristic algorithms that we examine in this re-
view are: Artificial Bee Colony (ABC) (Karaboga, 2005), Bacterial Foraging
(BFO) (Das et al., 2009), Bat Algorithm (BA) (Yang, 2010c), Biogeography-
based optimization (BFO) (Simon, 2008), Cuckoo Search (CS) (Yang and Deb,
2009), Firefly Algorithm (FA) (Yang, 2010a), Gravitational Search Algorithm
(GSA) (Rashedi et al., 2009), Grey Wolf Algorithm (GWA) (Mirjalili et al.,
2014a), Harmony Search (HS) (Geem et al., 2001), Krill Herd (KH) (Gandomi

2

and Alavi, 2012), Social Spider Optimization (SSO) (Cuevas et al., 2013), Sym-
biotic Organisms Search (SOS) (Cheng and Prayogo, 2014), Teaching Learning
Based Optimization (TLBO) (Rao et al., 2011), and Whale Optimization Algo-
rithm (WOA) (Mirjalili and Lewis, 2016).

Figures 1 and 2 give the search result of the number of related studies for the
classical and new generation metaheuristics on google scholar website (in May
2019). GA and ABC have the largest numbers 1,270,000 and 37,400 related
papers respectively.

Figure 1: The number of related papers on google scholar for the classical metaheuristics.

Figure 2: The number of related papers on google scholar for new generation metaheuristics
summarized in this survey.

The rest of this survey is organized as follows: previous surveys on classical
metaheuristics are presented in Section 2. Section 3 gives the details and pseu-
docode of new generation metaheuristics. Section 4 gives information about
other recent metaheuristic algorithms that are not known as much as the pre-
sented metaheuristics in the previous section. Section 5 provides information
about other new generation hybrid metaheuristics. In Section 6, a comprehen-
sive discussion and concluding remarks are provided.

3

2. Previous surveys on classical metaheuristics

This section aims to provide concise information about the previous sur-
veys on classical metaheuristic algorithms. Here, we have selected reviews that
have a remarkable impact on recent studies reflected via citation counts. While
acting as an introduction to the metaheuristic approaches concentrated in this
study, this section also provides a comprehensive reference for readers that are
interested in classical metaheuristic algorithms.

The book by Goldberg (1989), GA in Search Optimization & Machine
Learning, is one of the first publications in the field of metaheuristics designed
by natural inspirations. Goldberg and Holland (1988) provide a book dedicated
to the papers related to GA and genetics-based learning systems with a focus on
machine learning. Holland (1992) presents brief information on the fundamen-
tal properties of GA in his study. Srinivas and Patnaik (1994) provide a survey
on the basic operators (crossover and mutation) of GA and introduce research
opportunities for complex problem landscapes. Schaffer et al. (1992) provide a
survey on GA and the neural networks. The book, ”Nature-inspired metaheuris-
tic algorithms” by (Yang, 2010b), is a comprehensive reference for the state-of-
the-art metaheuristic algorithms. The book offers a review of state-of-the-art
metaheuristics introduced before 2010. BoussäıD et al. (2013) present a survey
on some main metaheuristics and examine their similarities and differences. The
authors classify the methods as a single solution and population-based meta-
heuristics and present an overall evaluation of the main metaheuristics and their
principles. Sörensen et al. (2018) describe his comments on the new proposed
metaheuristics and the similarities that occur in many.

Wei and Qiqiang (2004) summarize the basic principles of PSO algorithm
that is introduced as a new optimization algorithm originated from artificial
life. The PSO finds the best/optimal solutions through improving the global
and the local best solutions of particles in the population. The parameters of
the PSO are examined in this study and the areas that the PSO has been ap-
plied are reviewed. Taillard et al. (2001) examine memory-based metaheuristics
TS, SS, GA and ACO in their survey. They propose that their implementa-
tions are similar and should be unified with the name of Adaptive Memory
Programming. Bianchi et al. (2009) give a survey of metaheuristic algorithms
such as ACO, TS, SA, and evolutionary computation. The success of these
applications for the class of Stochastic Combinatorial Optimization Problems is
analyzed and recent issues are discussed. Parejo et al. (2012) present a compar-
ative study on metaheuristic optimization frameworks. Diverse metaheuristic
techniques, for solution encoding, constraints, neighborhood, hybrid solutions,
parallel/distributed computation, best practices of software engineering, and
documentation are covered. A significant lack of implementation is reported
for the parallel computation of metaheuristics and hyperheuristics. Mladen-
ović et al. (2007) provide a survey of metaheuristics for the solution of the
p-median problem. The authors give an overview of metaheuristic algorithms
for this problem. Puchinger and Raidl (2005) discuss different state-of-the-art
techniques to combine metaheuristics with brute-force algorithms to optimize

4

combinatorial problems. They report two categories as collaborative versus in-
tegrative combinations. de Castro and Timmis (2003) propose a framework
for AIS and review literature that integrates AIS with other algorithms, neural
networks, evolutionary computation, and fuzzy systems.

Li and Jiang (1997) introduce a chaos optimization algorithm that uses the
properties of stochastic property, the regularity of chaos, and ergodicity. The
performance of the chaos optimization algorithm is reported to be very high.
Espejo et al. (2010) provide a survey of GP for the classification problems. GP
is reported to be a powerful evolutionary technique that is suitable for the evolu-
tion of classifiers. The study surveys the literature to give information about the
techniques of constructing well-performing classifiers. Lewis (2008) carries out
an overview of metaheuristic algorithms belonging to the university timetabling
problems. The author classifies the algorithms into three general classes, and
comment on them. Nanda and Panda (2014) provide a review of nature-inspired
algorithms for the problem of partitional clustering. Key issues and major prac-
tice areas are investigated. Zavala et al. (2014) examine recent developments
in multiobjective metaheuristics for solving design problems of civil engineering
structures. The authors examine the design problems and the features of the
problem-solving methods. Baghel et al. (2012) give a review of combinatorial
optimization problems that are solved by metaheuristics. The paper examines
the evolution of metaheuristic and their process of converging. The authors
divide the metaheuristic algorithms categories and make some suggestions to
develop well-performed metaheuristic algorithms.

Bianchi et al. (2006) introduce ACO, Evolutionary Computation, SA, TS
and Stochastic Partitioning methods and their recent applications in their sur-
vey. The authors mention the flexibility of metaheuristics in adapting to dif-
ferent modeling approaches. A description and classification of the modeling
approaches of optimization under uncertainty are provided. Blum et al. (2010)
give a survey on the approaches of hybrid metaheuristics. They mention that
combining different metaheuristic algorithms is one of the most successful tech-
niques in optimization. Dorigo and Blum (2005) provide a survey on theoretical
notations of ACO. The authors examine the convergence outcomes and dis-
cuss the relations of ACO and other optimization methods. They focus on
research efforts of understanding the behavior of ACO. Feature aspects of ACO
are given in this study. Mohan and Baskaran (2012) review recent research
ACO algorithms and propose a new ACO algorithm that is applied for network
routing. Hao and Solnon (2019) describe the common features of metaheuristics
by grouping them in two main approaches, perturbative and constructive meta-
heuristics. The authors also introduce the diversification and intensification
notions, which are used by metaheuristics.

Pedemonte et al. (2011) present a comprehensive survey on parallel ACO
implementations and give a new taxonomy to classify parallel ACO algorithms.
Cantú-Paz (1998) provides detailed information about parallel GA. The au-
thor collects and presents the most representative publications on parallel GA.
Blum et al. (2011) provide a survey on hybrid metaheuristic algorithms with
other optimization techniques. They define the research area with different hy-

5

bridization methods. They propose some methods to develop efficient hybrid
metaheuristic algorithms. Alba (2005) gives a comprehensive survey on parallel
GA (Alba and Troya, 1999). The author defines parallel GAs as a new kind
of metaheuristics. In addition to parallel GA, the parallel versions of GP, SS,
ACO, SA, VNS, TS, hybrid, heterogeneous, and multiobjective are evaluated.
The theoretical foundations are analyzed. The parallel algorithms are reported
to be highly efficient and robust. Mühlenbein (1992) shows the power of a Par-
allel GA with the m graph partitioning and the traveling salesman problems.
The parallel GA are reported to be capable of finding the best and the optimal
solutions for the problem instances. Alba et al. (2013) provide a solution to deal
with classic parallel models in contemporary platforms. They review modern
research areas with respect to parallel metaheuristics and identify possible open
research areas and future trends. Binitha et al. (2012) present an overview of
biologically inspired metaheuristic algorithms. Del Ser et al. (2019) survey the
state-of-the-art metaheuristics and report open research areas. A discussion is
carried out on recent studies and identifies the necessity to reach a common un-
derstanding of optimization techniques. Camacho-Villalón et al. (2019) analyze
the Intelligent Water Drops (IWD) metaheuristic and verify that the IWD is
inspired by ACO metaheuristic.

In the fields of supply chain and inventory management optimization, meta-
heuristic algorithms are used intensively. For detailed information, the reader
can refer to the studies (Sayyadi and Awasthi, 2018b; Hao et al., 2018; Gharaei
et al., 2019a,b; Rabbani et al., 2019; Tsao, 2015; Awasthi and Omrani, 2019;
Sayyadi and Awasthi, 2018a; Hoseini Shekarabi et al., 2019; Dubey et al., 2015;
Duan et al., 2018; Kazemi et al., 2018; Gharaei et al., 2019c; Rabbani et al.,
2018; Sarkar and Giri, 2018; Giri and Bardhan, 2014; Yin et al., 2016; Shah
et al., 2018; Giri and Masanta, 2018).

3. New generation metaheuristics

In this section, we provide comprehensive information for fourteen recent
metaheuristics that have attracted the attention of many researchers and have
been cited numerous times for the last twenty years. All of these algorithms are
nature or human inspired, and population-based. The algorithms are presented
in alphabetical order. For each of the algorithms, we reserve a specific section,
providing details about their origins, inspirations, pseudocode-level details, and
standing research on them.

3.1. Artificial bee colony optimization (ABC)

ABC is a metaheuristic algorithm proposed by Karaboga in 2005. It is
one of the most cited new generation metaheuristics in literature (Karaboga,
2005; Basturk, 2006; Karaboga et al., 2014). ABC, being a population-based
algorithm, has been applied to various optimization problems. The natural
aspiration of ABC comes from the fact that candidate solutions are represented
as bees exploring/exploiting food resources, and solutions are represented as the

6

Table 1: Summary information about the new generation metaheuristics, their inventors and
the year they are introduced.

Acronym Metaheuristic Inventors, Year
1 HS Harmony Search Geem et al. (2001)
2 BFO Bacterial Foraging Opt. Passino (2002)
3 ABC Artificial Bee Colony Karaboga (2005)
4 BBO Biogeography-based Opt. Simon (2008)
5 CS Cuckoo Search Yang and Deb (2009)
6 GSA Gravitational Search Algorithm Rashedi et al. (2009)
7 FA Firefly Algorithm Yang (2010a)
8 BA Bat Algorithm Yang (2010c)
9 TLBO Teaching-learning-Based Opt. Rao et al. (2011)

10 KH Krill Herd Gandomi and Alavi (2012)
11 SSO Social spider optimization Cuevas et al. (2013)
12 GWA Grey Wolf Algorithm Mirjalili et al. (2014a)
13 SOS Symbiotic Organisms Search Cheng and Prayogo (2014)
14 WOA Whale Optimization Mirjalili and Lewis (2016)

food resources themselves (Dokeroglu et al., 2019). A solution indicates a food
resource and the nectar amount of each resource represents the quality/fitness of
each solution. There are three types of bees in the hive: “employed”, “onlooker”,
and “scout” bees. In nature, employed bees look for a food source, come back to
hive and share their information by dancing. When an employed bee finishes the
collection of the nectar, it turns into a scout and looks for new food resources.
Onlooker bees watch how the employed bees dance and choose food sources,
while scout bees explore for food sources. Computationally, the bee colony and
its behavior are represented as follows:

First, a random initial population is generated. The fitness of a state of a
bee colony is indicated by the acquired resources. Figure 3 presents the basic
behavior of artificial bees. A forager bee starts as an unemployed bee having no
information about the food sources around the hive. An ordinary bee can be
a scout bee and explore the solution space (see S in Figure 3) or it can watch
the dance of other bees and search for new food sources, R. The bee gathers
the food, comes back to the hive, drops off the nectar. The bee can become
a recruit nestmates (EF1), an uncommitted follower (UF), or go searching the
food without recruiting after bees (EF2). The pseudocode of an ABC algorithm
is given in Algorithm 1.

In order to generate an initial set of food sources, the algorithm starts ran-
domly generating solutions in the search space. The Equation given below
defines the randomized rule to produce a new solution within the range of the
boundaries of the parameters. i = 1...SN , j = 1...D. SN is the size of the food
sources and D is the number of dimensions in the problem space. Xij is the
j-th dimension of food source i.

Xij = Xmin
j + rand(0, 1)(Xmax

j −Xmin
j) (1)

7

Each employed bee produces a new food source (solution) depending on its
local information and finds a neighboring food source. Finding a neighboring
food source is defined in the Equation given below.

Vij = Xij + φij(Xij −Xkj) (2)

A new food source Vi is produced by changing one parameter of xi. In
the Equation above, j is a random integer between [1,D] where k is a random
index different from i and φij is a real number between [-1,1]. As the difference
between Xij and Xkj diminishes, the perturbation on solution Xij becomes
smaller. If a new generated parameter exceeds its boundaries, the parameter is
set to acceptable values. Fitness value of the new generated solution is calculated
as (1/(1 + fi)) when fi is positive. The fitness value is (1/(1 + abs(fi))) if fi is
positive negative.

The composition of the bee colony impacts the balance between the explo-
ration/exploitation of a run of ABC. Karaboga et al. compare the performance
of ABC against GA, and PSO (Karaboga and Basturk, 2007). ABC algorithm
is observed to outperform the algorithms on the optimization of multi-variable
functions. Gao and Liu (2012) state that there is an insufficiency of ABC in
its solution search equation at the exploitation phase and propose an improved
fitness equation (inspired by DE) based on the bee search behavior around the
best nectar in the previous iterations. The experimental results indicate that
the modified ABC algorithm performs well, solving complex numerical problems
compared to classical ABC algorithms.

Figure 3: The classical behaviour of honeybees looking for nectar

8

Algorithm 1: Artificial Bee Colony Optimization (Karaboga, 2005)

1 int i=0;
2 while (i++ < #iterations) do

3 Scout bees search for food();
4 Scout bees return to the hive and dance();
5 Onlooker bees evaluate the food sources();
6 Check previously visited food resources();
7 Decide the best food resources();
8 Employed bees travel to the food sources();
9 Return to hive();

10 Collect the solution in the hive();

Karaboga and Ozturk (2011) propose an ABC algorithm for data clustering
problem. The ABC algorithm is compared with other metaheuristic algorithms
in the literature. The UCI Machine Learning Repository is examined during
the experiments. The results verify that the ABC can be used for multivariate
data clustering problems efficiently. Zhu and Kwong (2010) propose an ABC
algorithm by using the knowledge of global best solution during the exploitation.
The experimental results show that proposed GABC algorithm outperforms the
classical ABC algorithm. The authors aim to solve the insufficiency of ABC
regarding its solution search equation.

Karaboga and Basturk (2008) compare the performance of ABC algorithm
with DE, PSO and GA for multi-dimensional numeric problems. The results ob-
tained from their experiments verify that the ABC algorithm is competitive with
other algorithms in the literature. The ABC can be efficiently used to solve high
dimensional engineering problems (Karaboga and Basturk, 2008). Hancer et al.
(2018) propose a multiobjective ABC algorithm combined with non-dominated
sorting and genetic operators for feature subset selection problem . Two differ-
ent ABC versions are developed (with binary and continuous representation).
Omkar et al. (2011) propose a modified ABC algorithm for discrete variables of
the multiobjective design optimization of composite structures.

Karaboga (2009) proposes a new ABC algorithm for designing digital Infi-
nite Impulse Response filters. The algorithm is compared with a conventional
optimization algorithm PSO. Singh (2009) proposes an ABC method for the
solution of minimum spanning tree problem with leaf-constrains. The experi-
mental results verify the superiority of the proposed ABC algorithm. TSai et al.
(2009) propose a new ABC optimization algorithm for numerical optimization.
The algorithm introduces the universal gravitation concept into the affection
consideration between the onlooker and employed bees in order to improve the
quality of the solutions via selecting a more suitable exploration/exploitation
ratio.

9

3.2. Bacterial foraging optimization (BFO)

Passino (2002) proposes BFO metahuristic. The BFO algorithm imitates the
foraging behavior of bacteria over a landscape to process parallel non-gradient
optimization. The movement (locomotion) is provided by a set of tensile flagella
that helps an E.coli bacterium to swim or tumble during the foraging process.
Each flagellum tightens the cell while they are turning around the flagella in a
clockwise direction. This causes flagella to behave independently and the bac-
terium tumbles with lesser number of tumbling. In a detrimental location, it
tumbles drastically to obtain a nutrient gradient. Turning the flagella counter
clockwise helps the bacterium to swim quickly. The bacteria may face with
chemotaxis, where they intend to move to a nutrient gradient and avoid a poi-
sonous environment. The bacteria can move longer distances in a friendly envi-
ronment. Figure 4 presents the movement of a bacterium in a nutrient solution.

Figure 4: Swimming, tumbling, and chemotactic behavior of E. coli.

When the bacteria get enough food, they can generate a replica of itself.
Passino is inspired by this event while developing the BFO algorithm. The
chemotactic progress may not occur due to sudden changes in the environment.
A group of bacteria may migrate to some other places or other groups of bacteria
may come to the current location of the bacteria. This process is denoted as
elimination-dispersal in which the bacteria in a region are terminated or a group
of bacteria is dispersed into a new location in the environment.

If we assume that Θ is a vector of multidimensional real values where J(Θ) is
the optimization problem, the BFOA uses chemotaxis, swarming, reproduction,
and elimination-dispersal to optimize a given combinatorial problem. Virtual
bacteria are implemented to locate the global optimum solution while dealing
with the problem. Here, chemotoxis, reproduction, and elimination-dispersal
steps facilitate the exploration process of BFO while, swarming behavior and
reproduction facilitate the exploration process of the algorithm.

The structures used to define chemotactic steps are: S is #bacteria in pop-
ulation, k is the index for the reproduction step, j is the index for chemotactic
step, p is the dimension of problem, l is the index of of the elimination-dispersal

10

event, Nc is #chemotactic steps, Ns is the length of swimming, Nre is #re-
production steps, Ned is #elimination-dispersal events, Ped is the probability
of elimination-dispersal, and C (i) is the size of the step taken in the random
direction specified by the tumble.

Let P(j, k, l) = {Θi (j, k, l) | 1,2,..., S} denote the position of each indi-
vidual S bacteria at the j -th chemotactic step, k -th reproduction step, and l -th
elimination-dispersal event. Here, J (i, j, k, l) denotes the cost at the location
of the i -th bacterium at location Θi (j, k, l). The four main components of
BFOA are;

Chemotaxis: simulates the movement of an E.coli by swimming and tumbling
using flagella. The movement of the bacterium can be represented as below:

Θi(j + 1, k, l) = Θi(j, k, l) + C(i)
4(i)√

4T (i).4 (i)
(3)

where 4 is a vector in a random direction with elements between [-1, 1].
Swarming : A swarm behavior is observed for motile species where they form

intricate and stable spatio-temporal patterns in semisolid nutrient medium. A
swarm of E.coli cells shows themselves in a ring by moving up the nutrient gradi-
ent when located among a semisolid matrix with a single nutrient chemo-effecter.
The cell-to-cell communication formulation in E.coli group is represented by the
function below:

Jcc(Θ, P (j, k, l)) =

S∑
i=1

Jcc(Θ,Θ
i(j, k, l)) (4)

where, Jcc(Θ, P (j, k, l) is the value to be added to the objective function.
Reproduction: The unhealthy bacteria terminate while each of the healthy

bacteria is being split into two bacteria. This process maintains the size of the
swarm constant. The selection criteria for unhealthy bacteria is important for
both exploration and exploitation utility of BFO.

Elimination and Dispersal : Changes in the environment where bacteria lives
may happen due to many reasons. A local temperature rise may terminate a
group of bacteria in a region. Events can happen in this way and all the bacteria
in a region may be killed or a group may migrate into a new location. In BFOA,
some bacteria are liquefied to simulate this phenomenon randomly, while new
substitutions are initiated in the search field. The pseudocode of the BFOA is
presented in Algorithm 2.

Passino (2010) provides a tutorial about BFO, which summarizes the biology
of bacterial foraging. Das et al. (2009) discuss the hybrid BFO algorithms with
other optimization techniques and give information about the most significant
applications of BFO. Dasgupta et al. (2009) introduce new methods modifying
how an individual and groups of bacteria forage for nutrients. The introduced
model is designed for distributed optimization processes. Agrawal et al. (2012)
present a survey on BFO. Chen et al. (2017) propose two BFO algorithms for
feature subset selection. The algorithms are adaptive chemotaxis BFO and

11

Algorithm 2: Bacterial Foraging Optimization Algorithm (Das et al.,
2009)

1 Initialize parameters p, S, Nc,Ns, Nre, Ned, Ped, C (i)(i=1,2,...,S), Θi;
2 //Elimination-dispersal loop
3 for (l=1 to Ned) do
4 //Reproduction loop
5 for (k=1 to Nre) do
6 //Chemotaxis loop
7 for (j=1 to Nc) do
8 //bacterium i ∈ Population
9 for (i=1,2,...S) do

10 Compute fitness function, J (i, j, k, l);
11 Jlast=J (i, j, k, l) ;
12 //hold the value since a better cost can be found
13 Tumble: generate a random 4(i) ∈ Rp with each element

4m(i), m=1,2,...,p on [-1,1];
14 Move: Θi(j + 1, k, l);
15 //C (i) in the direction of the tumble for bacterium i
16 Compute J (i, j +1, k, l);
17 while (m < Ns) do
18 //Swim
19 if (J(i,j+1,k,l) < Jlast) then
20 Jlast = J (i,j +1,k,l) ;

21 Θi(j + 1, k, l) = Θi(j, k, l) + C(i) 4(i)√
4T (i).4(i)

;

22 else
23 m=Ns;

24 m=m+1;

12

improved swarming elimination-dispersal BFO algorithm. The algorithms are
experimented on UCI datasets. The experimental results demonstrate that BFO
algorithms are competitive with state-of-the-art algorithms in the literature.
Kim et al. (2007) propose a hybrid BFO algorithm integrated with GA for
function optimization problems. The performance of the algorithm is analyzed
on mutation, crossover, the lifetime of the bacteria, a variation of step sizes,
and chemotactic steps. Hota et al. (2010) present a BFO algorithm applied for
the solution of the economic and emission load dispatch problem. The BFA is
observed to perform in a robust manner in this study. Tang et al. (2006) develop
a BFO algorithm for the optimization of dynamic environments. The results
verify that the proposed algorithm gives accurate results in reasonable times.

