
A robust and cooperative parallel tabu search algorithm
for the maximum vertex weight clique problem

Abstract

The maximum vertex weight clique problem (MVWCP) is a challenging NP-Hard combinatorial optimization prob-
lem that searches for a clique with maximum total sum of vertices’ weights. In this study, we propose a robust and
cooperative parallel tabu search algorithm (PTC) for the MVWCP. Our proposed algorithm uses a dedicated tabu
search algorithm with a multistart strategy for the diversification of search space on a parallel computation environ-
ment. An effective seeding mechanism is developed with respect to the rank of the processors to choose diversified
starting points for better exploration areas. Classical add, swap and drop operators of tabu search are improved for
parallel computation with a combined neighborhood approach. The PTC algorithm is evaluated on a set of 120 prob-
lem instances from DIMACS-W and BHOSLIB-W benchmarks. Computational results show that the PTC algorithm
competes with state-of-the-art heuristic algorithms by reporting average best (optimal) result hit ratios up to 99.0%.
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1. Introduction

The maximum clique problem (MCP) is to find a complete sub-graph with a maximum cardinality in a given
general graph [1]. The MCP can be used to design and solve several problems in computer vision, pattern matching,
image matching, economics, examination planning, financial networks, social network analysis, wireless network
telecommunications, bioinformatics and chemoinformatics [2][3]. In addition to this, clique partitioning, max-min
diversity, graph vertex coloring, sum coloring and optimal winner determination are some of the other important
combinatorial optimization problems that are related with the MCP [4, 5]. The maximum vertex weight clique problem
(MVWCP) is a generalization of the classical MCP. When the vertices of the graph are assigned value 1, MVWCP is
equivalent to MCP that finds a maximum cardinality clique [6][7]. The decision version of MCP is NP-complete and
the generalized MVWCP is at least as hard as MCP [8][9]. More formaly, given an undirected graph G = (V, E) with
vertex set V = {1,..., n} and edge set E ⊆ V × V . Let w : V → Z+ be a weighting function that assigns to each vertex
i ∈ V a positive integer. The MVWCP determines a clique of maximum weight.

Tabu Search is an efficient meta-heuristic with a local heuristic search procedure to explore a solution space
and it has been successfully applied to the solution of several combinatorial optimization problems [10]. In this
study, we enhance the capacity of a classical tabu search algorithm [7] with parallel computation and adapt classical
operators add, swap, and drop operators to the parallel computation environment. Restarting mechanism of the
proposed algorithm (PTC) has a significant improvement on the average success hit ratio of the algorithm. The
PTC algorithm is aware of stagnation and restarts the optimization process from different initial cliques when it gets
stuck into local optima. This procedure is coordinated in the parallel computation environment and slave nodes use
their exploration areas during the optimization. Our proposed PTC algorithm shows a more robust behaviour than
other heuristic algorithms. The parallel version of tabu search enhances the robustness property of the algorithm by
obtaining up to 99% of the reported best (optimal) result hit ratios in the literature.
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In Section 2, related studies for the state-of-the-art MVWCP are summarized. In Section 3, our proposed al-
gorithm, PTC, is introduced. Section 4 gives the details for the performance evaluation of the experimental results
and comparison of the PTC algorithm to the state-of-the-art algorithms on benchmark instances DIMAC-W and
BHOSLIB-W. Concluding remarks and future work are provided in the last Section.

2. Related work

In this section, we give information about the state-of-the-art algorithms proposed for the solution of the MVWCP [6].
Several algorithms have been proposed for solving MVWCP for the last 20 years. These algorithms can be examined
in two parts, exact and heuristic algorithms. Östergärd propose a branch-and-bound (B&B) algorithm in which the
vertices are processed according to the order provided by a vertex coloring of the given graph [11]. Kumlander
develop a backtrack tree search algorithm which relies on a heuristic coloring-based vertex order [12]. Warren &
Hicks propose three B&B algorithms that use weighted clique covers to generate upper bounds and branching rules
[13]. Wu & Hao develop an algorithm that uses new bounding and branching techniques with specific vertex coloring
and sorting [4].