3.3. Bat algorithm (BA)

BA metaheuristic is first proposed by Yang (2010c). Bats use echolocation
(i.e., a type of sonar) to avoid obstacles, detect prey, and locate their nests in
the dark. A bat emits a sound and follows the echo that reflects from the objects
in the environment. Bats can also detect the difference between food/prey and
barriers by using echolocation. The motivation of BA is that this echolocation
talent of bats can be formalized as a means to find an optimal solution in an
objective function.

BA runs in an iterative fashion. Bats fly with velocity vi with position xi
having a frequency fmin, varying wavelength λ and loudness A0 while searching
for their prey randomly. They can set the frequency of the pulse and adjust
its rate r ∈ [0, 1] (with respect to the proximity of the prey). The loudness is
changed from a maximum A0 value to a minimum value Amin. The frequency f
in the range of [fmin, fmax] correlates with a range of wavelengths [λmin, λmax].

While any wavelength can be used for a run of BA, selection of a suitable
wavelength has significant impact on the convergence of the algorithm. In most
cases, wavelength is variable during a run, and a range of wavelengths are set
up and adjusted accordingly during a run.

The detectable range should be decided that it is comparable to the size of
the domain of interest. The frequency can be changed while fixing the wave-
length and is related to λ. Parameter f is assumed to be between [0, fmax].
Higher frequencies have short wavelengths and can travel a shorter distance
while lower frequencies have large wavelengths and can travel further. That is,
wavelength and frequency relates to both computational cost and exploration
capacity of the setting. The rate of pulse is in the range of [0, 1] where 0
means no pulse and 1 means the maximum rate of pulse emission. Algorithm 3
summarizes the execution of a sample BA run.

The positions of virtual bats xi (i = 1, 2,..., n) and velocities vi in a d -
dimensional space are updated in iterations. New solutions xti and velocities vti
at time t are generated with the equations given below.

fi = fmin + (fmax − fmin)β (5)

13

Algorithm 3: Bat Algorithm (Yang, 2010c)

1 Objective function f(x), x = (x1, ..., xd)
T ;

2 Initialize the population of bats xi (i = 1, 2,..., n) and vi;
3 Define pulse frequency fi at xi;
4 Initialize pulse rates ri and the loudness Ai;
5 while (t < #iterations) do
6 Generate new solutions by setting frequency
7 and updating velocities and locations/solutions [Equations 5-7]
8 if (rand > ri) then
9 Select a solution;

10 Generate a local solution;

11 Generate a new solution by flying randomly;
12 if (rand < Ai) & (f(xi) < f(x∗)) then
13 Accept the solution;
14 Increase ri and reduce Ai;

15 Find the best x∗;

16 Report the global best result;

vti = vt−1
i + (xti − x∗).fi (6)

xti = xt−1
i + vti (7)

where, β ∈ [0, 1] is a uniform distribution random vector. x∗ is the global
best location among n bats.

If λifi is the velocity increment, we can use either fi (or λi) to set the new
velocity while fixing the factor λi (or fi). fmin = 0 and fmax = 100 can be
used with respect to the domain of the problem. Each bat is assigned a random
frequency initially. It is drawn uniformly from [fmin, fmin]. In the local search,
after selecting a solution among the best solutions, a random solution for each
bat is generated locally using a random walk process using the formula:

xnew = xold+ ∈ At (8)

where, ∈ [-1, 1] is a random value, At =< Ati > is the average loudness of
all the bats at this period of time.

The update of positions and velocities of bats are performed in a similar
fashion after each iteration as in a PSO algorithm. Parameter fi controls the
pace and the range of the movement. At each iteration, the loudness Ai and
the rate ri of pulse emission need to be updated. The loudness decreases as bat
finds its prey. The rate of pulse emission increases, the loudness can be of any
value. The values for A0 and Amin can be assigned as 100 and 1 respectively.

14

For simplicity, A0 = 1 and Amin = 0 can be applied. Amin = 0 means that a
bat has found the prey and finished emitting a sound.

At+1
i = αAti, rt+1 = r0

i [1− exp(γt)], (9)

where, α and γ are constants.
α is similar to the cooling factor used in the SA (Van Laarhoven and Aarts,

1987). For any 0 < α < 1 and γ > 0, we have

Ati → 0, rti → r0
i ast →∞ (10)

Past research suggest that selection α = γ = 0.9 as parametrization is a
suitable assumption during the optimization process (Yang, 2010c). The tuning
of the parameters is often done via experimentation, where each bat has different
values of loudness and pulse emission rate initially. The first value of loudness
A0
i can be in the range of [1, 2]. The initial emission rate r0

i can be around zero
or any value r0 ∈ [0, 1]. Their loudness and emission rates will be changed only
if a new solution is produced.

With many parameters, it is possible to change and control the nature of ex-
ploration and exploitation even through a single run, many variations of BA has
been proposed in the literature. Gandomi and Yang (2014) propose a chaotic
BA to increase the global search capacity of BA for robust optimization. The
authors examine different chaotic maps on benchmark problems. The results
verify that chaotic BA can outperform the classical versions of BA. Yang and
Hossein Gandomi (2012) propose a BA for solving engineering optimization
tasks. Eight well-known optimization tasks are carried out and a fair compari-
son is performed with existing algorithms. Yang (2012a) proposes multiobjective
BA for solving design problems. Experimental results verify that the proposed
algorithm works efficiently. Yang (2013a) reviews the literature of BA in his
survey. The paper gives a review of the BA and its variants. Gandomi et al.
(2013b) propose a BA to solve constraint optimization problems. The BA is
verified using many benchmark constraint problems. Mirjalili et al. (2014b)
develop a binary version of BA . A comparative study is carried out with over
twenty-two benchmark functions with GA. Khan and Sahai (2012) verify the
performance of a BA over other algorithms in neural network training. Fis-
ter Jr et al. (2013) present a new algorithm based on BA. The BA is combined
with DE strategies. The new algorithm is observed to improve the original BA
significantly. Yılmaz and Kücüksille (2015) enhance the search methods of BA
through three different means. The results of test sets prove that BA is supe-
rior to its standard version. Nakamura et al. (2012) propose a new BA to solve
constraint optimization tasks. The performance of BA is verified using several
classical benchmark constraint problems.

3.4. Biogeography-based optimization (BBO)

BBO is a population-based metaheuristic proposed by (Simon, 2008). BBO
assumes that each individual lives in a habitat with a Habitat Suitability Index
(HSI) parameter that measures the fitness of a solution. Two main operators

15

of BBO algorithm are migration and mutation. The migration is a stochastic
operator that updates each individual (Hi) by sharing the features of individuals
in the population.

The probability of selecting a solution (Hi) as an immigrating habitat is
related to its immigration rate λi. The probability of selecting the solution
Hj as an emigrating habitat is related to the emigration rate, µj . Suitability
Index Variable (SIV) is a parameter that characterizes the habitat. An SIV is a
search parameter and the set of all possible SIVs is the search space. The HSI
is decided by the use of SIVs.

Solutions with high fitness values are habitats with a high HSI. Habitats with
high HSI have many species, whereas low HSI habitats have fewer species. Each
habitat (solution) is governed by an identical species curve and is characterized
with an S value which depends on the HSI value of a solution. For example, if
there are two habitats characterized by S1 and S2, the immigration rate, λ1 of
S1 will be higher than the immigration rate λ2 of S2. The emigration rate, µ1

of S1 for will be lower than the emigration rate µ2 of S2.
The emigration and immigration rates are used to share information between

solutions. Each solution that is based on other solutions is modified with a global
probability Pmod. If a given solution is selected to be modified, its immigration
rate (λ) is used to decide to modify each SIV in that solution. If an SIV is to be
modified, the emigration rate of the other solutions is used to select solutions
to migrate a random SIV to solution Si. With an elitist selection, the best
solutions are kept from being corrupted by immigration.

Mutation is also used as an exploratory concept in BBO. A habitat’s HSI can
change due to random events. This is modeled as an SIV mutation whose rates
are decided by the species count probabilities that are governed by a differential
equation in Equation 12.

Low and high species counts have low probabilities by Theorem ”Medium
species counts have higher probabilities since they are close to the equilibrium
point”. The steady-state value for the probability of the number of each species
is;

P (∞) =
v

n+1∑
i=1

vi

(11)

where v and vi are observation eigenvector.

Ps =

−(λs + µs)Ps + µs+1Ps+1, if S = 0

−(λs + µs)Ps + λs−1Ps−1 + µs+1Ps+1, if 1 ≤ S ≤ Smax − 1

−(λs + µs)Ps + λs−1Ps−1, if S = Smax

(12)

Very high and low HSI solutions are equally impossible, whereas solutions
with medium HSI are more probable. A mutation rate m that is inversely

16

proportional to the solution probability can be formulated as below:

m(S) = mmax(
1− Ps
Pmax

) (13)

where mmax is a user-defined value. This mutation operator aims to increase
diversity. This prevents the local stagnation of the algorithm.

The parameters of a typical BBO are set as follows: H ∈ SIV m is a vector
of m integers for the solution to an optimization problem. An SIV ∈ C is
a value allowed in a habitat. C ⊂ Zq is the set of all integers. SIV ∈ C
and H ∈ SIV m are constraints. A habitat suitability index HSI (H → R)
is the fitness value of a solution. Hn is a set of habitats and the size of an
ecosystem is fixed. The immigration rate λ(HSI) : R → R is a monotonically
non-increasing function of HSI. λi is the rate that SIVs from other habitats
migrate into habitat Hi. Emigration rate µ(HSI) : R → R is a monotonically
non-decreasing function of HSI. µi is the likelihood of the migration of SIVs
from habitat. Habitat modification Ω(λ, µ) : Hn → H is an operator that tunes
habitat based on the ecosystem Hn. The probability of modifying the H is
proportional to the immigration rate λ. The source of the modification comes
from Hj is proportional to the emigration rate µj .

Mutation M(λ, µ) : H → H is a stochastic operator changing habitat SIVs
based on the habitat’s a priori existence probability. An ecosystem transition
function Ψ = (m,n, λ, µ,Ω,M) = Hn → Hn is a 6-tuple function that changes
the ecosystem in iterations. The function can be written as shown in equa-
tion 14:

Ψ = λn ◦ µn ◦ Ωn ◦HSIn ◦Mn ◦HSIn (14)

A BBO algorithm is a 3-tuple (BBO=I,Ψ, T) solution to an optimization
problem. I : � → Hn, HSIn is a function that generates an initial ecosystem of
habitats and computes values of each HSI. Ω is the ecosystem transition function
and T : Hn → {true, false} is a termination criterion. The pseudocode of the
BBO algorithm is presented in Algorithm 4. If α =0 then it is the “standard
BBO algorithm” (Simon, 2008). If α is random, then it becomes the ”blended
BBO” Algorithm.

A wide range of BBO variations has been proposed in the literature. Bhat-
tacharya and Chattopadhyay (2010) present a hybrid technique combining DE
and BBO to solve convex and nonconvex economic load dispatch problems
(Gong et al., 2010). The algorithm aims to improve the quality of the solution
and the convergence speed. Ergezer et al. (2009) propose a variation to BBO in-
tegrated with opposition-based learning. The proposed algorithm outperforms
BBO in terms of success rate and the number of fitness evaluation. Ma (2010)
studies the generalization of equilibrium species count in biogeography theory.
Simon et al. (2011) propose Markov models for BBO with selection, migration,
and mutation operators. The models provide theoretically exact limiting proba-
bilities for each possible population distribution. e Silva et al. (2012) propose a
multiobjective BBO for the constrained design of a wheel motor. The proposed

17

Algorithm 4: BBO algorithm (Simon, 2008)

1 Create a population, H1, H2,..., Hn;
2 Compute HSI values;
3 while (the halting criterion is not satisfied) do
4 Compute the immigration rate λi;
5 for (each habitat (solution)) do
6 for (each SIV (solution feature)) do
7 Select habitat Hi with probability ∝ λi;
8 if (Hi is selected) then
9 Select Hj with probability ∝ µi;

10 if (Hj is selected) then
11 Hi (SIV) ← αHi (SIV) + (1- α)Hj (SIV);

12 Select Hi (SIV) based on mutation probability mi;
13 if (Hi is selected) then
14 Replace Hi (SIV) with a randomly generated SIV;

15 Recompute HSI values;

algorithm converges to promising solutions in terms of quality and dominance.
A blended migration is proposed for BBO by Ma and Simon (2011). The method
is a generalized migration operator for BBO that consists of features from itself
and another solution. The blended migration can be observed as an efficient
modification when the experimental results are analyzed.

3.5. Cuckoo search algorithm (CSA)

Yang and Deb (2009) propose CSA. The CSA simulates the brood parasitic
behavior of cuckoo species with the Lévy flight action of birds and fruit flies.
Cuckoo birds have an aggressive breeding attitude. They lay eggs in the nest of
other birds and remove the other eggs to increase the hatching chance of their
own eggs. In CSA metaheuristic, three simple rules are used. 1) One egg can
be laid at a time, and cuckoo leaves its egg in a random nest; 2) Nests having
high-quality eggs can survive; 3) The number of host nests is constant, and the
egg can be detected by the host bird with a probability pa ∈ [0, 1]. The egg can
be thrown away from nests or the bird can leave the nest, and construct a new
nest. The pseudocode of the CSA is presented in Algorithm 5.

When producing new solutions x(t+1) (i = 1, 2, ..., n) for cuckoo bird i, a
Lévy flight is realized as in Equation 15

xt+1
i = xti + α⊕ Lévy(λ) (15)

where α < 0 is the size of a step related to the problem. In most cases, α is
selected as 1. The equation above is stochastic to provide a random walk that is
a process of Markov Chain with a next location that relies on the current location

18

Algorithm 5: Cuckoo Search Algorithm (Yang and Deb, 2009)

1 Optimization function f(x), x = (x1, ..., xd)
T

2 Construct an initial population with n nests xi (i = 1, 2, ..., n);

3 while (t++ < stopping criterion) do
4 Get a random cuckoo by Lévy flights;
5 Calculate its fitness value Fi;
6 Select a nest among n (say, j) randomly;
7 if (Fi > Fj) then
8 replace j by the new solution;

9 A fraction (pa) of worse nests are left;
10 New nests are built;
11 Keep the best solutions/nests;
12 Find the current best;

13 Process results;

and the transition probability. The product ⊕ means entrywise multiplications.
This entrywise product via Lévy flight is more efficient while exploring the
problem search space because its length is longer.

The Lévy flight ensures a random walk while the length of the random step
is derived from a Lévy distribution with infinite variance and an infinite mean
as given in Equation 16.

Lévy ∼ u = t−λ, (1 < λ ≤ 3) (16)

A benefit of CSA is that since the number of parameters to be tuned is less
than most of the metaheuristic algorithms, it is easily applicable to a wider set
of optimization problems. However, in order to ensure that the optimization
process does not stick in a local optima, a substantial fraction of the new so-
lutions should be produced by randomization during a run. It is shown in the
literature that the randomization of CSA is more efficient as the step length is
selected via using a heavy tailed distribution.

Yang (2013b) provides detailed theory and application information in his
book about CSA and FA. Shehab et al. (2017) present a comprehensive review
of CSA. Its advantages and disadvantages, main architecture, and extended ver-
sions are discussed. Gandomi et al. (2013a) propose CSA for solving structural
optimization tasks. The algorithm combined with Lévy flights is verified with
nonlinear constrained optimization problems.

Yang and Deb (2010) propose a new CSA for some standard test functions
and newly designed stochastic test functions. The algorithm is applied to en-
gineering design optimization problems, the design of springs and welded beam
structures. Yildiz (2013) proposes CSA for solving manufacturing optimiza-
tion problems. A milling optimization problem is solved and the results are
compared with ACO, AIA, hybrid PSO, and GA.

19

Ouaarab et al. (2014) present an improved discrete CSA for the well-known
traveling salesman problem (TSP). The algorithm is tested against a set of
benchmarks of symmetric TSP from the well-known TSPLIB library. The re-
sults of the tests verify that the algorithm outperforms the other well-known
metaheuristics. Walton et al. (2011) propose a modified robust CSA optimiza-
tion algorithm. Durgun and Yildiz (2012) propose a new CSA for solving struc-
tural design optimization problems. This is one of the first applications of the
CSA for the shape design optimization problems. Valian et al. (2011) propose
a strategy for tuning the parameters of CSA. Numerical studies verify that the
proposed algorithm can obtain efficient solutions. Basu and Chowdhury (2013)
present CSA to optimize convex and nonconvex economic dispatch problems of
fossil fuel generators. Tuba et al. (2011) present a modified CSA for uncon-
strained optimization problems. The authors develop a modification in which
the step size is decided from the sorted, rather than only permuted fitness ma-
trix. Wang et al. (2016c) purpose an enhancement for the search ability of the
CSA. The pitch adjustment operation in harmony search is added to the process
of the cuckoo updating to speed up convergence. Yang and Deb (2014) review
the fundamental ideas of cuckoo search and the latest developments as well as
its applications. Bhandari et al. (2014) propose CSA for multilevel thresholding
using Kapurs entropy. Chandrasekaran and Simon (2012) propose a hybrid CSA
with fuzzy system for solving multiobjective unit commitment problem. Three
conflicting functions fuel cost, emission and reliability level of the system are
considered in the study. The effectiveness of the algorithm is verified with unit
test systems. Rajabioun (2011) proposes a CSA for continuous nonlinear opti-
mization problems. The proposed algorithm is applied to benchmark functions
and a real problem and it has been proven to be a robust method. Majumder
et al. (2018) propose a hybrid CSA for the solution of the scheduling identical
parallel batch processing machines. The authors claim that the makespan for
the scheduling problem is minimized.

3.6. Firefly algorithm (FA)

The FA is proposed by Yang (2010a). FA is inspired by the behavior of the
short and rhythmic flashing characteristics of fireflies. Two main functions of
such flashes attract mating partners or warning against predators. The rhythmic
flash, the rate of flashing brings sexes together. The flashing can be formulated
as a function to be optimized for combinatorial algorithms. These flashing
characteristics are idealized by the following rules. (1) All fireflies can attract
other fireflies without any concern about their gender. (2) Attractiveness is
the brightness of the firefly. Therefore, the less brighter firefly moves towards
brighter ones. They decrease the attractiveness as the distance between fireflies
increases. It moves randomly when there is no brighter one. (3) The search
space of the objective function affects the brightness of a firefly. Algorithm 6
depicts a typical run of FA.

Two crucial issues of FA are the light intensity and formulation of the at-
tractiveness. The brightness of the firefly decides its attractiveness where it is
the encoded objective function. The brightness of a firefly (I) at a location x

20

can be chosen as I(x) ∝ f(x) and the attractiveness β is relative, it will be
decided by other fireflies in the population. The brightness varies with respect
to the distance rij between two fireflies. The density of the light intensity I(r)
changes according to the inverse square law given below:

I(r) =
Is
r2

(17)

where Is is the intensity at the source, γ, is a coefficient of fixed light ab-
sorption. The light intensity I changes with the distance r. I0 is the original
light intensity.

I = I0e
−γr (18)

The effect of absorption and the inverse square law is approximated as a
Gaussian form:

I(r) = I0e
−γr2 (19)

The attractiveness (β) of a firefly is defined by:

β = β0e
−γr2 (20)

where (β0) is the attractiveness at r = 0. The above function can be ap-
proximated as:

β =
β0

1 + γr2
(21)

Equations (20) and (21) have a characteristic distance Γ = 1/
√
γ where the

attractiveness changes from β0 to β0e
−1 for Equation (20) or β0/2 for Equation

(21) significantly.
The attractiveness β(r) is a function that monotonically decreases:

β(r) = β0e
γrm , (m ≥ 1). (22)

For a constant γ, the characteristic length is:

Γ = γ−1/m → 1,m→∞ (23)

For a given length scale Γ, the parameter γ can be used as an initial value:

γ =
1

Γm
(24)

The distance between the locations of fireflies i and j (i = 1, 2, ..., n) is the
Cartesian distance (xi and xj are the locations of the fireflies):

rij = ‖xi − xj‖ =

√√√√ d∑
k=1

(xi,k − xj,k)2 (25)

21

where xi,k is the kth element of the coordinate xi of firefly i.

rij =
√

(xi − xj)2 + (yi − yj)2 (26)

The movement of firefly i is attracted to a brighter firefly j is:

xi = xi + β0e
−γr2ij (xj − xi) + αεi (27)

The third term is a random α parameter, and εi is a random vector of values
derived from a Gaussian or uniform distribution. The simplest form, εi, can
be swapped with rand − 1/2 where rand is a number generator distributed in
[0, 1] uniformly. β0 = 1 and α ∈ [0, 1] are assumed during the optimization
process. Equation 27 is a random walk towards brighter fireflies. When β0 is
selected as 0, it becomes a random search. The randomization term can be
implemented with other distribution methods such as Lévy flights. The distri-
butional properties of randomization is an important facility for controlling the
balance between exploration and exploitation, and attracted a lot of attention
in the literature (Fister et al., 2013; Gandomi et al., 2013c)

The parameter γ decides the diversity of the attractiveness. Its value affects
the convergence of the FA. In theory, the value of γ ∈ [0,∞), but in an appli-
cation, γ = O(1) is used by the characteristic length Γ of the function to be
optimized. The value changes from 0.1 to 10.

Algorithm 6: Firefly Algorithm (Yang, 2010a)

1 f(x) is an objective function where, x = (x1, ..., xd)
T

2 // n is the number of fireflies
3 Generate a population of fireflies xi (i = 1, 2, ..., n);
4 Define coefficient γ of light absorption;
5 while (t < Max Generation) do
6 for (i < all n fireflies) do
7 for (j < n fireflies) do
8 Light intensity Ii at xi is determined by f(xi);
9 if (Ij > Ii) then

10 Move firefly i towards j in all d dimensions;

11 Attractiveness varies with distance γ via exp[-γr];
12 Calculate new solutions and update intensity of light;

13 Report the current best solution;

There exist numerous scientific FA studies and adaptations in the literature.
Yang and He (2013) review the basics of FA in their study comprehensively.
The authors discuss the importance of balancing exploration and exploitation.
Gandomi et al. (2013c) introduce chaos into FA to improve its global search for
robust optimization. Chaotic maps are implemented to set the attractive motion
of fireflies. Wang et al. (2017b) present a new FA for the well-known benchmark

22

functions. The results verify that the proposed algorithm improves the accuracy
of solutions and reduce the execution time. Gandomi et al. (2011) developed a
novel FA for solving continuous/discrete structural optimization problems. The
results confirm the validity of the algorithm. Senthilnath et al. (2011) develop
a new FA for clustering problems. The performance of the FA is compared
with ABC, PSO, and other important methods in literature. Yang et al. (2012)
propose a new FA for economic dispatch problems. Yang (2013c) enhances the
FA to solve multiobjective optimization problems. The author validates the
new algorithm using a selected subset of test functions. Farahani et al. (2011)
propose FA to stabilize the movement of a firefly. A new behavior to direct
fireflies to global best is recommended if there is no any better solution in the
environment. Jati et al. (2011) introduce a new FA for the solution of traveling
salesman problem (TSP). Fister Jr et al. (2012) propose a hybrid FA with a local
search technique for the well-known combinatorial optimization problems. The
results of the proposed algorithm are very promising and have great potential
to be applied to other combinatorial optimization problems successfully. Zubair
and Mansor (2019) propose a FA for the optimization of computer-aided process
planning turning machining parameters for cutting tool selection.

3.7. Gravitational search algorithm (GSA)

Rashedi et al. (2009) propose GSA. In this metaheuristic, search agents are
objects and their success is proportional to their masses. The objects pull one
another by the force of gravity. This force causes the movement of light agents
toward heavier mass agents. The communication of agents is provided through
gravitational force. The exploitation for the GSA is guaranteed by heavy masses
that move slowly. Each object has a position, an inertial mass, a passive and an
active gravitational mass. Each object represents a solution that is directed by
setting the gravitational and inertia masses. The heaviest agent is the current
best solution and other agents are attracted by this agent. GSA applies the
Newtonian laws of gravitation and motion. Each object attracts every other one
and the gravitational force between two objects is proportional to the product
of their masses and inversely proportional to the distance between them, R. In
order to be computationally effective, GSA uses the value R instead of R2. The
law of motion is that the current velocity is equal to the total sum of the fraction
of its previous velocity and the change in the velocity. I.e., in an environment
with N objects, the position of object i is:

Xi = X1
i , ..., X

d
i , ..., X

n
i , for i = 1, 2, ..., N, (28)

where xdi is the position of object i in the dth dimension. The force applied
to object ’i’ from agent ’j’ at time t is:

F dij(t) = G(t)
Mpi(t) ∗Maj(t)

Rij(t) + ε
(Xd

j (t)−Xd
i (t)) (29)

where Maj is the gravitational mass applied to agent j, Mpi is the passive
gravitational mass applied to agent i, G(t) is gravitational at time t, ε is a small

23

constant, and Rij(t) is the Euclidian distance between objects i (i = 1, 2, ...,
N) and j (j = 1, 2, ..., N):

Rij(t) =‖ Xi(t), Xj(t) ‖2 (30)

The total force that is applied to object i in d is a random sum of dth

components of the forces from other objects:

F di (t) =

N∑
j=1,j 6=i

randjF
d
ij(t) (31)

where randj is a number in [0, 1]. The acceleration of the object i at time
t, and in direction dth, adi (t) is given as:

adi (t) =
F dij(t)

Md
ii(t)

(32)

where Mii is the inertial mass of object i. The new velocity of an object is
a fraction of its current velocity and its acceleration. Its position and velocity
are calculated as follows:

vdi (t+ 1) = randi ∗ vdi (t) + adi (t) (33)

xdi (t+ 1) = xdi (t) + vdi (t+ 1) (34)

where randi is a uniform variable in [0, 1]. The constant, G, is initialized
and reduced with time to control the accuracy of the search.

G(t) = G(G0, t) (35)

A heavier mass indicates an efficient object (agent). Better solutions are rep-
resented as heavier objects that have higher attractions and move more slowly.
The gravitational and inertial masses are updated by the equations given below:

Mai = Mpi = Mii = Mi; i = 1, 2, ..., N ; (36)

mi(t) =
fiti(t)− worst(t)
best(t)− worst(t)

(37)

Mi(t) =
mi(t)
N∑
j=1

mj(t)

(38)

where fiti(t) represent the fitness value of the agent i at time t, and, worst(t)
and best(t) are defined as follows (for a minimization problem):

best(t) = min
jε1,...,N

fitj(t) (39)

24

worst(t) = max
jε1,...,N

fitj(t) (40)

It is to be noted that for a maximization problem, Equations 39 and 40 are
changed to Equations 41 and 42 respectively:

best(t) = max
jε1,...,N

fitj(t) (41)

worst(t) = min
jε1,...,N

fitj(t) (42)

In order to provide a balance between exploration and exploitation, the num-
ber of agents with a lapse of time in Equation 31 should be reduced. To avoid
getting into local optima the GAS uses the exploration at initial phases. The
level of exploration should be decreased and exploitation should be increased
throughout the iterations. In order to improve the efficiency of GSA, the Kbest

agents should attract the others and thus, Kbest is a function that changes with
time. It is initially set to K0 at the beginning and modified in a monotonically
decreasing fashion. The Equation (31) is formalized as:

F di (t) =

N∑
jεKbest,j 6=i

randjF
d
ij(t) (43)

where Kbest is the set of heaviest K objects with the best fitness value and
the largest mass. The pseudocode of GSA is given in the algorithm 7.

Algorithm 7: Gravitational Search Algorithm (Rashedi et al., 2009)

1 Generate initial population
2 while (t < stopping criterion) do
3 Calculate the fitness of all search agents
4 Update G(i), best(i), worst(i) for i = 1,2,. . .,N.
5 Calculation of acceleration and Mi(t) or each agent i
6 Update velocity and position
7 t=t+1

8 Return the best solution

Some of the recent studies related to GSA are listed as follows: Rashedi
et al. (2010) present a binary GSA. Rashedi et al. (2011) examine the presen-
tation of a new linear and nonlinear filter modeling based on a GSA. Duman
et al. (2012b) propose a GSA to find the optimal solution for optimal power
flow of a power system. Mirjalili et al. (2012) propose a hybrid GSA as a new
training method for Feedforward Neural Networks to search the performance
of algorithms to prevent sticking in local optima and the slow convergence of
evolutionary learning algorithms. Li and Zhou (2011) propose a new GSA op-
timization algorithm for the parameters identification of hydraulic turbine gov-
erning system. Hatamlou et al. (2012) present a hybrid GSA for data clustering

25

problems. Hassanzadeh and Rouhani (2010) propose a new multiobjective GSA
for different test benches. The results prove the superiority of the algorithm.
Sabri et al. (2013) give a review to provide an outlook on GSA . Rashedi et al.
(2018) give a recent comprehensive survey on GSA.

3.8. Grey wolf algorithm (GWO)

Mirjalili et al. (2014a) propose GWO metaheuristic in 2014. The Grey Wolf
is a member of predator animals family and lives with a pack. Each wolf pack
has a social hierarchy. A typical wolf hierarchy contains several types of wolves
such as the “alpha dog ’, “beta dog”, “omega dog”, and “subordinates”. ’The
alpha dog in the pack has the one with the most responsibilities. It is dominant
and leads the pack. Beta is the second level dog in the hierarchy. He/she is the
most likely one to be the alpha dog in case alpha dog becomes dysfunctional.
Omega dogs are the lowest ranking ones. A dog is called subordinate (or delta) if
it is not one of the dogs mentioned above. Group hunting is the most interesting
swarm behavior of these wolves.

In the mathematical modeling of the GWO, the social hierarchy, tracking,
encircling, and attacking prey are the key points of the GWO algorithm. In
this model, the best solution is considered to be alpha dog. The second and the
third best solutions are beta and delta dogs respectively. The rest of the swarm
is called omega dogs. For the phase of encircling the prey, grey wolves encircle
the prey. To model the encircling the prey, the Equations 44 and 45 are used.

−→
D = |

−→
C ·
−→
X p(t)−

−→
X (t)| (44)

−→
X (t+ 1) =

−→
X p(t)−

−→
A · (
−→
D) (45)

t is the iteration index,
−→
A and

−→
C are coefficient vectors,

−→
X p is the prey

position, and
−→
X is the grey wolf position.

−→
A and

−→
C are given as below:

−→
A = 2−→a · r1 −−→a (46)

−→
C = 2 · r2 (47)

r1 and r2 are vectors in the range of [0,1]. During the iterations, components
of −→a are decreased from 2 to 0. In this concept, grey wolves move around
the best solution in hyper-cubes (i.e., candidate solutions each varying only in
few dimensions from the best solution) within an n dimensional space. Grey
wolves can detect the location of prey and encircle it. The alpha dog leads the
hunt. Other dogs also take part in hunting. In the mathematical simulation
of hunting, the best three solutions update the position of other search agents.
The equations below are given for the process.

−→
Dα = |

−→
C 1 ·

−→
Xα −

−→
X |,
−→
Dβ = |

−→
C 2 ·

−→
Xβ −

−→
X |,
−→
Dδ = |

−→
C 3 ·

−→
X δ −

−→
X | (48)

26

−→
X 1 =

−→
Xα −

−→
A 1 · (

−→
Dα),

−→
X 2 =

−→
Xβ −

−→
A 2 · (

−→
Dβ),

−→
X 3 =

−→
X δ −

−→
A 3 · (

−→
Dδ) (49)

−→
X (t+ 1) =

−→
X 1 +

−→
X 2 +

−→
X 3

3
(50)

For the attacking phase (exploitation) of the algorithm, the value of −→a is

decreased gradually. So the fluctuation rate of
−→
A decreases by −→a , since every

local search algorithm is prone to local stagnation. Therefore, GWO uses an
efficient exploration method: Alpha, beta, and delta dogs always try to stay
far away from each other. This provides a good diversity in the problem search
space.

For
−→
A , values between 1 and -1 are used. This provides a global exploration

capability for the GWO algorithm. For
−→
C , random values between [0, 2] are

used. Local optima avoidance and efficient exploration are provided in this way.
After generating a random population, alpha, beta, and delta dogs calculate
the position of the best prey. In order to choose exploration and exploitation,
parameter a is decreased from 2 to 0 respectively. The GWO algorithm termi-
nates when the criterion is satisfied. The pseudocode of the GWO algorithm is
presented in Algorithm 8.

Algorithm 8: Grey Wolf Algorithm (Mirjalili et al., 2014a)

1 Produce initial Grey Wolf population Xi (i=1,2,...,n);
2 Give initial values to a, A, and C randomly;
3 Computer the fitness values of agents in the population;
4 Xα = the best agent;
5 Xβ = the second best agent;
6 Xδ= the third best agent;
7 while (t < #iterations) do
8 for (each agent) do
9 Update the position of the current search agent (Equation 50);

10 Update a, A, and C ;
11 Update the fitness value of agents;
12 Update Xα , Xβ , and Xδ;
13 t++;

14 Return Xα;

Some of the recent studies related to GWO are as follows: Mirjalili et al.
(2016b) propose a Multiobjective GWO to optimize problems with multiple ob-
jectives. An external archive is combined with GWO to save and retrieve Pareto
optimal results. Komaki and Kayvanfar (2015) propose a GWO algorithm for
the assembly flow shop scheduling problem with a release time of jobs that
can be applied to industrial engineering problems easily. Emary et al. (2016)

27

propose a novel binary version of GWO for feature subset selection of data clas-
sification problems. Mittal et al. (2016) propose a modified GWO to balance
the exploration and exploitation efforts of GWO that improves the performance
of the algorithm. Kohli and Arora (2018) introduce the chaotic GWO algorithm
to accelerate its global convergence speed. Experiments are studied to carry out
to solve standard constrained benchmark problems. Song et al. (2015) propose
a novel GWO for surface wave dispersion curve inversion scheme. The pro-
posed algorithm is tested on noise-free, noisy, and field data. For verification,
the results are compared to GA, PSO, and GSA. The algorithm is reported to
be efficient. Qin et al. (2019) propose a hybrid discrete GWO for the casting
production scheduling problem with multiobjective and multi-constraint.

3.9. Harmony search (HS)

HS is a metaheuristic algorithm based on musical compositions and the pro-
cess of writing a composition (Geem et al., 2001). HS is proposed by Yang
(2009) in 2001 and has been applied to numerous optimization problems since
then (Manjarres et al., 2013). HS makes use of methods applied by musicians
to create harmonic musical compositions in order to model optimization prob-
lems (Wang et al., 2015b). In HS, a musician has three possible choices when
improvising a song: (1) playing any well-known piece of music (pitches in har-
mony) naturally from his or her memory; (2) playing music similar to an existing
piece (by adjusting the pitch); or (3) composing random harmonic notes. Geem
et al. (2001) use these possible choices during the optimization process of a
problem, applying, pitch adjusting, and randomization.

The usage of harmony memory is similar to the selection of best chromo-
somes in GA. The harmony memory ensures to keep the best harmonies to new
harmony memory. It is assigned as a parameter, raccept ∈ [0, 1] that is called
harmony memory accepting rate. When the rate is too small, a few best har-
monies are selected and this causes slower convergence of the HS algorithm.
When the rate is too high (a value close to 1), it may not be possible to explore
all the harmonies well. This can lead to wrong solutions. The parameter raccept
is selected between [0.7, 0.95] to prevent his problem.

The pitch adjustment is the second parameter determined by the bandwidth
(brange) and the adjusting rate of a pitch rpa. Pitch adjustment changes the
frequencies and generates diversity in the HS. Linear or nonlinear adjustment
is used to set the pitch value.

xnew = xold + brange ∗ ε (51)

xold is the current pitch, and xnew is the new solution after the adjustment
of pitch. This process generates a neighboring solution to the existing solution
by changing the pitch slightly. Pitch adjustment mimics like the mutation op-
erator in evolutionary algorithms. A parameter (pitch-adjusting rate rpa) can
be used to control the adjustment level. A small adjustment rate can slow the
convergence time of HS, whereas a high adjustment rate can act as a random

28

search process. A value between [0.1 , 0.5] is observed to be a good balance for
rpa.

The third parameter (randomization) is used to provide diversified solutions.
The randomization enables the system to explore different solutions. The ran-
domization can direct the search to explore various different solutions to obtain
the global optimal solutions. the probability of randomization is given below:

prandom = 1− raccept (52)

where the probability of adjusting pitches are:

ppitch = raccept ∗ rpa (53)

Algorithm 9 summarizes a typical HS.

Algorithm 9: Harmony Search Optimization Algorithm (Geem et al.,
2001).

1 Generate initial harmonics;
2 Introduce pitch adjusting rate (rpa), pitch limits and bandwidth;
3 Introduce harmony memory accepting rate (raccept);
4 while (t < #iterations) do

5 Generate harmonics by accepting the best harmonics;
6 Tune pitch to get new harmonics/solutions;
7 if (rand> raccept) then
8 choose a random harmonic from population;
9 else if (rand> rpa) then

10 tune the pitch within limits randomly;
11 else
12 generate new harmonics randomly;

13 Find the current best harmonics;

Some of the well-known studies of HS are as follows: Lee and Geem (2005)
describe an HS algorithm for engineering optimization problems having real-
number design variables. The proposed algorithm searches the space with a
perfect state of harmony. It uses a random search instead of a gradient process
so that derivative information becomes useless. Wang and Huang (2010) exam-
ine the main difficulties of HS while selecting suitable parameters. They use con-
sciousness to tune the parameters. The classical number generator is updated
with the low-discrepancy sequences for initial harmony memory. Omran and
Mahdavi (2008) propose a global-best HS (GHS) to improve the performance.
GHS algorithm outperforms other algorithms when applied to benchmark prob-
lems. Al-Betar et al. (2012) propose novel selection schemes. Zou et al. (2010)
use a novel global HS (NGHS) algorithm to optimize unconstrained problems.
The NGHS algorithm includes position updating and genetic mutation. Sha-
bani et al. (2017) propose an algorithm that makes use of experienced musicians.

29

When making harmony, the musicians modify the undesired notes of the cur-
rent harmony instead of throwing them away. This method is used to allow
the HS to exploit the information obtained in the harmony memory to improve
current harmonies. The algorithm is Selective Refining HS in which a new har-
mony memory is utilized. Kumar et al. (2014) present a parameter adaptive
HS for solving optimization problems. The two important parameters of HS are
changed dynamically in the proposed algorithm. Lee and Geem (2004) describe
a new HS that does not need any initial values and applied a random search in-
stead of a gradient process. Geem (2006) presents a cost minimization algorithm
for the water distribution networks. The model uses an HS algorithm to satisfy
the constraints. Lee et al. (2005) propose an efficient optimization algorithm
for structures with discrete variables HS. Alatas (2010) proposes HS algorithms
with chaotic maps to tune parameters and improve the convergence properties
to prevent the HS to get stuck into local optima. The studies above verify that
HS and its variant algorithms are global search algorithms that can be applied
to engineering optimization problems. Exploration and exploitation strategies
of HS are different from classical metaheuristic algorithms. Although HS is not
a parametrically sensitive algorithm, studies reveal that tuning the parameters
of HS improves its performance. HS is reported to be a robust optimization
algorithm for solving NP-Hard engineering optimization problems.

3.10. Krill herd (KH)

Gandomi and Alavi (2012) propose KH metaheuristic. One of the most
important features of KH is that they can construct large groups (Hardy, 1935).
When other sea animals attack a herd, they can eat individual krills but this
only reduces the density of the herd. The purpose of a KH is multiobjective that
it tries to increase the density of the herd while reaching the food. Each krill
moves toward the best global solution while searching for the highest density
and the food. During the attacks to the KH, individuals are removed from the
swarm. This process decreases the average density of the KH and the distance
of the krill swarm from the location of the food.

The fitness of an individual is evaluated with the distance of the KH from
the food and the density of the group. The location of an individual krill in 2D
is decided by the movements of other krill individuals’ foraging for food, and
random diffusion. A Lagrangian model is used to be able to search the whole
space with n dimensions (Equation 54):

dXi

dt
= Ni + Fi +Di (54)

where, Ni is the action started by the other individuals; Fi is the act of for-
aging, and Di is the physical diffusion of the krill i (i = 1, 2, ..., n). Individuals
in the herd try to keep a high density and act with the effects of other members
of the herd. The parameter, direction of motion, αi, is effected by the density
of local swarm, a target swarm, and a repulsive swarm. Individual movement

30

of each krill can be defined:

Nnew
i = Nmaxαi + ωnN

old
i (55)

where,

αi = αlocali + αtargeti (56)

Nmax is the maximum speed, αn is the inertia weight of the motion in the
range [0, 1], ωnN

old
i is the last motion induced, αlocali is the local effect of neigh-

bors and αtargeti is the target direction effect by the best krill individual. The
effect of the neighbors can be an attractive/repulsive likelihood between the in-
dividuals during a local search. Such behavior utilizes for controlling the balance
between exploration and exploitation in KH: allowing more attraction between
individuals improves exploitation while allowing repulsive behavior within the
herd allows a more diverse search space, thus exploration.

The foraging activity of the algorithm is formulated with two parameters, the
food location, and the past information about the food location. This motion
of krill i can be given as in Equation 57.

Fi = Vfβi + ωfF
old
i (57)

where

βi = βfoodi + βbesti (58)

Vf is the velocity of foraging, ωf is the inertia weight of the foraging move-

ment in the range [0, 1], βfoodi is the food attractive and βbesti is the impact of
the best fitness of krill i. The physical diffusion is a random procedure. This can
be explained in terms of a maximum diffusion speed and a random directional
vector. The formulation can be given as below:

Di = Dmaxδ (59)

where Dmax is the maximum diffusion speed, and δ is the random vector
and the random values are in the [-1,1].

The motions direct the location of a krill toward the krill with the best
fitness value. According to the formulations for krill i, if the fitness value of
each effective factors (Kj , K

best, Kfood or Kbest
i) is better than the fitness

of krill i, it has an attractive effect. It is obvious from the formulations that
a better fitness is more effective on the movement of krill i individual. The
physical diffusion carries out a random walk in the method. Using different
parameters of the motion, the position vector of a krill during the interval t to
t+ ∆t is:

Xi(t+ ∆t) = Xi(t) + ∆t
dXi

dt
(60)

KH algorithm also uses operators of crossover and mutation. An adaptive
crossover operator is employed in the KH algorithm. The mutation is controlled

31

by a probability. The pseudocode of the KH algorithm is presented in Algorithm
10.

Algorithm 10: Krill Herd Algorithm (Gandomi and Alavi, 2012)

1 Describe the simple bounds, determine the parameters;
2 Create the initial population randomly
3 Evaluate the fitness value of each krill;
4 while (Stopping criterion is not satisfied) do
5 Motion effected by the krill;
6 Foraging motion;
7 Physical diffusion;
8 Use crossover and mutation operators;
9 Update the krill individual position;

Some of the recent studies on KH algorithm are presented as follows: Wang
et al. (2014d) introduce the chaos theory for KH optimization process to accel-
erate its convergence speed. Different chaotic maps are used in the proposed
chaotic method to set the movements of the krill. Wang et al. (2014b) present
Stud KH (SKH) optimization method to global optimization. An updated ge-
netic reproduction operator is introduced into the KH during the krill updating
process. Wang et al. (2014a) propose a novel hybrid KH algorithm to solve global
numerical optimization problem. The algorithm integrates the exploration of
harmony search (HS) with the exploitation of KH. Wang et al. (2014c) deal with
the poor exploitation characteristic of the KH algorithm. They propose a hy-
brid DE algorithm. Wang et al. (2013a) develop a Lévy-flight KH algorithm for
solving optimization problems within reasonable execution times. The combi-
nation of a new local Lévy-flight operator for the process improves the efficiency
with global numerical optimization problems. Wang et al. (2013b) improve the
performance of KH algorithm. A series of chaotic PSO-KH algorithms are pro-
posed for solving optimization problems. Guo et al. (2014) present an improved
KH algorithm to solve global optimization problems. The method exchanges
information between the best performing krill during the motion calculation
process. Detailed information about KH can be found in a recent survey by
Bolaji et al. (2016).