Heuristic methods are recent popular algorithms to obtain (near-)optimal solutions in practical computing times
when the search space of the problem space is too large to be calculated by an exact algorithm. Some of the most
important heuristic algorithms are listed below. Mannino & Stefanutti propose a tabu search algorithm based on edge
projection and augmenting sequence [14]. Fang et al. present an algorithm that uses Maximum Satisfiability Reason-
ing as a bounding technique [15]. Bomze et al. design MVWCP as a continuous problem that is solved by a parallel
algorithm using a distributed computational network model [23]. Busygin proposes a trust region algorithm [25].
Singh & Gupta introduce a hybrid method combining a genetic algorithm [17]. A partially enumerative algorithm is
presented for the maximum clique problem which is very simple to implement by Carraghan & Pardalos [16]. Pullan
& Hoos develop the Phase Local Search (PLS) algorithm for the classical MCP to MVWCP [18]. Wu et al. develop
a tabu search algorithm by integrating multiple neighborhoods [7]. Benlic & Hao present the Breakout Local Search
algorithm that explores multiple neighborhoods and applies both directed and random perturbations [19]. The general
binary quadratic programming (BQP) model has been widely applied to solve a number of combinatorial optimiza-
tion problems. Wang et al. recast the MVWCP into a model which is solved by a probabilistic tabu search algorithm
designed for the BQP [20].

Grosso et al. formulate and analyze iterated local search algorithms for the MCP. The basic components of such
algorithms are fast neighbourhood search, diversification techniques and restart rules [21]. Zhou et al. introduce
a generalized move operator called PUSH that generalizes the conventional ADD and SWAP operators commonly
used in the literature and can be integrated in a local search algorithm for MVWCP [22]. Nogueira et al. present a
hybrid iterated local search (ILS) algorithm for the maximum weight independent set (MWIS) problem. MWIS is a
problem that is closely related to MVWCP. In their study, two new neighborhood structures are introduced and they are
explored using the variable neighborhood descent procedure. The results show that the hybrid ILS is capable of finding
all known optimal solutions [24]. Malladi et al. introduce the Clustered Maximum Weight Clique Problem (CCP),
a generalization of the MVWCP, that models an image acquisition scheduling problem for a satellite constellation
[34]. Wider information about the algorithms to solve MVWCP can be found in a literature survey by Wu & Hao
[6]. El Baz et al. propose a parallel ant colony optimization based metaheuristic (PACOM) for solving MVWCP [28].
This is the only parallel heuristic algorithm that we have found out in literature for MVWCP. Its results are given for
DIMACS-W problem instances. To the best of our knowledge, there is no parallel tabu search algorithm like ours
designed for the solution of MVWCP.

Contemporary software/hardware support can provide instruction level parallelism and gain performance in-
creases. However, they do not perform as well as the human designed parallel algorithms. Our proposed algorithm,
PTC, intends to explore different areas of search space concurrently rather than only speeding-up the search veloc-
ity of a single tabu-search process. There are recent and successful approaches of parallel heuristic algorithms to
solve combinatorial optimization problems such as quadratic assignment and bin packing problems [26, 27, 29]. Our
approach is one of its first examples that is applied to the solution of the MVWCP.
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3. Proposed algorithm, Parallel-Tabu-Clique (PTC)

In this section, we present our proposed Parallel-Tabu for Clique (PTC) algorithm for the MVWCP. PTC is a
parallel tabu search algorithm implemented by using C++ programming language and Message Passing Interface
(MPI) libraries. The PTC introduces a novel diversification mechanism to improve the efficiency of the algorithm
by making use of alternative seeding support for the starting points and randomization of the search process. This
mechanism is designed with respect to the rank number of the processors. A distributed probabilistic restarting process
is employed with the proposed PTC algorithm. Classical add, swap, and drop operators of tabu search that are used
for constructing a maximum clique are adapted to the distributed computation environment. A master and slave
communication topology is used during the communication of processors.