3.11. Social spider optimization (SSO)

SSO is a metaheuristic algorithm proposed by Cuevas et al. (2013). Even
though most of the spiders are solitary, the members of social-spider species
demonstrate and may show cooperative behavior. The social-spiders have a
tendency to live in groups and each member in a group has a variety of tasks
such as mating, hunting, web design, and social interaction. The web is a crucial
part of the colony and it is used as a communication means. A web is employed
by each spider to manage its own cooperative behavior. The SSO algorithm is
inspired by the cooperative characteristics of social-spiders. The interaction of

32

individual spiders (solutions) are simulated depending on the biological laws of
a cooperative spider colony. Agents are considered as male and female by the
SSO algorithm. Such an approach allows not only to simulate the cooperative
behavior of the colony in a better way but also to prevent critical problems faced
in the classical metaheuristics. These are the incorrect exploration-exploitation
balance and premature convergence. The search space is assumed to be a com-
munal web by the SSO algorithm. In this communal web, all the social-spiders
interact with each other. A spider’s position is considered to be a solution and
every spider has a fitness value (weight) of the solution.

The colony of the social-spiders is a highly female-biased population. The
number of females Nf is randomly selected within the range of 65-90% of the
entire population N. Therefore, Nf is evaluated as:

Nf = floor[(0.9− rand · 0.25) ·N] (61)

where rand is a random number between [0, 1] and the number of males Nm
is considered as Nm = N −Nf .

Each individual (spider) receives a weight wi that represents the solution
quality of the spider i in population S. The weight of every spider is calculated
as follows:

wi =
J(si)− worsts
bests − worsts

(62)

where J(si) is the fitness value of the spider position si with regard to the
objective function J(·).

Information exchange is managed by a communal web mechanism. This is
important for collective coordination of the population and encoded as vibra-
tions that depend on the weight and distance of the spider which generates
them. Vibrations perceived by the individual i (i = 1, 2, ..., n) as a result of
the information transmitted by the member j has been modeled according to
the following equation;

V ibi,j = wj · e−d
2
i,j (63)

where the di,j is the Euclidean distance between the spiders i and j, such
that di,j = ‖ si - sj ‖

Three special relationships are considered within the SSO approach;

• Vibrations V ibci are perceived by the individual i (si) as a result of the
information transmitted by the member c(sc) (the nearest member to i
and possesses a higher weight in comparison to i).

• Vibrations V ibbi are perceived by the individual i (si) as a result of the
information transmitted by the member b(sb) (the individual with the
best weight (best fitness value) of the entire population S).

33

• Vibrations V ibfi are perceived by the individual i (si) as a result of the
information transmitted by the member f(sf) (being the nearest female
individual to i).

The SSO initializes the entire population including random female and male
members. Each spider position, fi or mi, is a n-dimensional vector containing
the parameter values to be optimized.

Female cooperative operator: Social-spiders perform cooperative interaction
with other members. Female spiders present an attraction or dislike. Emulation
of the cooperative behaviour of the female spider is performed by an operator
which considers the position change of the female spider i at each iteration. Any
position change can be of attraction or repulsion. These can be a combination
of three different elements. The first one involves the change regarding the
nearest member to i that holds a higher weight and produces the vibration
V ibci. The second one considers the change regarding the best individual of the
entire population S who produces the vibration V ibbi. Finally, the third one
includes a random movement.

For random movement, either attraction or repulsion, a uniform random
number rm is generated within the range [0, 1]. If rm is smaller than a threshold
PF, an attraction movement is generated; otherwise, a repulsion movement is
produced. Therefore, such operator can be modelled as follows:

fk+1
i =

fki + α · V ibci · (sc − fki) + β · V ibbi · (sb − fki)

+δ · (rand− 1
2), with probability PF

fki + α · V ibci · (sc − fki) + β · V ibbi · (sb − fki)

+δ · (rand− 1
2), with probability (1− PF)

(64)

where α, β and δ and rand are random numbers in the range of [0, 1] and k
represents the iteration number. The individual sc and sc represent the nearest
member to i that holds a higher weight and the best individual of the entire
population S, respectively.

Male cooperative operator: Male members in SSO are divided into two dif-
ferent groups which are dominant members D and non-dominant members ND
according to their position with regard to the median member. Male mem-
bers, with a weight value above the median value within the male population,
are considered the dominant individuals D. Those under the median value are
depicted as non-dominant ND males.

In order to implement such computation, the male population M (M= m1,
m2,, mNm

is arranged according to their weight values in decreasing order.
Thus, the individual whose weight wNfm

is located in the middle is considered
the median male member. Since indexes of the male population M in regard
to the entire population S are increased by the number of female members Nf ,
the median weight is indexed by Nfm. With respect to the computation, the

34

male spider position can be modelled as follows:

mk+1
i =

mk
i + α · V ibfi · (sf −mk

i) + δ · (rand− 1
2), wNf+i > wNf+m

mk
i + α ·

(∑Nm

h=1 mk
h·wNf+h∑Nm

h=1 wNf+h
−mk

i

)
, wNf+i ≤ wNf+m

(65)
Mating operator: Mating in a social-spider colony is performed by dominant

males and the female members. When a dominant male mg spiders (g ∈ D)
locates a set Eg of female members within a range of r (range of mating),
it mates, generates a new spider snew which is generated considering all the
elements of the set Tg that, in turn, has been generated by the union Eg ∪mg.
In the mating process, the weight of each involved spider (elements of Tg) defines
the probability of influence for each individual into the new brood. The spiders
holding a heavier weight are more likely to influence the new product, while
elements with lighter weight have a lower probability. Details of the operators
and equations of SSO can be found in a study by Cuevas et al. (2013). The
pseudocode of SSO algorithm is presented in Algorithm 11.

Algorithm 11: Social spider optimization (Cuevas et al., 2013)

1 S is the total population of spiders:
2 N is the total number of n-dimensional colony members;
3 Nf is the number of females;
4 Nm is the number of males;

5 Nf = floor[(0.9− rand · 0.25) ·N]
6 Nm = N −Nf ;

7 Initialize the female Nf and male Nm members randomly;
8 Calculate the radius of mating (S):

9 while (the stopping criteria is not met) do

10 Calculate the weight of every spider(S);
11 Move females according to the female cooperative operator (S);
12 Move males according to the male cooperative operator (S);
13 Perform the mating operation (S);

Pereira et al. (2016) address the tuning of parameters for Support Vector
Machines (SVM) due to the computational burden for SVM training step. The
authors propose an SSO for feature selection and parameter tuning. SSO is
decided to be a suitable approach for the model selection of SVM. Cuevas and
Cienfuegos (2014) propose SSO for solving constrained optimization tasks. Sim-
ulation and comparisons based on several well studied benchmarks functions and
real-world engineering problems demonstrate the effectiveness, efficiency and
stability of the proposed method. El-Bages and Elsayed (2017) propose SSO
for the solution of the static transmission expansion planning. A DC power

35

flow sub-problem is solved for each network resulting from adding a potential
solution developed by the SSO algorithm to the base network. James and Li
(2016) propose a new SSO algorithm to solve the Economic Load Dispatch
(ELD) problem that is an important part of power system control and oper-
ation. Zhou et al. (2017) propose a simplex method-based SSO algorithm to
overcome the converge to local minima problem. James and Li (2015) propose
SSO for solving the global optimization problem. The authors carry out pa-
rameter sensitivity analysis and develop guidelines for selecting the parameter
values. Elsayed et al. (2016) propose a modified SSO algorithm for the solution
of the non-convex economic dispatch problem. Kurdi (2018) develops a SSO for
hybrid flow shop scheduling with multiprocessor task. The proposed algorithm
is verified on benchmark problems that it is competitive with state-of-the-art
algorithms. Kavitha et al. (2018) propose a SSO method for the solution of
flexible job shop scheduling problem. The proposed algorithm achieved 92.33%
exactness in SSO strategy contrasted with other optimization process. The
algorithm is also observed to reduce the execution time.

3.12. Symbiotic organisms search (SOS)
SOS metaheuristic is proposed by Cheng and Prayogo (2014). SOS mim-

ics the interactive behavior among different species of organisms. Organisms
mostly live mutually in a swarm for sustenance and survival. This relationship
is defined as symbiosis and it describes relationships between distinct species. In
symbiosis, two organisms can be linked together to live and they prefer existing
in a beneficial relationship together. The well-known relationships in nature
are commensalism, mutualism, and parasitism. Commensalism is a symbiotic
relationship between two species in which one can get an advantage and the
other one is neutral. In mutualism, both benefit from each other. In parasitism,
there is a symbiotic relationship between two species in which one benefits and
the other is harmed. Symbiotic connections may improve the odds of survival
of a species.

The SOS algorithm improves this behavior and has a population to examine
the search space while finding the optimal solution. The initial population of
a SOS instance is the ecosystem. Each organism represents a solution for the
problem to be optimized. Each organism is related to a fitness value that is
a kind of adaptation to the solution of the problem. In SOS, new generation
is controlled by imitating the biological interaction of two organisms in the
ecosystem. The phases of the algorithm are commensalism, mutualism, and
parasitism.

In the mutualism phase, let Xi be an organism paired with the ith solution
(i = 1, 2, ..., n) where n is the number of organisms. Xj is another randomly
selected organism from the ecosystem to pair with Xi. Solutions (fitness values)
for Xi and Xj are computed based on formulae 66 and 67.

Xinew = Xi + rand(0, 1) ∗ (Xbest +Mutual V ector ∗BF1) (66)

Xjnew = Xj + rand(0, 1) ∗ (Xbest +Mutual V ector ∗BF2) (67)

36

Mutual V ector =
Xi +Xj

2
) (68)

Parameters BF1 and BF1 are selected as either 1 or 2. These coefficients are
the levels of the benefit of each organism. Equation 68 is the “Mutual Vector”
that defines the characteristics between organism Xi and Xj . The Xbest is
assumed to be the highest adaptation degree of the ecosystem. Therefore, it is
the target value for the fitness evaluations of organisms. Commensalism mimics
a relationship of a remora fish and sharks. The remora eats food leftovers of a
shark.

A randomly selected Xj interacts with Xi that attempts to benefit from this
relationship. Xj does not benefit or suffer from this process. A new solution
Xi is evaluated with respect to the commensal symbiosis between Xi and Xj

(Equation 69).

Xinew = Xi + rand(−1, 1) ∗ (Xbest −Xj) (69)

Xbest−Xj is the advantage parameter produced by Xj for Xi to the highest
degree in the current organism in the ecosystem.

In parasitism, Xi is used for the generation of the “Parasite Vector”. For
each selected Xi, randomly selected dimensions are modified. Randomly se-
lected organism, Xj , is a host to the parasite vector. Parasite Vector tries
to swap Xj . The fitness values of both organisms are examined. In case Para-
site Vector has a better fitness value, it will swap organism Xj in the population.
Otherwise, Xj will resist to the parasite and the Parasite Vector will not exist
any longer. In Algorithm 12, the pseudocode of the SOS is presented.

Algorithm 12: Symbiotic Organisms Search Algorithm (Cheng and
Prayogo, 2014)

1 Initialize the population;
2 while termination criterion is not met do

3 Mutualism;
4 Commensalism;
5 Parasitism;

Cheng et al. (2015) introduce novel discrete symbiotic organisms search for
the solution of multiple resources leveling in project scheduling. Tejani et al.
(2016) propose a modified SOS algorithm by introducing adaptive benefit fac-
tors in the basic SOS algorithm. The proposed SOS algorithms consider effective
combinations of adaptive benefit factors to lay down a good balance between ex-
ploration and exploitation of the search space. The results verify that the SOS
algorithm is reliable and efficient than the classical SOS and other examined
algorithms. Tran et al. (2016) introduce a Multiple Objective SOS (MOSOS)

37

algorithm to solve multiple work shifts problems. The experimental results ver-
ify that MOSOS is a powerful search and optimization technique in finding the
optimization of work shift schedules. Panda and Pani (2016) propose SOS al-
gorithm to formulate multiobjective problems. The proposed algorithm is inte-
grated with adaptive error function to track equality and inequality constraints.
Prasad and Mukherjee (2016) propose an SOS algorithm for the solution of the
optimal power flow problem of power system. The results verify the potential of
the SOS algorithm for solving hard optimization problems. Tejani et al. (2018)
present a multiobjective adaptive SOS for solving truss optimization problems.
The mutualism searches by jumping into unvisited parts of the problem and
performs a local search of visited sections. A good balance is provided between
an exploration and exploitation phases of the algorithm. Adaptive control is in-
corporated to propose SOS. Vincent et al. (2017) propose the SOS algorithm for
solving the capacitated vehicle routing problem. The problem is a well-known
discrete optimization problem for deciding the routes for a set of vehicles serving
a set of points with a minimal total routing cost. Ezugwu et al. (2017) present
develop a SOS algorithm with SA to solve the NP-Hard traveling salesman
problem.

3.13. Teaching-learning-based optimization (TLBO)

TLBO is a population-based metaheuristic algorithm proposed by Rao et al.
(2011). The population consists of a group of learners (sample solutions) and
a teacher/trainer in a TBLO classroom (population). The first phase of TLBO
is the “Teacher” Phase and the second phase is the “Learner” Phase. TLBO
algorithm is a stochastic swarm intelligence algorithm. TLBO has an iterative
evolution process that is similar to classical evolutionary algorithms. The lack
of algorithm-specific parameters, rapid convergence and easy implementation of
TLBO have attracted the attention of researchers. This new method has been
applied to engineering design optimization problems (Rao et al., 2012; Rao and
Patel, 2012). Zou et al. (2019) provide a comprehensive survey of prominent
TLBO variants and its recent applications and theoretical analysis and detailed
information on TLBO can be found in this survey.

Learners in the classroom can obtain knowledge through interaction with
a teacher or their classmates. TLBO is based on this simple training model.
The best learner is employed as a teacher and he is the most knowledgeable
person in the population. The teacher spreads information to learners, which
is an exploitation technique commonly used in many classical algorithms. This
training process improves the knowledge level (i.e., the overall fitness) of the
class. The teacher improves the success of the class with respect to his/her
teaching talents. Teacher improves the quality of the learners and when the
improvement does not get better, a new and better quality teacher is assigned.
The students may require a new higher quality trainer and a new training process
can be re-initialized.

Mi is the mean, Ti is the teacher at iteration i and Ti moves Mi towards its
own level (i = 1, 2, ..., n) where n is the number of individuals in the classroom.
Therefore, the new mean becomes Ti designated as Mnew. The new solution is

38

modified with respect to the difference between the current and new mean given
by:

Difference Meani := ri(Mnew − TFMi) (70)

where TF is a teaching factor that decides how the mean value will be up-
dated by a teacher, and ri is a random number in the range of [0, 1]. The value
of TF can be either one or two, which is a heuristic step decided randomly with
equal probability as TF = round[1 + rand(0, 1){2-1}].

This difference changes the current solution according to the expression be-
low:

Xnew,i := Xold,i +Difference Meani (71)

Students improve their knowledge by the input from the teacher and the
interactions of classmates. A learner interacts with other learners in the class-
room randomly. A student learns new things if the other classmate has a better
knowledge level. A student is randomly selected from the classroom and this
individual trains other randomly selected classmates. If the new individual is
better than the former one, it is replaced (see Algorithm 13 for details). The
update of the learners for selected two learners where Xi 6= Xj is given as:

if(Xi < Xj) then Xnew,i := Xold,i + ri(Xi −Xj) (72)

if(Xi > Xj) then Xnew,i := Xold,i + ri(Xj −Xi) (73)

Rao and Patel (2013) propose a TLBO algorithm for the multiobjective op-
timization of heat exchangers. Plate-fin heat exchanger, shell and tube heat
exchanger are considered during the optimization. Kiziloz et al. (2018) propose
novel multiobjective TLBO algorithms with machine learning techniques for the
solution of feature subset selection problems. Selecting the minimum number of
features while not compromising the accuracy of the results is a multiobjective
optimization problem. The authors propose TLBO metaheuristic as a feature
subset selection technique and utilize its algorithm-specific parameterless con-
cept. Sevinc and Dokeroglu (2019) propose a novel hybrid TLBO algorithm with
extreme learning machines (ELM) for the solution of data classification prob-
lems. The proposed algorithm is tested on a set of UCI benchmark datasets.
The performance of the algorithm is observed to be competitive for both binary
and multiclass data classification problems when compared with state-of-the-
art algorithms. Črepinšek et al. (2012) evaluate the performance of TLBO in a
recent survey. The authors report results on TLBO in terms of qualitative and
quantitative values. Their results reveal important mistakes about TLBO and
provide information for researchers in order to avoid similar mistakes and ensure
fair experimental setups of TLBO with other metaheuristics. In a book, non-
dominated sorting multiobjective versions of TLBO are explained in detail (Rao,
2016). Constrained/unconstrained, and a multiobjective constrained problem

39

Algorithm 13: Teaching-learning-Based Optimization Algorithm Rao
et al. (2011)

1 generate population(population);
2 calculate fitness of individuals (population);

3 for (k:=1 to number of generations) do
4 for (i:=1 to number of individuals) do

5 /* Learning from Teacher */
6 TF := round (r + 1);
7 Xmean:= calculate mean vector (population);
8 Xteacher:= best individual (population);
9 Xnew := Xi + r(Xteacher − (TFXmean));

10 if (Xnew is better than Xi) then
11 Xi := Xnew;

12 /* Learning from Classmates */
13 j :=select random individual from (population);
14 if (Xi is better than Xj) then
15 Xi,new := Xi + r(Xi −Xj);
16 else
17 Xi,new := Xj + r(Xj −Xi);

18 if (Xi,new is better than Xi) then
19 Xi := Xi,new;

40

are solved by TLBO. Dokeroglu (2015) proposes a set of new TLBO-based hy-
brid algorithms to solve quadratic assignment problems. Solution instances are
trained with recombination operators and TS optimization engine processes by
using exploitation techniques. The algorithms are competitive with other al-
gorithms in literature. Toğan (2012) presents a design procedure employing
TLBO techniques for discrete optimization of planar steel frames. Frame ex-
amples are inspected to show the suitability of the design procedure. Dede and
Ayvaz (2015) propose a TLBO algorithm for the optimization of the size and
shape of structures.

3.14. Whale optimization algorithm (WOA)

Mirjalili and Lewis (2016) propose WOA. The WOA is a new metaheuris-
tic inspired by the social behavior of humpback whales. Humpback whales are
social animals and use a bubble-net strategy while hunting for fish together.
Since whale groups can protect their young easier, humpack whales have de-
veloped this group hunting and feeding behavior to their advantage. In this
hunting method whales dive under a large group of prey and produce bubbles
forcing fish into a bubble-net called bubble-net feeding. This foraging method
of humpback whales is used for hunting a large group of small fish or krill since
humpback whales have no teeth and a very narrow throat so they can only
swallow small prey as a whole (see Figure 5 for a depiction of this behavior).
WOA mathematically models the spiral bubble-net feeding strategy of hump-
back whales to solve NP-Hard optimization problems. Encircling prey, spiral
bubble-net feeding maneuvers, and search for prey are three basic functions used
in WOA.

Humpback whales identify the target prey location and start encircling them.
The WOA employs many search agents starting each with a random solution.
After deciding which search agent has the best solution, the other search agents
update their locations towards the global best one as performed by humpback
whales. This is given in Equations 74 and 75.

−→
D = |

−→
C .
−→
X∗(t)−

−→
X (t)| (74)

−→
X (t+ 1) =

−→
X∗(t)−

−→
A ·
−→
D (75)

where t represents the iteration steps,
−→
A and

−→
C are coefficient vectors, X∗

is the vector representing the global best solution,
−→
X is the position vector

and · is an element-by-element multiplication. X∗ is iteratively improved as

better solutions are discovered at each iteration.
−→
A and

−→
C are calculated as in

Equations 76 and 77 respectively.

−→
A = 2−→a · −→r −−→a (76)

−→
C = 2 · −→r (77)

41

Figure 5: The bubble-net feeding behavior of a humpback whale.

where −→a is iteratively decreased from 2 down to 0 and −→r is a random vector
with size between [0,1].

Two mechanisms are used for imitating the bubble-net produced by hump-
back whales: First, a shrinking encircling mechanism is imitated by reducing
the value of −→a in equation 76 at each iteration. Second, spiral shaped updating
of the position is achieved by calculating the distance between the whale at
(X,Y) and prey at (X∗, Y ∗). The spiral shaped motion is produced as follows:

−→
X (t+ 1) = D′ · ebl · cos(2πl) +

−→
X∗(t) (78)

where D
′

= |
−→
X∗(t) −

−→
X (t)| is used to calculate the distance between the

prey and the i -th whale, b is a constant parameter for shaping the logarithmic
spiral, l is a random number in [1,1].

The humpback whales can also search for prey randomly by choosing to
move towards the position of a random whale instead of the best search solution.

Using this method when |
−→
A | > 1 WOA is in the exploration phase and it can

perform a global search. The exploration phase can be mathematically modeled
as follows:

−→
D = |

−→
C ·
−→
X rand −

−→
X | (79)

−→
X (t+ 1) =

−→
X rand −

−→
A.
−→
D (80)

where,
−→
X rand is a random position vector chosen from agent whale popula-

tion.

42

WOA randomly generates individuals in the population. These agents can
change their locations with respect to either another random agent or the best
solution obtained by agents. The a parameter is decreased from two to zero for
exploration (when |a| > 1) and exploitation (when |a| < 1). A random search

agent is selected when |
−→
A | > 1, while the best agent is being selected when

|
−→
A | < 1 for updating the position of the agents. Depending on the value of p,

WOA is able to act like either a spiral or circular movement. In the end, the
WOA is finished by a termination criterion. The details of the WOA is depicted
in Algorithm 14.