3.1. Motivation for parallel heuristic optimization algorithms
Tabu search is really an efficient heuristic that has been used for the optimization of several NP-Hard combinatorial

optimization problems [7][10]. However, as most of the heuristics, tabu search tries to find the optimal value by
calculating the fitness value of each neighbor solution. This is a process event that consumes a serious amount of
time. Classical single-processor heuristic algorithms have this disadvantage of calculating the fitness values more
slowly than parallel heuristic algorithms [30][32][33]. Techniques such as dynamic programming can reduce this cost
significantly but it is not always possible to apply these techniques. In our opinion, a scalable parallel algorithm that
quickly calculates the fitness of the new solutions is a very important means of computation for better optimization.
There is a classical way of understanding the parallel algorithms as tools of speeding-up the computation. However,
with the heuristic methods it provides more than just being a faster way of execution. With the parallel heuristic
algorithm we propose, we intend to increase the possibility of obtaining the optimal results through faster computation
and diversified search methods of parallel implementation. All the processors seed themselves from different initial
points, which is a very effective way of exploring the search space.

3.2. Fitness value of a possible MVWCP solution
In this section we give information about the fitness value of a solution. The MVWCP is a maximization problem

in a given graph G = (V, E, w) where V is the set of vertices, E is the set of edges and w is a weight function that
assigns a positive number to each vertex. The PTC algorithm searches space Ω (set of all the cliques in G) for a
maximum total sum. For a solution (clique) C ∈ Ω, its fitness value can be given as a function of W(C) =

∑
i∈C wi

where W : Ω→ Z+. The neighbors of C are possible elements of V that are not in the set of C and when a new clique
C
′

is constructed by adding a new vertex and W(C
′

) > W(C) then a better solution is obtained during the optimization
process of the PTC algorithm.

3.3. Initialization of a candidate maximum vertex weight clique solution
For each processor in a parallel computation environment, the PTC algorithm begins with a different starting

clique, C. This is provided by a mechanism that generates random numbers with respect to the rank of the processor
in the parallel computation environment. Therefore, the larger amount of processors you have, the more likely the
PTC algorithm will explore the search space better. The PTC algorithm uses a parallel version of the tabu-search to
improve the weight of clique C. In order to construct an initial C, the PTC algorithm selects a vertex i from G and
initializes the clique C to the set consisting of this single vertex that is selected as a different starting point for each
processor in the environment. Later, another vertex v < C that has a connection with every vertex in C is selected
continuously. This iteration goes on until no such vertex v exists. This is a simple and fast process with diversified
initial solutions for each iteration of the tabu search procedure at each different slave. When two possible vertices are
considered then one of them is selected randomly with respect to the seeding mechanism of the processor.
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3.4. Operators of the PTC algorithm
The PTC algorithm explores the optimal value by using three basic operators (add, swap and drop) jointly.
Add operator increases the total sum of the weights by introducing a new vertex to the clique. Therefore, add

operator has always a positive effect on the existing solution. But it is not always possible to add a new vertex to
the existing clique and it is a costly operation to verify this. The complexity of add operation is O(n) where n is the
number of vertices.

Swap operator exchanges one of the vertices in a clique with another one that is outside of the solution. This
operation may lead to a better result or not. It depends on the values of the vertices that are swapped. But this
exchange of the vertices may lead to a better maximum vertex weight clique. Sometimes, it is possible to have better
results than applying add operator. In Figure 1, we can see how a swap operator produces a better solution than an
add operator (see the total cost of each clique after add and swap operations. Original clique has a total cost of 15
after add operation whereas the total cost is 21 with swapping.).

Drop operator removes a vertex from the existing solution. It always decreases the total cost of the maximum
vertex weight clique. However, it does not mean that it will not help us explore better solutions. Instead, it has a
positive effect for the diversification of the search.

It is not wise to say that add operator has always a better influence for the optimization of the problem. There may
be situations that an add operation cannot be executed. In such cases, swap and drop operators can easily diversify
our search space and rescue us from local optima. Therefore, we cannot talk about supremacy of a specific operator.
The best operator depends on the landscape of the search area and initial cliques. Moreover, using these operators in
a union fashion is reported to be an efficient way of optimization of the MVWCP [7].

Parameter L (search depth) limits the search process for consecutive iterations without improving the clique
weight. It means when there is no improvement in the result, the tabu search does not further keep on spending
its exploration on this constructed solution instead it restarts a new solution.

Figure 1. The swap operator exchanges the vertices 1 and 2 from clique C = {1, 5, 6} to produce a new maximum
vertex weight clique C

′

= {2, 5, 6}. add operator that introduces vertex 3 to the existing clique does not produce a
better maximum vertex weight clique.