Algorithm 14: Whale Optimization Algorithm (Mirjalili and Lewis,
2016)

1 Generate random population Xi (i = 1, 2, ..., n)
2 Find fitness value of search agents;
3 X∗ = the best agent;
4 while (t < #iterations) do
5 for each agent do
6 Update a,A,C, l, and P
7 if (p < 0.5) then
8 if (|A| < 1) then
9 Update the position of agents (Equation 74);

10 else if (|A| ≥ 1) then
11 Select an agent (Xrand);
12 Update the position of the agent (Equation 80);

13 else if (p ≥ 0.5) then
14 Update the position of the agent (Equation 78);

15 Validate that search agents go beyond search space;
16 Calculate the fitness value of agents;
17 Update X∗ in case a better solution is observed;
18 t+ +;

19 return X∗;

Several WOA-based approaches are presented in the literature in recent
years. Kaur and Arora (2018) propose chaotic WOA. Many chaotic maps are
proposed as chaotic techniques for setting the parameter(s) of WOA. The pro-
posed algorithm is tested using well-known benchmark functions. The chaotic
maps are observed to improve the performance of WOA. Ling et al. (2017) pro-
pose a WOA working with a Lévy flight trajectory. the proposed algorithm is
robust, fast, increases the diversity of the population, and avoids search failure
caused by premature convergence. El Aziz et al. (2017) examine WOA and
Moth-Flame Optimization algorithms to decide the optimal multilevel thresh-
olding for image segmentation. Mafarja and Mirjalili (2018) propose a new WOA

43

based wrapper feature selection algorithm. This work describes two hybrid mod-
els to obtain different feature selection techniques based on WOA (Mafarja and
Mirjalili, 2017). Jadhav and Gomathi (2018) propose a WOA based data clus-
tering algorithm that tries to determine the optimal centroid for performing the
clustering process. The proposed method is experimentally shown to outper-
form the existing methods. Aljarah et al. (2018) propose a new training WOA to
process of artificial neural networks. Prakash and Lakshminarayana (2017) pro-
pose a WOA to obtain optimal sizing and placement of capacitors for a typical
radial distribution system. Wang et al. (2017c) propose a new proposed Multi-
objective WOA for wind speed forecasting. Abdel-Basset et al. (2018) propose
a WOA combined with a local search method for dealing with the permutation
flow shop scheduling problem. Oliva et al. (2017) introduce a Chaotic WOA
for the estimation of solar cells parameters. The approach makes use of chaotic
maps to set the parameters of the optimization algorithm. El Aziz et al. (2018)
develop a WOA for determining the multilevel thresholding values for image
segmentation. Although it is a new metaheuristic, WOA seems to have great
potential to attract many researchers due to its small number of parameters to
be tuned during optimization.

4. Other recent metaheuristic algorithms

In this section, we give brief information about other recent metaheuristic
algorithms that attract relatively less attention in the literature. More than
70 metaheuristic studies are briefly investigated. Most of the metaheuristics
that have been proposed for the last 20 years are population-based and nature-
inspired. Since these algorithms also show promise, we are inclined to refer
to them within this survey. The metaheuristic algorithms presented here are
organized with respect to their inspirations. Here, we categorize the work in
six inspirational categories: Animal herd-based, animal swarm-based, animal
behavior-based, natural process-based, astronomy-based metaheuristics, and
metaheuristics that are based on other inspirations.

In nature, animal herds can adopt very complex behaviors in order to tackle
intractable problems. Such behavior has inspired several studies. Duman et al.
(2012a) propose Migrating Birds Optimization metaheuristic based on the flight
of birds in V formation (Niroomand et al., 2015). The algorithm presents
an optimization technique with the birds’ energy-saving behavior. Askarzadeh
(2016) proposes Crow Search Algorithm (CSA) (Sayed et al., 2019; Wang et al.,
2018). CSA is a population-based and related to the crows that hide their excess
food and retrieve it when it is needed. Yazdani and Jolai (2016) propose Lion’s
algorithm. The natural inspiration is the explanation of such social behavior of
lion herds to algorithmic view helps in exploring (near)-optimal solutions from a
large search space. Wang et al. (2016a) propose Elephant Herding Optimization
(EHO) algorithm for global optimization problems. EHO is inspired by the
elephants that live together. The male elephants leave the groups when they
become adults. The behavior of the elephants can be used as clan updating and
separating operators.

44

Swarms can adopt complex behavior even though the individuals in a swarm
are not capable of such capacity alone. Thus, swarm behavior also attracted
the attention of many studies. Mirjalili (2016a) proposes swarm intelligence op-
timization technique Dragonfly Algorithm (KS and Murugan, 2017). Karaboga
(2005) presents a report on the swarms of Honey Bees to optimize the combi-
natorial problems. Later this report forms the basics elements of his ideas on
ABC optimization algorithms. Neshat et al. (2014) provide a survey on Artificial
Fish Swarm Algorithm (AFSA) (Li, 2002; Shen et al., 2011). AFSA simulates
the social movements of fish where, the fish live in a colony and have swarm
intelligence behaviors. Searching for food, migration, dealing with dangerous
conditions and interactions between fish are some methods used by the agents
of AFSA. Mirjalili et al. (2017) propose single and multiple objective versions of
Salp Swarm Algorithm (SSA) for optimization problems. The inspiration is the
swarm behavior of salp during their navigation and food search in oceans (Faris
et al., 2018). Mirjalili (2015a) also proposes Ant Lion Optimizer (ALO). The
ALO simulates the hunting mechanism of ant lions. Five main steps of hunting
prey (building traps, random walk of ants, entrapment of ants, catching prey,
and re-building traps) are employed. Saremi et al. (2017) propose Grasshop-
per Optimization Algorithm (GOA). GOA is modeled mathematically to mimic
the behavior of grasshopper swarms for solving optimization problems (Mafarja
et al., 2018). Pinto et al. (2007) propose a Wasp Swarm optimization algorithm
to achieve the adaption to changes of dynamic MAX-SAT instances obtained
from static problems. Meng et al. (2014) propose Chicken Swarm Optimization
(CSO). CSO simulates the hierarchical relations in a chicken swarm including
roosters, hens, and chicks. CSO extracts the swarm intelligence behavior of
the chickens while optimizing the problems. CSO is improved by training the
part of chicks from the rooster (Wu et al., 2015). Meng et al. (2016) propose a
bio-inspired Bird Swarm Algorithm (BSA) algorithm for optimization. BSA is
based on the swarm intelligence of birds and their social behaviors and social
interactions. Krishnanand and Ghose (2009) present an exposition of a swarm
intelligence algorithm for the optimization of multi-modal functions. The main
objective of this algorithm is to ensure the capture of all local maxima of the
function.

Animals on many occasions may break down complicated concepts into sim-
ple procedural processes and solve them in an iterative manner even as indi-
viduals. Such behavior inspired many variations of metaheuristics. Oftadeh
et al. (2010) propose Hunting Search (HuS) inspired by a set of hunter animals
such as wolves, dolphins, and lions. The animals search and catch prey by us-
ing encircle, tightening the ring of siege operations. Each animal (i.e., agent)
sets its location with respect to the location of other animals. Mucherino and
Seref (2007) propose Monkey Search Algorithm that simulates the behavior of
monkeys climbing trees for food. The branches of the tree are assumed to be
the perturbations of neighboring solutions. Jain et al. (2019) propose Squirrel
Search Algorithm. The algorithm simulates the foraging manner of flying squir-
rels and their way of locomotion known as gliding. Au and Benoit-Bird (2003)
propose Dolphin Echolocation metaheuristic (Kaveh and Farhoudi, 2013). Dol-

45

phins and some animals use the echolocation for navigation and hunting as a
biological sonar. This process is simulated to solve combinatorial problems.
Mirjalili (2015b) proposes Moth-Flame Optimization (MFO) algorithm. The
algorithm simulates the navigation technique of moths in nature. This method
is called transverse orientation. Moths fly by keeping an angle with respect to
the moon at night. This is a very effective way of traveling in a straight line
for a long distance. Pan (2012) proposes Fruit Fly Optimization Algorithm for
the optimization of a function. While the function is being tested repeatedly,
the population size and other properties are also examined. Abedinia et al.
(2016) propose an algorithm based on the ability of smell sense of sharks and
their movement to the odor sources. The algorithm is simulated how sharks
find their prey. Wang (2018) proposes Moth Search algorithm that depends
on the characteristics of moths that have been the propensity to follow Lvy
flights. The best moth individual becomes the light source in this algorithm.
Moths that are located next to the fittest one show an aim to fly around in
the form of Lvy flights. Tilahun and Ong (2015) propose an algorithm based
on the prey-predator interaction of animals. Random solutions are chosen as
predators and prey with the fitness values of the objective function. A prey
runs towards the flock of prey with better values and runs away from preda-
tors. Wang et al. (2015a) propose Earthworm Optimization Algorithm. The
soil is aerated by earthworms with burrowing and enrich the soil with nutrients.
There are two reproduction processes of earthworms, one offspring by itself and
one or more than one offspring at one time by using nine improved crossover
operators. Sharafi et al. (2016) present an algorithm based on the competitive
behavior of various creatures to survive in nature. A competition is designed
among birds, cats, bees and ants. Shiqin et al. (2009) propose Dolphin Partner
Optimization (DPO) algorithm based on the bionic study on dolphin. Martin
and Stephen (2006) propose biologically inspired algorithm Termite. Individual
termites addresses the routing problem in a dynamic network topology.

Many of the processes in nature are inherently procedural may produce com-
plex forms and results even without an interference of an outside intelligence.
Thus, many such processes become the inspiration for new metaheuristics. Lam
and Li (2010) propose Chemical Reaction Optimization (CRO) that simulates
the interactions of molecules to obtain low energy stability. Salimi (2015) pro-
poses the Stochastic Fractal Search (SFS) algorithm inspired by the natural
phenomenon of growth. Using the diffusion property which is seen regularly in
random fractals, the particles in the new algorithm explore the search space ef-
fectively. Zheng (2015) proposes Water Wave Optimization (WWO), for global
optimization problems. WWO makes use of phenomena of water waves (propa-
gation, refraction, and breaking). It can be used to obtain effective techniques
for searching in high-dimensional problem space. Kaveh and Mahdavi (2014)
propose Colliding Bodies Optimization (CBO) algorithm (Kaveh and Ghazaan,
2014). CBO is based on one-dimensional collisions of bodies. Each agent is an
object/body with mass. After the collision of two agents, each one moves to-
ward different directions with different velocities. This event causes the agents
to move toward better positions in the search space. Doğan and Ölmez (2015)

46

propose a new trajectory metaheuristic called Vortex Search (VS) algorithm to
optimize numerical functions. The VS algorithm mimics the vortex pattern that
is created by the vortical flow of the stirred fluids. The VS algorithm models
its search process as a vortex pattern by using an adaptive step size adjust-
ment method in order to provide a good balance between the exploration and
exploitation phases. Kaveh and Khayatazad (2012) propose Ray Optimization
metaheuristic. A set of particles constitute the variables of an optimization
problem and they are assumed to be rays of light. The set of rays refracts and
changes the direction of solutions with the law of refraction. This technique pro-
vides an efficient way for the particles while exploring the search space. Sadollah
et al. (2013) propose Mine Blast Algorithm (MBA). MBA is a population-based
algorithm based on the concept of mine bomb explosion. The algorithm is ap-
plied to engineering design and constrained optimization problems effectively.
The MBA requires a fewer number of fitness evaluations than the other al-
gorithms. A new optimization technique, Water Cycle Algorithm (WCA), is
proposed by Eskandar et al. (2012). The concepts of the algorithm are based
on the water cycle process and how rivers flow to the sea in real life. Kashan
(2015) proposes optics inspired optimization (OIO) algorithm. OIO assumes
the surface of the numerical function to be optimized as a reflecting surface. In
this model, each peak reflects as a convex mirror and each valley reflects as a
concave one. Kaveh and Bakhshpoori (2016) propose Water Evaporation Op-
timization (WEO) algorithm. WEO is a physically inspired population-based
algorithm. WEO simulates the evaporation of water molecules on a solid sur-
face with different wettability. This process can be studied by the simulations
of molecular dynamics. Kaveh and Ghazaan (2017) propose Vibrating Particles
System (VPS). VPS is inspired by free vibration of single degree of freedom sys-
tems with viscous damping. The solutions are assumed to be particles that ob-
tain their equilibrium. Kaveh and Dadras (2017) introduce Thermal Exchange
Optimization (TEO) algorithm that is based the cooling law of Newton. The
law states that the heat loss rate of a body is proportional to the temperatures
difference in its surroundings and the body. Kaveh and Talatahari (2010) pro-
pose an algorithm based on principles from physics and mechanics that utilize
the Newtonian laws of mechanics and the Coulomb law from electrostatics.

The astronomical behavior of objects also attracted many as an inspirational
source in the field. Mirjalili et al. (2016a) propose Multi-verse optimizer. The al-
gorithm is modeled depending on concepts of cosmology (black hole, white hole,
and wormhole). The mathematical models used in these concepts are used to
explore, exploit, and search the space locally. Hatamlou (2013) proposes Black
Hole algorithm. Black Hole is a population-based algorithm that is initialized
with a random population. The best solution is selected to be the black hole at
each iteration of the algorithm. Later, the black hole starts pulling other candi-
dates around it. Muthiah-Nakarajan and Noel (2016) propose Galactic Swarm
Optimization (GSO) algorithm that is inspired by the motion of galaxies, stars,
and superclusters of galaxies under gravity. GSO iterates in exploration and
exploitation cycles to obtain an optimal trade-off between exploration and ex-
ploitation phases. Erol and Eksin (2006) propose an algorithm inspired by the

47

theories of the evolution of the universe.
Some of the studies in the field of metaheuristics base on their inspirations

to very creative and unanticipatable sources that they would require their own
category. Population-based Sine Cosine Optimization Algorithm (SCA) is pro-
posed by Mirjalili (2016b). Based on sine and cosine functions, SCA creates
multiple random initial solutions and improves them to fluctuate outwards or
towards the best solution using a model. Moghdani and Salimifard (2018) pro-
pose Volleyball Premier League (VPL) metaheuristic algorithm that mimics the
competition and interaction among volleyball teams in a season. The algorithm
simulates the coaching process of a volleyball team. Terms substitution, coach-
ing, and learning are used in the VPL algorithm to solve optimization problems.
Cheng et al. (2016) propose Brain Storm Optimization (BSO) algorithm. BSO
mimics the process of human brainstorming. Individuals are grouped and di-
verged in the search space. Gonçalves et al. (2015) present Search Group Algo-
rithm (SGA), to optimize truss structures. The efficiency of SGA is compared
with a set of benchmark problems from the literature. Tamura and Yasuda
(2011) propose a multi-point search method for 2D continuous optimization
problems. The method is based on spiral phenomena called 2D spiral optimiza-
tion. Yang (2012b) proposes a flower pollination algorithm, inspired by the
pollination process of flowers.

Some of other the recent algorithms are Artificial Chemical Reaction Op-
timization Algorithm (Alatas, 2011), Exchange Market Algorithm (Ghorbani
and Babaei, 2014), Group Counseling Optimization (Eita and Fahmy, 2014),
Probability-Based Incremental Learning (Dasgupta and Michalewicz, 2013),
Gravitational Local Search (Webster and Bernhard, 2003), Central Force Op-
timization (Formato, 2007), Curved Space Optimization (Moghaddam et al.,
2012), Group Search Optimizer (He et al., 2006), Interior Search Algorithm (Gan-
domi, 2014), Soccer League Competition Algorithm (Moosavian and Roodsari,
2014), Seeker Optimization Algorithm (Dai et al., 2009), Random Forest Al-
gorithm (Amini et al., 2018), Tree-Seed Algorithm (Cinar and Kiran, 2018),
Social-based algorithm (Ramezani and Lotfi, 2013), and Invasive Weed Opti-
mization (Goli et al., 2019).

5. Recent hybrid metaheuristic algorithms

Hybrid metaheuristic algorithms report significant improvements when they
are compared with classical versions of the metaheuristic algorithms. It is per-
ceived from recent studies that more efficient behavior and greater flexibility can
be provided by hybrid metaheuristic algorithms (Blum et al., 2011). The main
goal of hybrid algorithms is to couple the characteristics of different strategies
of metaheuristics and benefit from synergy. In this section, we provide infor-
mation about hybrid and hyperheuristic algorithms implemented with recent
metaheuristics.

Blum et al. (2011) present a survey on hybrid metaheuristics. Powerful
hybrid algorithms that are developed by combining different optimization algo-
rithms are explained in this manuscript. Exact algorithms are also reported as

48

a part of these hybrid algorithms. Puchinger and Raidl (2005) present another
survey on recent methods of combining metaheuristics and exact algorithms.
Obtaining the best or near-optimal solutions is the main goal of these algo-
rithms. Wang et al. (2016b) propose a hybrid algorithm with CSA and KH.
The proposed algorithm uses update and abandon operators of KH for CSA
and provides efficiency. Wang et al. (2017a) deal with the premature conver-
gence problem of FA. The authors propose a new version of FA that uses a
random attraction model and new search strategies to obtain an efficient ex-
ploration and exploitation process. Mafarja and Mirjalili (2017) propose two
hybrid WOA for feature selection where they combined SA with WOA. The
results present more efficient models. Gupta and Deep (2019) hybridize GW
with DE mutation not to stick into local optima. Optimization problems are
solved and the proposed hybridized version has potential to find optimal solu-
tion. Dokeroglu (2015) proposes a set of hybrid TLBO to solve the quadratic
assignment problem where, TLBO runs well in coordination with Robust TS
engine while solving this NP-Hard problem.

The hyperheuristics raise the level of generality while concerning with se-
lecting the right (meta)-heuristic at every condition. The hyperheuristic al-
gorithms operate at a higher level of abstraction and control the use of lower
level heuristics that will be applied depending on the search space of the so-
lution. Burke et al. (2010, 2009, 2013) present an overview of hyperheuris-
tic algorithms. Cowling et al. (2000) analyze different hyperheuristics for a
real-world personnel scheduling problem. Burke et al. (2003) examine hyper-
heuristics and report evaluations on the timetabling problem. Chakhlevitch and
Cowling (2008) present comprehensive study on recent developments in hyper-
heuristics. Dokeroglu and Cosar (2016) propose a parallel hyperheuristic for
the quadratic assignment problem. Beyaz et al. (2015) propose a hyperheuristic
algorithm for the solution of offline 2D bin packing problems.

Elaziz and Mirjalili (2019) develop a hyperheuristic to improve the perfor-
mance of WOA by using DE algorithm. Damaševičius and Woźniak (2017)
present a hyperheuristic using a logistic probability function. The algorithm
is implemented by using ABC and KH metaheuristics. Wang and Guo (2013)
propose a novel robust hybrid metaheuristic method with BA in order to solve
global numerical optimization problems. The performance of the algorithm is
observed to be superior to classical population-based metaheuristics. Tawhid
and Ali (2017) propose Hybrid GWO and GA to obtain the minimal energy of
a molecule. The algorithm is used to stabilize the exploitation and exploration
efforts. The genetic mutation operator refrains from the earlier convergence and
local optima.

Population-based algorithms that are integrated with local search techniques
are some of the well-known and best performing implementations of hybrid al-
gorithms (Talbi, 2009). ParadisEO is a software framework for hybrid meta-
heuristics to optimize single and multiobjective problems in single- and multi-
computer environments (Cahon et al., 2004; Tirkolaee et al., 2019).

There are many other hybrid algorithms facilitating the new generation
metaheuristics. Our aim is to draw the attention of researchers to hybrid algo-

49

rithms rather than providing a survey on all of such metaheuristic algorithms.
We believe that the studies on hybrid metaheuristic algorithms could provide
better, faster, and more elegant solutions to many complex problems by com-
bining the strengths of different metaheuristics. With the advent of a new wave
of metaheuristic algorithms, we foresee that a proportional amount of effort
should be spent on hybridization in order to evaluate the true benefits of these
algorithms.

6. Conclusion and discussion

This part of our survey addresses critical issues about metaheuristics and new
suggestions for possible research opportunities and open challenges of nature-
inspired population-based optimization algorithms. In order to examine these
critical issues, we first attempt to compare our selected new generation meta-
heuristic algorithms briefly. Table 2 provides a comparison of the algorithms.
Four important features of the new generation algorithms are reported in the
table. These features are: The amount of parameters that needs to be addressed
to efficiently execute the optimization process, the stages where the algorithm
can balance the exploration and exploitation efforts whether the algorithms are
used in hybrid metaheuristic studies and the availability of local search mecha-
nisms.

Most of the new generation metaheuristic algorithms examined in this study
have a large number of parameters, which is a disadvantage for metaheuristic
algorithms. In order to achieve high-quality results in acceptable amounts of
time, the parameters used by metaheuristic need to be specifically tuned for
the optimization task. Research has progressed in order to overcome this dis-
advantage. Metaheuristic algorithms such as GWA, SSO, SOS, and TLBO aim
to use fewer number of parameters. Similarly, the lack of local search mecha-
nisms that can achieve local optima is another critical issue for metaheuristic
algorithms. Having such facilities not only forms a basis for understanding and
improving the results of an algorithm but also guarantees that every candidate
solution would continue to improve during successive iterations. However, it is
important to note that although several metaheuristic algorithms lack such fa-
cilities, research shows that their practical applications still achieve high-quality
results. We foresee that understanding how metaheuristic approaches achieve
successful results theoretically will continue to be an open research question in
the upcoming years.

Providing a good balance between exploration and exploitation phases of the
algorithm is another important criterion for the performance of the metaheuris-
tic algorithms. Table 2 identifies the stages of new generation metaheuristics
that involve different alternative techniques to manipulate the balance between
exploration and exploitation. It is clear from the table that many of the evolu-
tionary inspired processes provide mechanisms to control this balance. Finally,
although the table shows that hybridization is applied to many of the exam-
ined algorithms in the literature, it also identifies that a large number of these

50

T
a
b
le

2
:
C
o
m
p
a
ri
so
n
o
f
n
ew

g
en

er
a
ti
o
n
m
et
a
h
eu

ri
st
ic
s

A
cy

ro
n
y
m

#
p

ar
am

et
er

s
st

a
g
es

in
vo

lv
in

g
th

e
av

a
il

a
b

il
it

y
o
f

th
e

av
a
il

a
b

il
it

y
o
f

ex
p

lo
ra

ti
o
n

a
n

d
ex

p
lo

it
a
ti

o
n

h
y
b

ri
d

iz
a
ti

o
n

lo
ca

l
se

a
rc

h
m

ec
h

a
n

is
m

s
A

B
C

h
ig

h
sc

ou
t

d
an

ce
,

fo
o
d

ev
a
lu

a
ti

o
n

,
tr

av
el

li
n

g
B

F
O

h
ig

h
re

p
li

ca
ti

on
,

ch
em

o
ta

x
is

,
d

is
p

er
sa

l,
sw

a
rm

in
g

7
B

A
h

ig
h

w
av

el
en

g
th

a
d

ju
st

m
en

t,
tr

av
el

li
n

g
7

B
B

O
h

ig
h

im
m

ig
ra

ti
on

,
m

u
ta

ti
o
n

,
su

it
a
b

il
it

y
in

d
ex

ch
ec

k
7

C
S

A
h

ig
h

fl
ig

h
t,

n
es

t
se

le
ct

io
n

,
re

m
ov

a
l,

a
n

d
b

re
ed

in
g

7
F
A

h
ig

h
at

tr
a
ct

io
n

,
m

ov
em

en
t

7
C

S
A

h
ig

h
in

er
ti

al
fo

rc
es

,
b

o
d

y
in

te
ra

ct
io

n
s

a
n

d
m

o
d

ifi
ca

ti
o
n

7
7

G
W

A
fe

w
tr

ac
k
in

g,
en

ci
rc

li
n

g
,

a
tt

a
ck

in
g
,

w
o
lf

m
ov

em
en

t
H

A
h

ig
h

p
it

ch
ad

ju
st

m
en

t,
im

p
ro

v
is

a
ti

o
n

,
ra

n
d

o
m

iz
a
ti

o
n

7
K

H
h

ig
h

h
er

d
an

d
k
ri

ll
m

ov
em

en
t,

a
tt

ra
ct

io
n

,
re

p
u

ls
io

n
S

S
O

fe
w

re
p

ro
d
u

ct
io

n
,

in
fl

u
en

ce
,

a
tt

ra
ct

io
n

/
d

is
li

ke
,

w
eb

b
in

g
7

S
O

S
fe

w
ec

os
y
st

em
,

m
u

tu
a
l

ve
ct

o
r,

in
it

ia
l

p
o
p

.
cr

ea
ti

o
n

7
T

L
B

O
p

ar
am

et
er

le
ss

in
fo

rm
at

io
n

sp
ee

d
,

le
a
rn

er
u

p
d
a
te

,
te

a
ch

er
ch

a
n

g
e

7
W

O
A

h
ig

h
en

ci
rc

li
n

g
,

p
re

y
se

a
rc

h
,

m
a
n

eu
ve

ri
n

g

51

algorithms has not been evaluated in tandem, uncovering additional potential
research.

One of the widely accepted fundamental benefits of metaheuristic algorithms
is that they provide mechanisms to solve large or intractable problems in rea-
sonable execution times while the exact algorithms fail to succeed due to time
limitations. Moreover, they are easier to implement and there is no need for
ground-truth or background information for the optimization problem to be
solved. The optimization is performed on a set of randomly initialized solutions
by using evolutionary processes/operators.

The past research indicates that many critical issues are affecting the per-
formance of a metaheuristic. Providing good stability between diversification
and intensification is one of these concerns. Diversification searches the solution
space globally, whereas intensification focuses on the local solution space. Tun-
ing the iterations of exploration and then directing the search to intensification
after spending adequate time is not a trivial setting.

Without any requirement for gradient information, metaheuristics can be
implemented easier than exact search algorithms. In many cases, parameter
tuning has a significant impact on how well metaheuristic algorithms perform
on an optimization problem. The tuning of the parameters of metaheuristic al-
gorithms has very similar reasons and/or implications to the problems faced in
machine learning. In addition to the attempts that have been made to provide
adaptive parameter settings, another intelligent option is to develop parameter-
less metaheuristic algorithms. However, developing parameterless metaheuristic
algorithms is yet an open problem and needs to be thoroughly studied. More
information about the experimental methodologies, the statistical evaluations,
and parameter tuning of metaheuristics can be found in (McGeoch, 2001; Bi-
rattari and Kacprzyk, 2009; Bartz-Beielstein et al., 2010).

One of the major shortcomings of the metaheuristic algorithms is that they
have to estimate the fitness value of each new solution they produce. The perfor-
mance declines very quickly when the dimensionality of the problem increases.
While solving large-scale optimization problems, calculating fitness forms a com-
putational bottleneck and can be a big obstacle if the complexity of the fitness
evaluation is very high. Fast evaluation techniques can be an additional alterna-
tive for better metaheuristic algorithms and such availability of quick techniques
should be evaluated for these conditions, which would significantly increase the
performance. The intention of quick calculation here is not only to speed up
the process but also increase the probability of obtaining the best solutions
faster. Dynamic programming or parallel computation can be a very efficient
way of computing the time-consuming fitness value evaluations. There can be
good research opportunities for any metaheuristic since the overall performance
depends on the number of iterations.

Hybrid metaheuristics algorithms is an emerging technology in this field.
Most of the reported hybrid/hyperheuristic algorithms obtain better solutions
than classical metaheuristic algorithms. The combination of diverse metaheuris-
tics can lead to new exciting approaches since the hybridization can be used to
get the advantage of different metaheuristics. It is important to note here that

52

studies on hyperheuristics aim to be problem independent and usable by non-
specialist researchers in this area.

Most of the time, the performance evaluation of metaheuristics is carried out
with statistical analysis due to the lack of a theoretical foundation (Chiarandini
et al., 2007). There is a need to provide more fairground for statistically sound
comparison methods. In accordance with the No Free Lunch Theorem, it is not
possible to expect a metaheuristic to perform well for all the class of optimization
problems (Wolpert et al., 1997; Ho and Pepyne, 2002). A comprehensive dis-
cussion about the research directions about the scientific rigor of metaheuristics
can be found in a study by Sörensen (2015). Črepinšek et al. (2012) recommend
some principles for the fair evaluation of metaheuristic algorithms. They present
twelve rules for a fair evaluation. The two of the most important rules in this
study are: ”Preferring an equal number of fitness evaluations” and ”Examining
those problems on which the proposed algorithm performs well”. In addition
to these, experiments should be carried out on a wide spectrum of optimization
problems. Studies on benchmark tests involving various optimization problems
should be established.

The success of proposed metaheuristic algorithms verifies that the number
of studies for developing new metaheuristics will continue to increase in the
near future. These efforts will progress until some standards are established in
this area and only then, the deficiencies can be identified and evaluations of
metaheuristics can be performed more objectively. It is also important to note
here that the chaotic versions of the recent metaheuristics can obtain impressive
results in the field.

In our opinion, sticking into local optima and efforts to get around this
problem while exploring the problem space will always be an important area
of research. ”Restarting” is one of the current techniques widely used to alle-
viate this problem. Tracing the previous local optima or intelligent clustering
techniques can be promising novel research directions for the solution of the
stagnation problem. A more fruitful research direction in metaheuristic algo-
rithms is to improve the interior structures of current metaheuristic algorithms
rather than proposing new ones that are similar to existing algorithms. The
research should more focus on adaptive operators, stagnation prevention mech-
anisms, integration with data mining techniques for increasing the exploration
ability of the metaheuristics. It is also a clear requirement to have metaheuristics
optimization frameworks that enable developers to compare various algorithms
fairly.

53

7. References

Abdel-Basset, M., Manogaran, G., El-Shahat, D., Mirjalili, S., 2018. A hybrid whale optimization
algorithm based on local search strategy for the permutation flow shop scheduling problem.
Future Generation Computer Systems 85, 129–145.

Abedinia, O., Amjady, N., Ghasemi, A., 2016. A new metaheuristic algorithm based on shark smell
optimization. Complexity 21 (5), 97–116.

Agrawal, V., Sharma, H., Bansal, J. C., 2012. Bacterial foraging optimization: A survey. In: Pro-
ceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011)
December 20-22, 2011. Springer, pp. 227–242.

Al-Betar, M. A., Doush, I. A., Khader, A. T., Awadallah, M. A., 2012. Novel selection schemes for
harmony search. Applied Mathematics and Computation 218 (10), 6095–6117.

Alatas, B., 2010. Chaotic harmony search algorithms. Applied Mathematics and Computation
216 (9), 2687–2699.

Alatas, B., 2011. Acroa: artificial chemical reaction optimization algorithm for global optimization.
Expert Systems with Applications 38 (10), 13170–13180.

Alba, E., 2005. Parallel metaheuristics: a new class of algorithms. Vol. 47. John Wiley & Sons.

Alba, E., Luque, G., Nesmachnow, S., 2013. Parallel metaheuristics: recent advances and new
trends. International Transactions in Operational Research 20 (1), 1–48.

Alba, E., Troya, J. M., 1999. A survey of parallel distributed genetic algorithms. Complexity 4 (4),
31–52.

Aljarah, I., Faris, H., Mirjalili, S., 2018. Optimizing connection weights in neural networks using
the whale optimization algorithm. Soft Computing 22 (1), 1–15.

Amini, S., Homayouni, S., Safari, A., Darvishsefat, A. A., 2018. Object-based classification of
hyperspectral data using random forest algorithm. Geo-spatial Information Science 21 (2), 127–
138.

Askarzadeh, A., 2016. A novel metaheuristic method for solving constrained engineering optimiza-
tion problems: crow search algorithm. Computers & Structures 169, 1–12.

Au, W. W., Benoit-Bird, K. J., 2003. Automatic gain control in the echolocation system of dolphins.
Nature 423 (6942), 861.

Awasthi, A., Omrani, H., 2019. A goal-oriented approach based on fuzzy axiomatic design for
sustainable mobility project selection. International Journal of Systems Science: Operations &
Logistics 6 (1), 86–98.

Baghel, M., Agrawal, S., Silakari, S., 2012. Survey of metaheuristic algorithms for combinatorial
optimization. International Journal of Computer Applications 58 (19).

Banzhaf, W., Nordin, P., Keller, R. E., Francone, F. D., 1998. Genetic programming: an introduc-
tion. Vol. 1. Morgan Kaufmann San Francisco.

Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M., 2010. Experimental methods for the
analysis of optimization algorithms. Springer.

Basturk, B., 2006. An artificial bee colony (abc) algorithm for numeric function optimization. In:
IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA, 2006.

Basu, M., Chowdhury, A., 2013. Cuckoo search algorithm for economic dispatch. Energy 60, 99–108.

Beyaz, M., Dokeroglu, T., Cosar, A., 2015. Robust hyper-heuristic algorithms for the offline
oriented/non-oriented 2d bin packing problems. Applied Soft Computing 36, 236–245.

Bhandari, A. K., Singh, V. K., Kumar, A., Singh, G. K., 2014. Cuckoo search algorithm and wind
driven optimization based study of satellite image segmentation for multilevel thresholding using
kapurs entropy. Expert Systems with Applications 41 (7), 3538–3560.

54

Bhattacharya, A., Chattopadhyay, P. K., 2010. Hybrid differential evolution with biogeography-
based optimization for solution of economic load dispatch. IEEE transactions on power systems
25 (4), 1955–1964.

Bianchi, L., Dorigo, M., Gambardella, L. M., Gutjahr, W. J., 2006. Metaheuristics in stochastic
combinatorial optimization: a survey. TechReport: Dalle Molle Institute for Artificial Intelli-
gence.

Bianchi, L., Dorigo, M., Gambardella, L. M., Gutjahr, W. J., 2009. A survey on metaheuristics for
stochastic combinatorial optimization. Natural Computing 8 (2), 239–287.

Binitha, S., Sathya, S. S., et al., 2012. A survey of bio inspired optimization algorithms. International
Journal of Soft Computing and Engineering 2 (2), 137–151.

Birattari, M., Kacprzyk, J., 2009. Tuning metaheuristics: a machine learning perspective. Vol. 197.
Springer.

Blum, C., Puchinger, J., Raidl, G., Roli, A., et al., 2010. A brief survey on hybrid metaheuristics.
Proceedings of BIOMA, 3–18.

Blum, C., Puchinger, J., Raidl, G. R., Roli, A., 2011. Hybrid metaheuristics in combinatorial
optimization: A survey. Applied Soft Computing 11 (6), 4135–4151.

Bolaji, A. L., Al-Betar, M. A., Awadallah, M. A., Khader, A. T., Abualigah, L. M., 2016. A
comprehensive review: Krill herd algorithm (kh) and its applications. Applied Soft Computing
49, 437–446.

BoussäıD, I., Lepagnot, J., Siarry, P., 2013. A survey on optimization metaheuristics. Information
sciences 237, 82–117.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R., 2013. Hyper-
heuristics: A survey of the state of the art. Journal of the Operational Research Society 64 (12),
1695–1724.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., Qu, R., 2009. A survey of hyper-
heuristics. Computer Science Technical Report No. NOTTCS-TR-SUB-0906241418-2747, School
of Computer Science and Information Technology, University of Nottingham.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J. R., 2010. A classification
of hyper-heuristic approaches. In: Handbook of metaheuristics. Springer, pp. 449–468.

Burke, E. K., Kendall, G., Soubeiga, E., 2003. A tabu-search hyperheuristic for timetabling and
rostering. Journal of heuristics 9 (6), 451–470.

Cahon, S., Melab, N., Talbi, E.-G., 2004. Paradiseo: A framework for the reusable design of parallel
and distributed metaheuristics. Journal of heuristics 10 (3), 357–380.

Camacho-Villalón, C. L., Dorigo, M., Stützle, T., 2019. The intelligent water drops algorithm: why
it cannot be considered a novel algorithm. Swarm Intelligence, 1–20.

Cantú-Paz, E., 1998. A survey of parallel genetic algorithms. Calculateurs paralleles, reseaux et
systems repartis 10 (2), 141–171.

Chakhlevitch, K., Cowling, P., 2008. Hyperheuristics: recent developments. In: Adaptive and mul-
tilevel metaheuristics. Springer, pp. 3–29.

Chandrasekaran, K., Simon, S. P., 2012. Multi-objective scheduling problem: hybrid approach using
fuzzy assisted cuckoo search algorithm. Swarm and Evolutionary Computation 5, 1–16.

Chen, Y.-P., Li, Y., Wang, G., Zheng, Y.-F., Xu, Q., Fan, J.-H., Cui, X.-T., 2017. A novel bacterial
foraging optimization algorithm for feature selection. Expert Systems with Applications 83, 1–17.

Cheng, M.-Y., Prayogo, D., 2014. Symbiotic organisms search: a new metaheuristic optimization
algorithm. Computers & Structures 139, 98–112.

Cheng, M.-Y., Prayogo, D., Tran, D.-H., 2015. Optimizing multiple-resources leveling in multiple
projects using discrete symbiotic organisms search. Journal of Computing in Civil Engineering
30 (3), 04015036.

55

Cheng, S., Qin, Q., Chen, J., Shi, Y., 2016. Brain storm optimization algorithm: a review. Artificial
Intelligence Review 46 (4), 445–458.

Chiarandini, M., Paquete, L., Preuss, M., Ridge, E., 2007. Experiments on metaheuristics: Method-
ological overview and open issues.

Cinar, A. C., Kiran, M. S., 2018. Similarity and logic gate-based tree-seed algorithms for binary
optimization. Computers & Industrial Engineering 115, 631–646.

Cowling, P., Kendall, G., Soubeiga, E., 2000. A hyperheuristic approach to scheduling a sales
summit. In: International Conference on the Practice and Theory of Automated Timetabling.
Springer, pp. 176–190.

Črepinšek, M., Liu, S.-H., Mernik, L., 2012. A note on teaching–learning-based optimization algo-
rithm. Information Sciences 212, 79–93.

Cuevas, E., Cienfuegos, M., 2014. A new algorithm inspired in the behavior of the social-spider for
constrained optimization. Expert Systems with Applications 41 (2), 412–425.

Cuevas, E., Cienfuegos, M., Zald́ıVar, D., Pérez-Cisneros, M., 2013. A swarm optimization algorithm
inspired in the behavior of the social-spider. Expert Systems with Applications 40 (16), 6374–
6384.

Dai, C., Chen, W., Zhu, Y., Zhang, X., 2009. Seeker optimization algorithm for optimal reactive
power dispatch. IEEE Transactions on power systems 24 (3), 1218–1231.

Damaševičius, R., Woźniak, M., 2017. State flipping based hyper-heuristic for hybridization of
nature inspired algorithms. In: International Conference on Artificial Intelligence and Soft Com-
puting. Springer, pp. 337–346.

Das, S., Biswas, A., Dasgupta, S., Abraham, A., 2009. Bacterial foraging optimization algorithm:
theoretical foundations, analysis, and applications. In: Foundations of Computational Intelli-
gence Volume 3. Springer, pp. 23–55.

Dasgupta, D., 2012. Artificial immune systems and their applications. Springer Science & Business
Media.

Dasgupta, D., Michalewicz, Z., 2013. Evolutionary algorithms in engineering applications. Springer
Science & Business Media.

Dasgupta, S., Das, S., Abraham, A., Biswas, A., 2009. Adaptive computational chemotaxis in
bacterial foraging optimization: an analysis. IEEE Transactions on Evolutionary Computation
13 (4), 919–941.

de Castro, L. N., Timmis, J. I., 2003. Artificial immune systems as a novel soft computing paradigm.
Soft computing 7 (8), 526–544.

Dede, T., Ayvaz, Y., 2015. Combined size and shape optimization of structures with a new meta-
heuristic algorithm. Applied Soft Computing 28, 250–258.

Del Ser, J., Osaba, E., Molina, D., Yang, X.-S., Salcedo-Sanz, S., Camacho, D., Das, S., Suganthan,
P. N., Coello, C. A. C., Herrera, F., 2019. Bio-inspired computation: Where we stand and what’s
next. Swarm and Evolutionary Computation.

Doğan, B., Ölmez, T., 2015. A new metaheuristic for numerical function optimization: Vortex search
algorithm. Information Sciences 293, 125–145.

Dokeroglu, T., 2015. Hybrid teaching–learning-based optimization algorithms for the quadratic as-
signment problem. Computers & Industrial Engineering 85, 86–101.

Dokeroglu, T., Cosar, A., 2016. A novel multistart hyper-heuristic algorithm on the grid for the
quadratic assignment problem. Engineering Applications of Artificial Intelligence 52, 10–25.

Dokeroglu, T., Sevinc, E., Cosar, A., 2019. Artificial bee colony optimization for the quadratic
assignment problem. Applied Soft Computing 76, 595–606.

Dorigo, M., Birattari, M., 2010. Ant colony optimization. Springer.

56

Dorigo, M., Blum, C., 2005. Ant colony optimization theory: A survey. Theoretical computer science
344 (2-3), 243–278.

Duan, C., Deng, C., Gharaei, A., Wu, J., Wang, B., 2018. Selective maintenance scheduling un-
der stochastic maintenance quality with multiple maintenance actions. International Journal of
Production Research 56 (23), 7160–7178.

Dubey, R., Gunasekaran, A., Sushil, Singh, T., 2015. Building theory of sustainable manufacturing
using total interpretive structural modelling. International Journal of Systems Science: Opera-
tions & Logistics 2 (4), 231–247.

Duman, E., Uysal, M., Alkaya, A. F., 2012a. Migrating birds optimization: A new metaheuristic
approach and its performance on quadratic assignment problem. Information Sciences 217, 65–77.

Duman, S., Güvenç, U., Sönmez, Y., Yörükeren, N., 2012b. Optimal power flow using gravitational
search algorithm. Energy Conversion and Management 59, 86–95.

Durgun, İ., Yildiz, A. R., 2012. Structural design optimization of vehicle components using cuckoo
search algorithm. Materials Testing 54 (3), 185–188.

e Silva, M. d. A. C., Coelho, L. d. S., Lebensztajn, L., 2012. Multiobjective biogeography-based
optimization based on predator-prey approach. IEEE Transactions on Magnetics 48 (2), 951–954.

Eita, M., Fahmy, M., 2014. Group counseling optimization. Applied Soft Computing 22, 585–604.

El Aziz, M. A., Ewees, A. A., Hassanien, A. E., 2017. Whale optimization algorithm and moth-flame
optimization for multilevel thresholding image segmentation. Expert Systems with Applications
83, 242–256.

El Aziz, M. A., Ewees, A. A., Hassanien, A. E., Mudhsh, M., Xiong, S., 2018. Multi-objective whale
optimization algorithm for multilevel thresholding segmentation. In: Advances in soft computing
and machine learning in image processing. Springer, pp. 23–39.

El-Bages, M., Elsayed, W., 2017. Social spider algorithm for solving the transmission expansion
planning problem. Electric Power Systems Research 143, 235–243.

Elaziz, M. A., Mirjalili, S., 2019. A hyper-heuristic for improving the initial population of whale
optimization algorithm. Knowledge-Based Systems 172, 42–63.

Elsayed, W., Hegazy, Y., Bendary, F., El-Bages, M., 2016. Modified social spider algorithm for
solving the economic dispatch problem. Engineering science and technology, an international
journal 19 (4), 1672–1681.

Emary, E., Zawbaa, H. M., Hassanien, A. E., 2016. Binary grey wolf optimization approaches for
feature selection. Neurocomputing 172, 371–381.

Ergezer, M., Simon, D., Du, D., 2009. Oppositional biogeography-based optimization. In: 2009
IEEE International Conference on Systems, Man and Cybernetics. IEEE, pp. 1009–1014.

Erol, O. K., Eksin, I., 2006. A new optimization method: big bang–big crunch. Advances in Engi-
neering Software 37 (2), 106–111.

Eskandar, H., Sadollah, A., Bahreininejad, A., Hamdi, M., 2012. Water cycle algorithm–a novel
metaheuristic optimization method for solving constrained engineering optimization problems.
Computers & Structures 110, 151–166.

Espejo, P. G., Ventura, S., Herrera, F., 2010. A survey on the application of genetic programming
to classification. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications
and Reviews) 40 (2), 121–144.

Eusuff, M. M., Lansey, K. E., 2003. Optimization of water distribution network design using the
shuffled frog leaping algorithm. Journal of Water Resources planning and management 129 (3),
210–225.

Ezugwu, A. E.-S., Adewumi, A. O., Fr̂ıncu, M. E., 2017. Simulated annealing based symbiotic
organisms search optimization algorithm for traveling salesman problem. Expert Systems with
Applications 77, 189–210.

57

Farahani, S. M., Abshouri, A., Nasiri, B., Meybodi, M., 2011. A gaussian firefly algorithm. Inter-
national Journal of Machine Learning and Computing 1 (5), 448.

Faris, H., Mafarja, M. M., Heidari, A. A., Aljarah, I., AlaM, A.-Z., Mirjalili, S., Fujita, H., 2018.
An efficient binary salp swarm algorithm with crossover scheme for feature selection problems.
Knowledge-Based Systems 154, 43–67.