The PTC algorithm uses a distributed tabu list to restrict the revisiting of previously searched solutions. At every
processor’s memory there is a tabu list that works independently for each tabu search process. When a vertex leaves
the current clique by using a swap or drop operator it is forbidden to include this vertex into the same solution clique
for the defined iteration times. This iteration is called tabu tenure. A vertex can leave the clique by using drop or swap
operator without any constraint. A move is called as tabu if one of its attributes is tabu and use the aspiration criterion
that lets a move to be executed even if it is a tabu and it generates a solution better than any existing solution. A move
that satisfies the aspiration criterion and not tabu is permitted to be executed in tabu search.

PTC algorithm explores three neighborhoods at each iteration and moves toward a move that produces the best
solution. The three neighborhoods enhances the algorithm to make a better exploration of the candidate solutions.
Tabu list provides an area that should not be visited again and provides a good diversification mechanism. This is
performed concurrently by several processors during the optimization. Multistart is another diversification process
that is employed by the PTC algorithm. The details of the tabu search and parallel execution of the processors can
be seen in Algorithms 1 and 2 respectively. Master processor is receiving the results from slave processors while it is
also making a tabu search and improving the quality of the solution. In Figure 2, the flowchart of the PTC algorithm
is presented.

Figure 2. Flowchart of the PTC algorithm.

3.5. Communication topology of the PTC algorithm
The PTC algorithm uses a master and slave communication topology during the execution of the algorithm. All

the processors in the environment (including the master) start their tabu search process. After executing tabu search
optimization 100 times, they send their solutions to the master node. Master node receives all the results coming from
the slaves and report the best solutions and the other statistics obtained during the optimization process.
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Algorithm 1: The multi-neighborhood tabu search algorithm for MWCP [7]

1 Input: A weighted graph G = (V, E,w), integer L (search depth), Itermax (max. number of iterations)
2 Ensure: C∗ is a clique with weight W(C∗)

3 Iter = null // counter for iterations
4 C* = ∅

5 /* number times that tabu search is restarted from different vertices*/

6 while (Iter < Itermax) do
7 C = Initialize()
8 Initialize tabu list
9 N = 0 // iterations that W(C∗) is not improved

10 Clocal best = C // Clocal best is the local best Clique found until now

11 while N < L do
12 Construct neighborhoods N1,N2, and N3 from C
13 Choose the best neighbor C′ ∈ N1 ∪ N2 ∪ N3
14 C = C′ // current solution is new solution
15 N = N + 1
16 Iter + +

17 Update tabu List
18 if (W(C) > W(Clocal best)) then
19 N = 0
20 Clocal best = C

21 if (W(Clocal best) > W(C∗)) then
22 C∗ = Clocal best

23 Return (Clique (C∗))

Algorithm 2: Pseudocode for the Master and Slave nodes of the PTC algorithm

1 Master side execution

2 select an initial point(p);
3 tabu search(s); // execute search process at master
4 for i← 1 to number of iterations do
5 for k← 1 to number of slaves do
6 receive the current solution from slave processork

7 update the global best solution

8 report the global best result;

9 Slave side execution

10 s: current solution;
11 read graph data();
12 for i← 1 to number of iterations do
13 select an initial point(p); // seed with the rank of the processor
14 tabu search(s); // execute search process at this processor
15 send result to master (s)
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4. Performance Evaluation of the Experimental Results

In this section, we give information about our High Performance Cluster (HPC) experimental environment, prob-
lem instances of the MVWCP, performance evaluations (in terms solution quality and execution times), speed-up,
and scalability issues of the proposed algorithm. We report the results of the proposed algorithm with the benchmark
problem instances and compare its performance on those of other state-of-the-art algorithms.