Fister, I., Fister Jr, I., Yang, X.-S., Brest, J., 2013. A comprehensive review of firefly algorithms.
Swarm and Evolutionary Computation 13, 34–46.

Fister Jr, I., Fister, D., Yang, X.-S., 2013. A hybrid bat algorithm. arXiv preprint arXiv:1303.6310.

Fister Jr, I., Yang, X.-S., Fister, I., Brest, J., 2012. Memetic firefly algorithm for combinatorial
optimization. arXiv preprint arXiv:1204.5165.

Formato, R. A., 2007. Central force optimization. Prog Electromagn Res 77, 425–491.

Gandomi, A. H., 2014. Interior search algorithm (isa): a novel approach for global optimization.
ISA transactions 53 (4), 1168–1183.

Gandomi, A. H., Alavi, A. H., 2012. Krill herd: a new bio-inspired optimization algorithm. Com-
munications in nonlinear science and numerical simulation 17 (12), 4831–4845.

Gandomi, A. H., Yang, X.-S., 2014. Chaotic bat algorithm. Journal of Computational Science 5 (2),
224–232.

Gandomi, A. H., Yang, X.-S., Alavi, A. H., 2011. Mixed variable structural optimization using firefly
algorithm. Computers & Structures 89 (23-24), 2325–2336.

Gandomi, A. H., Yang, X.-S., Alavi, A. H., 2013a. Cuckoo search algorithm: a metaheuristic ap-
proach to solve structural optimization problems. Engineering with computers 29 (1), 17–35.

Gandomi, A. H., Yang, X.-S., Alavi, A. H., Talatahari, S., 2013b. Bat algorithm for constrained
optimization tasks. Neural Computing and Applications 22 (6), 1239–1255.

Gandomi, A. H., Yang, X.-S., Talatahari, S., Alavi, A. H., 2013c. Firefly algorithm with chaos.
Communications in Nonlinear Science and Numerical Simulation 18 (1), 89–98.

Gao, W.-f., Liu, S.-y., 2012. A modified artificial bee colony algorithm. Computers & Operations
Research 39 (3), 687–697.

Geem, Z. W., 2006. Optimal cost design of water distribution networks using harmony search.
Engineering Optimization 38 (03), 259–277.

Geem, Z. W., Kim, J. H., Loganathan, G. V., 2001. A new heuristic optimization algorithm: har-
mony search. simulation 76 (2), 60–68.

Gharaei, A., Hoseini Shekarabi, S. A., Karimi, M., 2019a. Modelling and optimal lot-sizing of
the replenishments in constrained, multi-product and bi-objective epq models with defective
products: Generalised cross decomposition. International Journal of Systems Science: Operations
& Logistics, 1–13.

Gharaei, A., Karimi, M., Hoseini Shekarabi, S. A., 2019b. Joint economic lot-sizing in multi-product
multi-level integrated supply chains: generalized benders decomposition. International Journal
of Systems Science: Operations & Logistics, 1–17.

Gharaei, A., Karimi, M., Shekarabi, S. A. H., 2019c. An integrated multi-product, multi-buyer sup-
ply chain under penalty, green, and quality control polices and a vendor managed inventory with
consignment stock agreement: The outer approximation with equality relaxation and augmented
penalty algorithm. Applied Mathematical Modelling 69, 223–254.

Ghorbani, N., Babaei, E., 2014. Exchange market algorithm. Applied Soft Computing 19, 177–187.

Giri, B., Bardhan, S., 2014. Coordinating a supply chain with backup supplier through buyback con-
tract under supply disruption and uncertain demand. International Journal of Systems Science:
Operations & Logistics 1 (4), 193–204.

Giri, B., Masanta, M., 2018. Developing a closed-loop supply chain model with price and quality
dependent demand and learning in production in a stochastic environment. International Journal
of Systems Science: Operations & Logistics, 1–17.

58

Glover, F., Laguna, M., 1998. Tabu search. In: Handbook of combinatorial optimization. Springer,
pp. 2093–2229.

Goldberg, D. E., 1989. Genetic algorithms in search. Optimization, and MachineLearning.

Goldberg, D. E., Holland, J. H., 1988. Genetic algorithms and machine learning. Machine learning
3 (2), 95–99.

Goli, A., Tirkolaee, E. B., Malmir, B., Bian, G.-B., Sangaiah, A. K., 2019. A multi-objective invasive
weed optimization algorithm for robust aggregate production planning under uncertain seasonal
demand. Computing 101 (6), 499–529.

Gonçalves, M. S., Lopez, R. H., Miguel, L. F. F., 2015. Search group algorithm: a new metaheuristic
method for the optimization of truss structures. Computers & Structures 153, 165–184.

Gong, W., Cai, Z., Ling, C. X., Li, H., 2010. A real-coded biogeography-based optimization with
mutation. Applied Mathematics and Computation 216 (9), 2749–2758.

Guo, L., Wang, G.-G., Gandomi, A. H., Alavi, A. H., Duan, H., 2014. A new improved krill herd
algorithm for global numerical optimization. Neurocomputing 138, 392–402.

Gupta, S., Deep, K., 2019. Hybrid grey wolf optimizer with mutation operator. In: Soft Computing
for Problem Solving. Springer, pp. 961–968.

Hancer, E., Xue, B., Zhang, M., Karaboga, D., Akay, B., 2018. Pareto front feature selection based
on artificial bee colony optimization. Information Sciences 422, 462–479.

Hao, J.-K., Solnon, C., 2019. Meta-heuristics and artificial intelligence.

Hao, Y., Helo, P., Shamsuzzoha, A., 2018. Virtual factory system design and implementation:
integrated sustainable manufacturing. International Journal of Systems Science: Operations &
Logistics 5 (2), 116–132.

Hardy, A. C., 1935. The plankton of the south georgia whaling grounds and adjacent waters, 1926-
1932. Discovery Rep. 11, 1–456.

Hassanzadeh, H. R., Rouhani, M., 2010. A multi-objective gravitational search algorithm. In: 2010
2nd International Conference on Computational Intelligence, Communication Systems and Net-
works. IEEE, pp. 7–12.

Hatamlou, A., 2013. Black hole: A new heuristic optimization approach for data clustering. Infor-
mation sciences 222, 175–184.

Hatamlou, A., Abdullah, S., Nezamabadi-Pour, H., 2012. A combined approach for clustering based
on k-means and gravitational search algorithms. Swarm and Evolutionary Computation 6, 47–52.

He, S., Wu, Q., Saunders, J., 2006. A novel group search optimizer inspired by animal behavioural
ecology. In: 2006 IEEE international conference on evolutionary computation. IEEE, pp. 1272–
1278.

Ho, Y.-C., Pepyne, D. L., 2002. Simple explanation of the no-free-lunch theorem and its implications.
Journal of optimization theory and applications 115 (3), 549–570.

Holland, J. H., 1992. Genetic algorithms. Scientific american 267 (1), 66–73.

Hoseini Shekarabi, S. A., Gharaei, A., Karimi, M., 2019. Modelling and optimal lot-sizing of in-
tegrated multi-level multi-wholesaler supply chains under the shortage and limited warehouse
space: generalised outer approximation. International Journal of Systems Science: Operations &
Logistics 6 (3), 237–257.

Hota, P., Barisal, A., Chakrabarti, R., 2010. Economic emission load dispatch through fuzzy based
bacterial foraging algorithm. International Journal of Electrical Power & Energy Systems 32 (7),
794–803.

Jadhav, A. N., Gomathi, N., 2018. Wgc: Hybridization of exponential grey wolf optimizer with
whale optimization for data clustering. Alexandria engineering journal 57 (3), 1569–1584.

Jain, M., Singh, V., Rani, A., 2019. A novel nature-inspired algorithm for optimization: Squirrel
search algorithm. Swarm and evolutionary computation 44, 148–175.

59

James, J., Li, V. O., 2015. A social spider algorithm for global optimization. Applied Soft Computing
30, 614–627.

James, J., Li, V. O., 2016. A social spider algorithm for solving the non-convex economic load
dispatch problem. Neurocomputing 171, 955–965.

Jati, G. K., et al., 2011. Evolutionary discrete firefly algorithm for travelling salesman problem. In:
International Conference on Adaptive and Intelligent Systems. Springer, pp. 393–403.

Karaboga, D., 2005. An idea based on honey bee swarm for numerical optimization. Tech. rep.,
Technical report-tr06, Erciyes university, engineering faculty, computer .

Karaboga, D., Basturk, B., 2007. A powerful and efficient algorithm for numerical function opti-
mization: artificial bee colony (abc) algorithm. Journal of global optimization 39 (3), 459–471.

Karaboga, D., Basturk, B., 2008. On the performance of artificial bee colony (abc) algorithm.
Applied soft computing 8 (1), 687–697.

Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N., 2014. A comprehensive survey: artificial
bee colony (abc) algorithm and applications. Artificial Intelligence Review 42 (1), 21–57.

Karaboga, D., Ozturk, C., 2011. A novel clustering approach: Artificial bee colony (abc) algorithm.
Applied soft computing 11 (1), 652–657.

Karaboga, N., 2009. A new design method based on artificial bee colony algorithm for digital iir
filters. Journal of the Franklin Institute 346 (4), 328–348.

Kashan, A. H., 2015. A new metaheuristic for optimization: optics inspired optimization (oio).
Computers & Operations Research 55, 99–125.

Kaur, G., Arora, S., 2018. Chaotic whale optimization algorithm. Journal of Computational Design
and Engineering 5 (3), 275–284.

Kaveh, A., Bakhshpoori, T., 2016. A new metaheuristic for continuous structural optimization:
water evaporation optimization. Structural and Multidisciplinary Optimization 54 (1), 23–43.

Kaveh, A., Dadras, A., 2017. A novel meta-heuristic optimization algorithm: thermal exchange
optimization. Advances in Engineering Software 110, 69–84.

Kaveh, A., Farhoudi, N., 2013. A new optimization method: Dolphin echolocation. Advances in
Engineering Software 59, 53–70.

Kaveh, A., Ghazaan, M. I., 2014. Enhanced colliding bodies optimization for design problems with
continuous and discrete variables. Advances in Engineering Software 77, 66–75.

Kaveh, A., Ghazaan, M. I., 2017. A new meta-heuristic algorithm: vibrating particles system.
Scientia Iranica. Transaction A, Civil Engineering 24 (2), 551.

Kaveh, A., Khayatazad, M., 2012. A new meta-heuristic method: ray optimization. Computers &
structures 112, 283–294.

Kaveh, A., Mahdavi, V., 2014. Colliding bodies optimization: a novel meta-heuristic method. Com-
puters & Structures 139, 18–27.

Kaveh, A., Talatahari, S., 2010. A novel heuristic optimization method: charged system search.
Acta Mechanica 213 (3-4), 267–289.

Kavitha, S., Venkumar, P., Rajini, N., Pitchipoo, P., 2018. An efficient social spider optimization
for flexible job shop scheduling problem. Journal of Advanced Manufacturing Systems 17 (02),
181–196.

Kazemi, N., Abdul-Rashid, S. H., Ghazilla, R. A. R., Shekarian, E., Zanoni, S., 2018. Economic
order quantity models for items with imperfect quality and emission considerations. International
Journal of Systems Science: Operations & Logistics 5 (2), 99–115.

Khan, K., Sahai, A., 2012. A comparison of ba, ga, pso, bp and lm for training feed forward neural
networks in e-learning context. International Journal of Intelligent Systems and Applications
4 (7), 23.

60

Kim, D. H., Abraham, A., Cho, J. H., 2007. A hybrid genetic algorithm and bacterial foraging
approach for global optimization. Information Sciences 177 (18), 3918–3937.

Kiziloz, H. E., Deniz, A., Dokeroglu, T., Cosar, A., 2018. Novel multiobjective tlbo algorithms for
the feature subset selection problem. Neurocomputing 306, 94–107.

Kohli, M., Arora, S., 2018. Chaotic grey wolf optimization algorithm for constrained optimization
problems. Journal of computational design and engineering 5 (4), 458–472.

Komaki, G., Kayvanfar, V., 2015. Grey wolf optimizer algorithm for the two-stage assembly flow
shop scheduling problem with release time. Journal of Computational Science 8, 109–120.

Krishnanand, K., Ghose, D., 2009. Glowworm swarm optimization for simultaneous capture of
multiple local optima of multimodal functions. Swarm intelligence 3 (2), 87–124.

KS, S. R., Murugan, S., 2017. Memory based hybrid dragonfly algorithm for numerical optimization
problems. Expert Systems with Applications 83, 63–78.

Kumar, V., Chhabra, J. K., Kumar, D., 2014. Parameter adaptive harmony search algorithm for
unimodal and multimodal optimization problems. Journal of Computational Science 5 (2), 144–
155.

Kurdi, M., 2018. A social spider optimization algorithm for hybrid flow shop scheduling with mul-
tiprocessor task. Available at SSRN 3301792.

Lam, A. Y., Li, V. O., 2010. Chemical-reaction-inspired metaheuristic for optimization. IEEE trans-
actions on evolutionary computation 14 (3), 381–399.

Lee, K. S., Geem, Z. W., 2004. A new structural optimization method based on the harmony search
algorithm. Computers & structures 82 (9-10), 781–798.

Lee, K. S., Geem, Z. W., 2005. A new meta-heuristic algorithm for continuous engineering opti-
mization: harmony search theory and practice. Computer methods in applied mechanics and
engineering 194 (36-38), 3902–3933.

Lee, K. S., Geem, Z. W., Lee, S.-h., Bae, K.-w., 2005. The harmony search heuristic algorithm for
discrete structural optimization. Engineering Optimization 37 (7), 663–684.

Lewis, R., 2008. A survey of metaheuristic-based techniques for university timetabling problems.
OR spectrum 30 (1), 167–190.

Li, B., Jiang, W., 1997. Chaos optimization method and its application [j]. Control Theory &
Applications 4.

Li, C., Zhou, J., 2011. Parameters identification of hydraulic turbine governing system using im-
proved gravitational search algorithm. Energy Conversion and Management 52 (1), 374–381.

Li, X.-l., 2002. An optimizing method based on autonomous animats: fish-swarm algorithm. Systems
Engineering-Theory & Practice 22 (11), 32–38.

Ling, Y., Zhou, Y., Luo, Q., 2017. Lévy flight trajectory-based whale optimization algorithm for
global optimization. IEEE access 5, 6168–6186.

Lourenço, H. R., Martin, O. C., Stützle, T., 2003. Iterated local search. In: Handbook of meta-
heuristics. Springer, pp. 320–353.

Ma, H., 2010. An analysis of the equilibrium of migration models for biogeography-based optimiza-
tion. Information Sciences 180 (18), 3444–3464.

Ma, H., Simon, D., 2011. Blended biogeography-based optimization for constrained optimization.
Engineering Applications of Artificial Intelligence 24 (3), 517–525.

Mafarja, M., Aljarah, I., Heidari, A. A., Hammouri, A. I., Faris, H., AlaM, A.-Z., Mirjalili, S., 2018.
Evolutionary population dynamics and grasshopper optimization approaches for feature selection
problems. Knowledge-Based Systems 145, 25–45.

Mafarja, M., Mirjalili, S., 2018. Whale optimization approaches for wrapper feature selection. Ap-
plied Soft Computing 62, 441–453.

61

Mafarja, M. M., Mirjalili, S., 2017. Hybrid whale optimization algorithm with simulated annealing
for feature selection. Neurocomputing 260, 302–312.

Majumder, A., Laha, D., Suganthan, P. N., 2018. A hybrid cuckoo search algorithm in parallel
batch processing machines with unequal job ready times. Computers & Industrial Engineering
124, 65–76.

Manjarres, D., Landa-Torres, I., Gil-Lopez, S., Del Ser, J., Bilbao, M. N., Salcedo-Sanz, S., Geem,
Z. W., 2013. A survey on applications of the harmony search algorithm. Engineering Applications
of Artificial Intelligence 26 (8), 1818–1831.

Marques-Silva, J. P., Sakallah, K. A., 1999. Grasp: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers 48 (5), 506–521.

Mart́ı, R., Laguna, M., Glover, F., 2006. Principles of scatter search. european Journal of operational
Research 169 (2), 359–372.

Martin, R., Stephen, W., 2006. o: A swarm intelligent routing algorithm for mobilewireless ad-hoc
networks. In: Stigmergic optimization. Springer, pp. 155–184.

McGeoch, C. C., 2001. Experimental analysis of algorithms. Notices of the AMS 48 (3), 304–311.

Meng, X., Liu, Y., Gao, X., Zhang, H., 2014. A new bio-inspired algorithm: chicken swarm opti-
mization. In: International conference in swarm intelligence. Springer, pp. 86–94.

Meng, X.-B., Gao, X. Z., Lu, L., Liu, Y., Zhang, H., 2016. A new bio-inspired optimisation al-
gorithm: Bird swarm algorithm. Journal of Experimental & Theoretical Artificial Intelligence
28 (4), 673–687.

Mirjalili, S., 2015a. The ant lion optimizer. Advances in Engineering Software 83, 80–98.

Mirjalili, S., 2015b. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm.
Knowledge-Based Systems 89, 228–249.

Mirjalili, S., 2016a. Dragonfly algorithm: a new meta-heuristic optimization technique for solving
single-objective, discrete, and multi-objective problems. Neural Computing and Applications
27 (4), 1053–1073.

Mirjalili, S., 2016b. Sca: a sine cosine algorithm for solving optimization problems. Knowledge-
Based Systems 96, 120–133.

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S., Faris, H., Mirjalili, S. M., 2017. Salp swarm
algorithm: A bio-inspired optimizer for engineering design problems. Advances in Engineering
Software 114, 163–191.

Mirjalili, S., Hashim, S. Z. M., Sardroudi, H. M., 2012. Training feedforward neural networks using
hybrid particle swarm optimization and gravitational search algorithm. Applied Mathematics
and Computation 218 (22), 11125–11137.

Mirjalili, S., Lewis, A., 2016. The whale optimization algorithm. Advances in engineering software
95, 51–67.

Mirjalili, S., Mirjalili, S. M., Hatamlou, A., 2016a. Multi-verse optimizer: a nature-inspired algo-
rithm for global optimization. Neural Computing and Applications 27 (2), 495–513.

Mirjalili, S., Mirjalili, S. M., Lewis, A., 2014a. Grey wolf optimizer. Advances in engineering software
69, 46–61.

Mirjalili, S., Mirjalili, S. M., Yang, X.-S., 2014b. Binary bat algorithm. Neural Computing and
Applications 25 (3-4), 663–681.

Mirjalili, S., Saremi, S., Mirjalili, S. M., Coelho, L. d. S., 2016b. Multi-objective grey wolf optimizer:
a novel algorithm for multi-criterion optimization. Expert Systems with Applications 47, 106–119.

Mittal, N., Singh, U., Sohi, B. S., 2016. Modified grey wolf optimizer for global engineering opti-
mization. Applied Computational Intelligence and Soft Computing 2016, 8.

Mladenović, N., Brimberg, J., Hansen, P., Moreno-Pérez, J. A., 2007. The p-median problem: A
survey of metaheuristic approaches. European Journal of Operational Research 179 (3), 927–939.

62

Mladenović, N., Hansen, P., 1997. Variable neighborhood search. Computers & operations research
24 (11), 1097–1100.

Moghaddam, F. F., Moghaddam, R. F., Cheriet, M., 2012. Curved space optimization: a random
search based on general relativity theory. arXiv preprint arXiv:1208.2214.

Moghdani, R., Salimifard, K., 2018. Volleyball premier league algorithm. Applied Soft Computing
64, 161–185.

Mohan, B. C., Baskaran, R., 2012. A survey: Ant colony optimization based recent research and
implementation on several engineering domain. Expert Systems with Applications 39 (4), 4618–
4627.

Moosavian, N., Roodsari, B. K., 2014. Soccer league competition algorithm, a new method for
solving systems of nonlinear equations. Int. J. Intell. Sci 4 (1), 7–16.

Mucherino, A., Seref, O., 2007. Monkey search: a novel metaheuristic search for global optimization.
In: AIP conference proceedings. Vol. 953. AIP, pp. 162–173.

Mühlenbein, H., 1992. Parallel genetic algorithms in combinatorial optimization. In: Computer
science and operations research. Elsevier, pp. 441–453.

Muthiah-Nakarajan, V., Noel, M. M., 2016. Galactic swarm optimization: A new global optimization
metaheuristic inspired by galactic motion. Applied Soft Computing 38, 771–787.

Nakamura, R. Y., Pereira, L. A., Costa, K. A., Rodrigues, D., Papa, J. P., Yang, X.-S., 2012. Bba:
a binary bat algorithm for feature selection. In: 2012 25th SIBGRAPI conference on graphics,
patterns and images. IEEE, pp. 291–297.

Nanda, S. J., Panda, G., 2014. A survey on nature inspired metaheuristic algorithms for partitional
clustering. Swarm and Evolutionary computation 16, 1–18.

Neshat, M., Sepidnam, G., Sargolzaei, M., Toosi, A. N., 2014. Artificial fish swarm algorithm: a
survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial
intelligence review 42 (4), 965–997.

Neumann, F., Witt, C., 2010. Combinatorial optimization and computational complexity. In: Bioin-
spired Computation in Combinatorial Optimization. Springer, pp. 9–19.

Niroomand, S., Hadi-Vencheh, A., Şahin, R., Vizvári, B., 2015. Modified migrating birds optimiza-
tion algorithm for closed loop layout with exact distances in flexible manufacturing systems.
Expert Systems with Applications 42 (19), 6586–6597.

Oftadeh, R., Mahjoob, M., Shariatpanahi, M., 2010. A novel meta-heuristic optimization algorithm
inspired by group hunting of animals: Hunting search. Computers & Mathematics with Applica-
tions 60 (7), 2087–2098.

Oliva, D., El Aziz, M. A., Hassanien, A. E., 2017. Parameter estimation of photovoltaic cells using
an improved chaotic whale optimization algorithm. Applied Energy 200, 141–154.

Omkar, S., Senthilnath, J., Khandelwal, R., Naik, G. N., Gopalakrishnan, S., 2011. Artificial bee
colony (abc) for multi-objective design optimization of composite structures. Applied Soft Com-
puting 11 (1), 489–499.

Omran, M. G., Mahdavi, M., 2008. Global-best harmony search. Applied mathematics and compu-
tation 198 (2), 643–656.