4.1. Problem instances and experimental setup
We observe the efficiency of our PTC algorithm on DIMACS-W and BHOSLIB-W instances [31]. The DIMACS-

W benchmark has 80 instances from a variety of real life applications. The DIMACS-W benchmark has graphs gen-
erated randomly and maximum clique has been hidden by incorporating low-degree vertices. The problem instances
range from 50 vertices and 1,000 edges to 3,300 vertices and 5,000,000 edges. The BHOSLIB-W problem instances
have been known to be difficult for maximum clique algorithms. Both DIMACS-W and BHOSLIB-W benchmarks
have been widely used to test new MVWCP heuristics. The weighted DIMACS-W benchmarks are produced from the
DIMACS benchmark instances by allocating weights to vertices. For each vertex k, wk is set equal to (k mod 200)+1
[35]. Each problem instance is solved 100 times by our proposed algorithm with different random seeds with respect
to the rank of the processors. The maximum allowed iterations Itermax for each run and instance is set to 108. For the
search depth (L), L = 4,000 for the instances of the MWCP.

Our experiments are performed on a high performance cluster (HPC) computer. The machine has 46 nodes, each
with 2 CPUs giving a total of 92 CPUs. Each CPU has 4 cores with a total of 368 cores. Each node has two 24
port Gigabit ethernet switches and one 24 port high performance switch. The software comprises; a Scientific Linux
v4.5 64-bit operating system, Lustre v1.6.4.2 parallel file system, Torque v2.1.9 resource manager, Maui v3.2.6 job
scheduler, Open MPI v1.2.4, and the C++. The instances are optimized by using 6 nodes, which means that 48 pro-
cessors are used during the optimization process. For difficult instances, MANN a27, MANN a45, and MANN a81,
128 processors are used to provide better results.

4.2. The effect of increasing the number of processors
We analyze the performance of the PTC algorithm with increasing number of processors. This experiment shows

us whether additional processors will provide any advantage (better results) or not. Therefore, the results of this ex-
periment are really crucial for scalability and effectiveness of our parallel heuristic algorithm. As we have explained
earlier, main purpose of a parallel heuristic algorithm is not just to speed-up the calculation of the instructions but also
explore the search space from possible different starting and diversified points of the problem. We select one of the
hardest DIMACS-W problem instances (MANN a27) as our test case instance. During our experiments we observe
that this instance is really a difficult one and it would be interesting to observe the performance of our algorithm on this
problem instance. Figures 3 and 4 show the number optimal solution hits and the average of the obtained results after
100 runs respectively. It can be easily observed that when the number of best result hits is 3 with a single processor,
it becomes 74 with 128 processors. Similarly, a significant amount of increase is observed on the average number of
the hits during the experiments.

Figure 3. The effect of increasing the number of processors on number of best results.

Figure 4. The effect of increasing the number of processors on the average of hits.

Tables 1 and 2 present detailed results of PTC algorithm on DIMACS-W and BHOSLIB-W benchmark problem
instances respectively. Columns 1-3 define the properties of the problem instance. ω is the size of the largest known
clique. Node is the number of vertices in the graph. At the other columns, we give some computational statistics about
the optimization of the problem. The maximum weight obtained by PTC over the 100 runs (W best ), the average
weight over the 100 trials (Wavg), the number of successful trials Wbest (Success), the average time (sec.) and the
average iterations [7]. Wbest results are obtained from the study of Wu et al. [7] as most of the related studies do.
When making comparisons with state-of-the-art algorithms we keep these standard values of Wu et al..
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By looking at the results of the solutions, we can see that the cardinality of the obtained maximum weighted clique
|C| does not always have the same value with the maximum clique size (ω). Because maximum clique size ω does not
mean that it will have the maximum weight of the whole graph G. There may be other smaller cliques with a larger
total sum of vertices.

The hit ratio of the PTC algorithm is 100 (except for the instance MANN a27) for all DIMACS-W instances. The
PTC algorithm consumes a lot of time while solving the instances C2000.9, MANN a27, MANN a45, MANN a81,
and p hat1500-3 in DIMACS-W benchmark. The average of the execution times is reasonable with the instances in
this set. The execution times are observed to be higher for the BHLOBS-W benchmark instances in Table 2. That
is because the number of nodes and edges are larger in this set of problems. The hit ratio of the PTC algorithm
also decreases when the number of nodes and the edges are increasing in BHLOBS-W benchmark. For the problem
instance frb30-15-1 with 450 nodes, the hit ratio is 100 but for the instance frb59-26-5 with 1,534 nodes, the hit ratio
goes down to a ratio 6.

The most important lesson we can get after these experiments is that the PTC algorithm provides a robust perfor-
mance due to its parallel and diversified exploration capability. It can be concluded that when the algorithm is run 100
times with 48 processors (slave nodes), it can grantee the optimal solutions given in the stud of Wu et al..