Ouaarab, A., Ahiod, B., Yang, X.-S., 2014. Discrete cuckoo search algorithm for the travelling
salesman problem. Neural Computing and Applications 24 (7-8), 1659–1669.

Pan, W.-T., 2012. A new fruit fly optimization algorithm: taking the financial distress model as an
example. Knowledge-Based Systems 26, 69–74.

Panda, A., Pani, S., 2016. A symbiotic organisms search algorithm with adaptive penalty function to
solve multi-objective constrained optimization problems. Applied Soft Computing 46, 344–360.

Parejo, J. A., Ruiz-Cortés, A., Lozano, S., Fernandez, P., 2012. Metaheuristic optimization frame-
works: a survey and benchmarking. Soft Computing 16 (3), 527–561.

63

Passino, K. M., 2002. Biomimicry of bacterial foraging for distributed optimization and control.
IEEE control systems magazine 22 (3), 52–67.

Passino, K. M., 2010. Bacterial foraging optimization. International Journal of Swarm Intelligence
Research (IJSIR) 1 (1), 1–16.

Pedemonte, M., Nesmachnow, S., Cancela, H., 2011. A survey on parallel ant colony optimization.
Applied Soft Computing 11 (8), 5181–5197.

Pereira, D. R., Pazoti, M. A., Pereira, L. A., Rodrigues, D., Ramos, C. O., Souza, A. N., Papa,
J. P., 2016. Social-spider optimization-based support vector machines applied for energy theft
detection. Computers & Electrical Engineering 49, 25–38.

Pinto, P. C., Runkler, T. A., Sousa, J. M., 2007. Wasp swarm algorithm for dynamic max-sat prob-
lems. In: International Conference on Adaptive and Natural Computing Algorithms. Springer,
pp. 350–357.

Prakash, D., Lakshminarayana, C., 2017. Optimal siting of capacitors in radial distribution network
using whale optimization algorithm. Alexandria Engineering Journal 56 (4), 499–509.

Prasad, D., Mukherjee, V., 2016. A novel symbiotic organisms search algorithm for optimal power
flow of power system with facts devices. Engineering Science and Technology, an International
Journal 19 (1), 79–89.

Puchinger, J., Raidl, G. R., 2005. Combining metaheuristics and exact algorithms in combinatorial
optimization: A survey and classification. In: International Work-Conference on the Interplay
Between Natural and Artificial Computation. Springer, pp. 41–53.

Qin, H., Fan, P., Tang, H., Huang, P., Fang, B., Pan, S., 2019. An effective hybrid discrete grey
wolf optimizer for the casting production scheduling problem with multi-objective and multi-
constraint. Computers & Industrial Engineering 128, 458–476.

Rabbani, M., Foroozesh, N., Mousavi, S. M., Farrokhi-Asl, H., 2019. Sustainable supplier selection
by a new decision model based on interval-valued fuzzy sets and possibilistic statistical refer-
ence point systems under uncertainty. International Journal of Systems Science: Operations &
Logistics 6 (2), 162–178.

Rabbani, M., Hosseini-Mokhallesun, S. A. A., Ordibazar, A. H., Farrokhi-Asl, H., 2018. A hybrid
robust possibilistic approach for a sustainable supply chain location-allocation network design.
International Journal of Systems Science: Operations & Logistics, 1–16.

Rajabioun, R., 2011. Cuckoo optimization algorithm. Applied soft computing 11 (8), 5508–5518.

Ramezani, F., Lotfi, S., 2013. Social-based algorithm (sba). Applied Soft Computing 13 (5), 2837–
2856.

Rao, R., Patel, V., 2012. An elitist teaching-learning-based optimization algorithm for solving com-
plex constrained optimization problems. International Journal of Industrial Engineering Compu-
tations 3 (4), 535–560.

Rao, R. V., 2016. Teaching-learning-based optimization algorithm. In: Teaching learning based
optimization algorithm. Springer, pp. 9–39.

Rao, R. V., Patel, V., 2013. Multi-objective optimization of heat exchangers using a modified
teaching-learning-based optimization algorithm. Applied Mathematical Modelling 37 (3), 1147–
1162.

Rao, R. V., Savsani, V. J., Vakharia, D., 2011. Teaching–learning-based optimization: a novel
method for constrained mechanical design optimization problems. Computer-Aided Design 43 (3),
303–315.

Rao, R. V., Savsani, V. J., Vakharia, D., 2012. Teaching–learning-based optimization: an opti-
mization method for continuous non-linear large scale problems. Information sciences 183 (1),
1–15.

Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2009. Gsa: a gravitational search algorithm. Infor-
mation sciences 179 (13), 2232–2248.

64

Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2010. Bgsa: binary gravitational search algorithm.
Natural Computing 9 (3), 727–745.

Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S., 2011. Filter modeling using gravitational search
algorithm. Engineering Applications of Artificial Intelligence 24 (1), 117–122.

Rashedi, E., Rashedi, E., Nezamabadi-pour, H., 2018. A comprehensive survey on gravitational
search algorithm. Swarm and evolutionary computation 41, 141–158.

Sabri, N. M., Puteh, M., Mahmood, M. R., 2013. A review of gravitational search algorithm. Int.
J. Advance. Soft Comput. Appl 5 (3), 1–39.

Sadollah, A., Bahreininejad, A., Eskandar, H., Hamdi, M., 2013. Mine blast algorithm: A new
population based algorithm for solving constrained engineering optimization problems. Applied
Soft Computing 13 (5), 2592–2612.

Salimi, H., 2015. Stochastic fractal search: a powerful metaheuristic algorithm. Knowledge-Based
Systems 75, 1–18.

Saremi, S., Mirjalili, S., Lewis, A., 2017. Grasshopper optimisation algorithm: theory and applica-
tion. Advances in Engineering Software 105, 30–47.

Sarkar, S., Giri, B., 2018. Stochastic supply chain model with imperfect production and controllable
defective rate. International Journal of Systems Science: Operations & Logistics, 1–14.

Sayed, G. I., Hassanien, A. E., Azar, A. T., 2019. Feature selection via a novel chaotic crow search
algorithm. Neural Computing and Applications 31 (1), 171–188.

Sayyadi, R., Awasthi, A., 2018a. An integrated approach based on system dynamics and anp for
evaluating sustainable transportation policies. International Journal of Systems Science: Opera-
tions & Logistics, 1–10.

Sayyadi, R., Awasthi, A., 2018b. A simulation-based optimisation approach for identifying key
determinants for sustainable transportation planning. International Journal of Systems Science:
Operations & Logistics 5 (2), 161–174.

Schaffer, J. D., Whitley, D., Eshelman, L. J., 1992. Combinations of genetic algorithms and neu-
ral networks: A survey of the state of the art. In: [Proceedings] COGANN-92: International
Workshop on Combinations of Genetic Algorithms and Neural Networks. IEEE, pp. 1–37.

Senthilnath, J., Omkar, S., Mani, V., 2011. Clustering using firefly algorithm: performance study.
Swarm and Evolutionary Computation 1 (3), 164–171.

Sevinc, E., Dokeroglu, T., 2019. A novel hybrid teaching-learning-based optimization algorithm
for the classification of data by using extreme learning machines. Turkish Journal of Electrical
Engineering & Computer Sciences 27 (2), 1523–1533.

Shabani, M., Mirroshandel, S. A., Asheri, H., 2017. Selective refining harmony search: A new
optimization algorithm. Expert Systems with Applications 81, 423–443.

Shah, N. H., Chaudhari, U., Cárdenas-Barrón, L. E., 2018. Integrating credit and replenishment
policies for deteriorating items under quadratic demand in a three echelon supply chain. Inter-
national Journal of Systems Science: Operations & Logistics, 1–12.

Sharafi, Y., Khanesar, M. A., Teshnehlab, M., 2016. Cooa: Competitive optimization algorithm.
Swarm and Evolutionary Computation 30, 39–63.

Shehab, M., Khader, A. T., Al-Betar, M. A., 2017. A survey on applications and variants of the
cuckoo search algorithm. Applied Soft Computing 61, 1041–1059.

Shen, W., Guo, X., Wu, C., Wu, D., 2011. Forecasting stock indices using radial basis function
neural networks optimized by artificial fish swarm algorithm. Knowledge-Based Systems 24 (3),
378–385.

Shiqin, Y., Jianjun, J., Guangxing, Y., 2009. A dolphin partner optimization. In: 2009 WRI Global
Congress on Intelligent Systems. Vol. 1. IEEE, pp. 124–128.

Simon, D., 2008. Biogeography-based optimization. IEEE transactions on evolutionary computation
12 (6), 702–713.

65

Simon, D., Ergezer, M., Du, D., Rarick, R., 2011. Markov models for biogeography-based opti-
mization. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 41 (1),
299–306.

Singh, A., 2009. An artificial bee colony algorithm for the leaf-constrained minimum spanning tree
problem. Applied Soft Computing 9 (2), 625–631.

Song, X., Tang, L., Zhao, S., Zhang, X., Li, L., Huang, J., Cai, W., 2015. Grey wolf optimizer for
parameter estimation in surface waves. Soil Dynamics and Earthquake Engineering 75, 147–157.

Sörensen, K., 2015. Metaheuristicsthe metaphor exposed. International Transactions in Operational
Research 22 (1), 3–18.

Sörensen, K., Sevaux, M., Glover, F., 2018. A history of metaheuristics. Handbook of heuristics,
1–18.

Srinivas, M., Patnaik, L. M., 1994. Genetic algorithms: A survey. computer 27 (6), 17–26.

Storn, R., Price, K., 1997. Differential evolution–a simple and efficient heuristic for global optimiza-
tion over continuous spaces. Journal of global optimization 11 (4), 341–359.

Taillard, É. D., Gambardella, L. M., Gendreau, M., Potvin, J.-Y., 2001. Adaptive memory pro-
gramming: A unified view of metaheuristics. European Journal of Operational Research 135 (1),
1–16.

Talbi, E.-G., 2009. Metaheuristics: from design to implementation. Vol. 74. John Wiley & Sons.

Tamura, K., Yasuda, K., 2011. Spiral dynamics inspired optimization. Journal of Advanced Com-
putational Intelligence and Intelligent Informatics 15 (8), 1116–1122.

Tang, W., Wu, Q., Saunders, J., 2006. Bacterial foraging algorithm for dynamic environments. In:
2006 IEEE International Conference on Evolutionary Computation. IEEE, pp. 1324–1330.

Tawhid, M. A., Ali, A. F., 2017. A hybrid grey wolf optimizer and genetic algorithm for minimizing
potential energy function. Memetic Computing 9 (4), 347–359.

Tejani, G. G., Pholdee, N., Bureerat, S., Prayogo, D., 2018. Multiobjective adaptive symbiotic
organisms search for truss optimization problems. Knowledge-based systems 161, 398–414.

Tejani, G. G., Savsani, V. J., Patel, V. K., 2016. Adaptive symbiotic organisms search (sos) al-
gorithm for structural design optimization. Journal of Computational Design and Engineering
3 (3), 226–249.

Tilahun, S. L., Ong, H. C., 2015. Prey-predator algorithm: a new metaheuristic algorithm for opti-
mization problems. International Journal of Information Technology & Decision Making 14 (06),
1331–1352.

Tirkolaee, E. B., Goli, A., Hematian, M., Sangaiah, A. K., Han, T., 2019. Multi-objective multi-
mode resource constrained project scheduling problem using pareto-based algorithms. Computing
101 (6), 547–570.

Toğan, V., 2012. Design of planar steel frames using teaching–learning based optimization. Engi-
neering Structures 34, 225–232.

Tran, D.-H., Cheng, M.-Y., Prayogo, D., 2016. A novel multiple objective symbiotic organisms
search (mosos) for time–cost–labor utilization tradeoff problem. Knowledge-Based Systems 94,
132–145.

TSai, P.-W., Pan, J.-S., Liao, B.-Y., Chu, S.-C., 2009. Enhanced artificial bee colony optimization.
International Journal of Innovative Computing, Information and Control 5 (12), 5081–5092.

Tsao, Y.-C., 2015. Design of a carbon-efficient supply-chain network under trade credits. Interna-
tional Journal of Systems Science: Operations & Logistics 2 (3), 177–186.

Tuba, M., Subotic, M., Stanarevic, N., 2011. Modified cuckoo search algorithm for unconstrained
optimization problems. In: Proceedings of the 5th European conference on European computing
conference. World Scientific and Engineering Academy and Society (WSEAS), pp. 263–268.

66

Valian, E., Mohanna, S., Tavakoli, S., 2011. Improved cuckoo search algorithm for global optimiza-
tion. International Journal of Communications and Information Technology 1 (1), 31–44.

Van Laarhoven, P. J., Aarts, E. H., 1987. Simulated annealing. In: Simulated annealing: Theory
and applications. Springer, pp. 7–15.

Vincent, F. Y., Redi, A. P., Yang, C.-L., Ruskartina, E., Santosa, B., 2017. Symbiotic organisms
search and two solution representations for solving the capacitated vehicle routing problem.
Applied Soft Computing 52, 657–672.

Walton, S., Hassan, O., Morgan, K., Brown, M., 2011. Modified cuckoo search: a new gradient free
optimisation algorithm. Chaos, Solitons & Fractals 44 (9), 710–718.

Wang, C.-M., Huang, Y.-F., 2010. Self-adaptive harmony search algorithm for optimization. Expert
Systems with Applications 37 (4), 2826–2837.

Wang, G., Guo, L., 2013. A novel hybrid bat algorithm with harmony search for global numerical
optimization. Journal of Applied Mathematics 2013.

Wang, G., Guo, L., Gandomi, A. H., Cao, L., Alavi, A. H., Duan, H., Li, J., 2013a. Lévy-flight krill
herd algorithm. Mathematical Problems in Engineering 2013.

Wang, G., Guo, L., Wang, H., Duan, H., Liu, L., Li, J., 2014a. Incorporating mutation scheme
into krill herd algorithm for global numerical optimization. Neural Computing and Applications
24 (3-4), 853–871.

Wang, G.-G., 2018. Moth search algorithm: a bio-inspired metaheuristic algorithm for global opti-
mization problems. Memetic Computing, 1–14.

Wang, G.-G., Deb, S., Coelho, L. D. S., 2015a. Earthworm optimization algorithm: a bio-inspired
metaheuristic algorithm for global optimization problems. International Journal of Bio-Inspired
Computation 7, 1–23.

Wang, G.-G., Deb, S., Gao, X.-Z., Coelho, L. D. S., 2016a. A new metaheuristic optimisation
algorithm motivated by elephant herding behaviour. International Journal of Bio-Inspired Com-
putation 8 (6), 394–409.

Wang, G.-G., Gandomi, A. H., Alavi, A. H., 2014b. Stud krill herd algorithm. Neurocomputing 128,
363–370.

Wang, G.-G., Gandomi, A. H., Alavi, A. H., Hao, G.-S., 2014c. Hybrid krill herd algorithm with dif-
ferential evolution for global numerical optimization. Neural Computing and Applications 25 (2),
297–308.

Wang, G.-G., Gandomi, A. H., Yang, X.-S., Alavi, A. H., 2016b. A new hybrid method based on
krill herd and cuckoo search for global optimisation tasks. International Journal of Bio-Inspired
Computation 8 (5), 286–299.

Wang, G.-G., Gandomi, A. H., Zhao, X., Chu, H. C. E., 2016c. Hybridizing harmony search algo-
rithm with cuckoo search for global numerical optimization. Soft Computing 20 (1), 273–285.

Wang, G.-G., Guo, L., Gandomi, A. H., Hao, G.-S., Wang, H., 2014d. Chaotic krill herd algorithm.
Information Sciences 274, 17–34.

Wang, G.-G., Hossein Gandomi, A., Hossein Alavi, A., 2013b. A chaotic particle-swarm krill herd
algorithm for global numerical optimization. Kybernetes 42 (6), 962–978.

Wang, H., Cui, Z., Sun, H., Rahnamayan, S., Yang, X.-S., 2017a. Randomly attracted firefly algo-
rithm with neighborhood search and dynamic parameter adjustment mechanism. Soft Computing
21 (18), 5325–5339.

Wang, H., Wang, W., Zhou, X., Sun, H., Zhao, J., Yu, X., Cui, Z., 2017b. Firefly algorithm with
neighborhood attraction. Information Sciences 382, 374–387.

Wang, J., Du, P., Niu, T., Yang, W., 2017c. A novel hybrid system based on a new proposed
algorithmmulti-objective whale optimization algorithm for wind speed forecasting. Applied en-
ergy 208, 344–360.

67

Wang, W., Zhang, Y., Cao, J., Song, W., 2018. Robust optimization for volume variation in timber
processing. Journal of forestry research 29 (1), 247–252.

Wang, X., Gao, X.-Z., Zenger, K., 2015b. An introduction to harmony search optimization method.
Springer.

Webster, B., Bernhard, P. J., 2003. A local search optimization algorithm based on natural principles
of gravitation. Tech. rep.

Wei, Y., Qiqiang, L., 2004. Survey on particle swarm optimization algorithm [j]. Engineering Science
5 (5), 87–94.

Wolpert, D. H., Macready, W. G., et al., 1997. No free lunch theorems for optimization. IEEE
transactions on evolutionary computation 1 (1), 67–82.

Wu, D., Kong, F., Gao, W., Shen, Y., Ji, Z., 2015. Improved chicken swarm optimization. In:
2015 IEEE international conference on cyber technology in automation, control, and intelligent
systems (CYBER). IEEE, pp. 681–686.

Yang, X.-S., 2009. Harmony search as a metaheuristic algorithm. In: Music-inspired harmony search
algorithm. Springer, pp. 1–14.

Yang, X.-S., 2010a. Firefly algorithm, stochastic test functions and design optimisation. arXiv
preprint arXiv:1003.1409.

Yang, X.-S., 2010b. Nature-inspired metaheuristic algorithms. Luniver press.

Yang, X.-S., 2010c. A new metaheuristic bat-inspired algorithm. In: Nature inspired cooperative
strategies for optimization (NICSO 2010). Springer, pp. 65–74.

Yang, X.-S., 2012a. Bat algorithm for multi-objective optimisation. arXiv preprint arXiv:1203.6571.

Yang, X.-S., 2012b. Flower pollination algorithm for global optimization. In: International confer-
ence on unconventional computing and natural computation. Springer, pp. 240–249.

Yang, X.-S., 2013a. Bat algorithm: literature review and applications. arXiv preprint
arXiv:1308.3900.

Yang, X.-S., 2013b. Cuckoo search and firefly algorithm: theory and applications. Vol. 516. Springer.

Yang, X.-S., 2013c. Multiobjective firefly algorithm for continuous optimization. Engineering with
Computers 29 (2), 175–184.

Yang, X.-S., Deb, S., 2009. Cuckoo search via lévy flights. In: 2009 World Congress on Nature &
Biologically Inspired Computing (NaBIC). IEEE, pp. 210–214.

Yang, X.-S., Deb, S., 2010. Engineering optimisation by cuckoo search. arXiv preprint
arXiv:1005.2908.

Yang, X.-S., Deb, S., 2014. Cuckoo search: recent advances and applications. Neural Computing
and Applications 24 (1), 169–174.

Yang, X.-S., He, X., 2013. Firefly algorithm: recent advances and applications. arXiv preprint
arXiv:1308.3898.

Yang, X.-S., Hossein Gandomi, A., 2012. Bat algorithm: a novel approach for global engineering
optimization. Engineering Computations 29 (5), 464–483.

Yang, X.-S., Hosseini, S. S. S., Gandomi, A. H., 2012. Firefly algorithm for solving non-convex
economic dispatch problems with valve loading effect. Applied soft computing 12 (3), 1180–1186.

Yazdani, M., Jolai, F., 2016. Lion optimization algorithm (loa): a nature-inspired metaheuristic
algorithm. Journal of computational design and engineering 3 (1), 24–36.

Yildiz, A. R., 2013. Cuckoo search algorithm for the selection of optimal machining parameters in
milling operations. The International Journal of Advanced Manufacturing Technology 64 (1-4),
55–61.

68

Yılmaz, S., Kücüksille, E. U., 2015. A new modification approach on bat algorithm for solving
optimization problems. Applied Soft Computing 28, 259–275.

Yin, S., Nishi, T., Zhang, G., 2016. A game theoretic model for coordination of single manufacturer
and multiple suppliers with quality variations under uncertain demands. International Journal
of Systems Science: Operations & Logistics 3 (2), 79–91.

Zavala, G. R., Nebro, A. J., Luna, F., Coello, C. A. C., 2014. A survey of multi-objective metaheuris-
tics applied to structural optimization. Structural and Multidisciplinary Optimization 49 (4),
537–558.

Zheng, Y.-J., 2015. Water wave optimization: a new nature-inspired metaheuristic. Computers &
Operations Research 55, 1–11.

Zhou, Y., Zhou, Y., Luo, Q., Abdel-Basset, M., 2017. A simplex method-based social spider opti-
mization algorithm for clustering analysis. Engineering Applications of Artificial Intelligence 64,
67–82.

Zhu, G., Kwong, S., 2010. Gbest-guided artificial bee colony algorithm for numerical function opti-
mization. Applied mathematics and computation 217 (7), 3166–3173.

Zou, D., Gao, L., Wu, J., Li, S., 2010. Novel global harmony search algorithm for unconstrained
problems. Neurocomputing 73 (16-18), 3308–3318.

Zou, F., Chen, D., Xu, Q., 2019. A survey of teaching–learning-based optimization. Neurocomputing
335, 366–383.

Zubair, A. F., Mansor, M. S. A., 2019. Embedding firefly algorithm in optimization of capp turning
machining parameters for cutting tool selections. Computers & Industrial Engineering.

69

	Introduction
	Previous surveys on classical metaheuristics
	New generation metaheuristics
	Artificial bee colony optimization (ABC)
	Bacterial foraging optimization (BFO)
	Bat algorithm (BA)
	Biogeography-based optimization (BBO)
	Cuckoo search algorithm (CSA)
	Firefly algorithm (FA)
	Gravitational search algorithm (GSA)
	Grey wolf algorithm (GWO)
	Harmony search (HS)
	Krill herd (KH)
	Social spider optimization (SSO)
	Symbiotic organisms search (SOS)
	Teaching-learning-based optimization (TLBO)
	Whale optimization algorithm (WOA)

	Other recent metaheuristic algorithms
	Recent hybrid metaheuristic algorithms
	Conclusion and discussion
	References