Table 1. Detailed results of PTC algorithm on 80 DIMACS-W benchmark instances. node is the number of ver-
tices, ω is the maximum clique size, W best is the best value that is found until now, best-found is the best value
found by the algorithm, avg-sum is the average of the results, hit is the number of obtained best results, |C| is the
cardinality of the obtained maximum weighted clique, avg-iter. is the average iteration performed during optimization.

Table 2. Detailed results of PTC algorithm on 40 BHLOBS-W benchmark instances.

4.3. Comparison with state-of-the-art algorithms
In this part of the experiments, we compare our results with those of state-of-the-art heuristic algorithms in liter-

ature. We compare our PTC algorithm with six recent heuristic algorithms designed for the solution of the MVWCP.
The algorithms are the Phased Local Search (PLS) [35], Multi-Neighborhood Tabu Search (MN/TS) [7], Breakout
Local Search (BLS) [19], ReTS-I [22], Iterated Local Search Variable Neighborhood Descent (ILS-VND) [24], par-
allel ant colony optimization based metaheuristic (PACOM) [28] and Binary Quadratic Programming (BQP) problem
with the Probabilistic Tabu Search algorithm (BQP-PTS) [20]. All these algorithms are sequential and executed with
a single processor. Because it is beyond our study to write parallel versions of all these algorithms and make a more
fair comparison, we give the published experimental results of these algorithms.

For the other 118 instances, the PTC is able to provide better or the same results that have been found by the other
algorithms. Algorithms ILS-VND, ReTS-I and BLS have the best observed results for the instances MANN a45 and
MANN a81. These are the only two instances that PTC is not able to provide the best known results. When we take
the average of the best results without including these instances, ILS-VND, ReTS-I, BLS and PTC have the same
average values (4,575.4). The PTC algorithm has the best average hit success of all the algorithms for the DIMAC-W
(99.0%) and BHOSLIB-W (85.1%) instances. Tables 3 and 4 present the comparison of PTC algorithm with those of
the state-of-the-art heuristic algorithms.

Table 3: Comparison with state-of-the-art algorithms on DIMACS-W problem instances

Table 4: Comparison with state-of-the-art algorithms on BHLOBS-W problem instances

Table 5 gives the execution times of state-of-the-art algorithms for selected problem instances from DIMACS-W
and BHOSLIB-W benchmark. Its execution time is closer to sequential tabu search algorithm MN/TS. Generally all
the state-of-the-art heuristic algorithms have practical optimization times for the instances. ReTS-I and ILS-VND al-
gorithms have the best (shortest) execution times whereas BQP-PTS algorithm has the longest running time. The PTC
algorithm has reasonable execution times on the average. The problem instances of our experiments range from 50
vertices and 1,000 edges to 3,300 vertices and 5,000,000 edges. Therefore, when an instance is small, the computation
time of the optimization does not take much. However, due to the intractable complexity behavior of the problem, it
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grows exponentially. This causes the fitness evaluation of the new solutions to consume a lot of computation power
while using the operators, add, swap and drop.

Table 5: Execution times of state-of-the-art algorithms for some selected problem instances. Units are given as
seconds.

A study by El Baz et al. that proposes a parallel ant colony optimization based metaheuristic (PACOM) for
solving the MVWCP was the only parallel algorithm that we have come across during our literature survey [28]. The
performance of the PACOM is evaluated on the set of DIMACS-W problem instances by using 8 processors. For 77
instances in this problem set we report the same results. For MANN a81, PACOM performs better than PTC whereas
PTC reports better solutions for MANN a27 and MANN a45.

Genetic algorithms make use of a top-down approach in their operators while tabu-search like trajectory heuristics
use a constructive manner from bottom to the top. They introduce a chromosome that shows the selected vertices
with 0s and 1s to construct a clique. It is a difficult job for genetic algorithms to provide valid chromosomes after
each crossover and mutation. Therefore, they spend much of their time for valid chromosome verifications. When
the best reported references are considered for the solution of the MVWCP, there is no genetic algorithm. This shows
the drawback of the genetic algorithms for this specific problem. It is clear from the given experimental results in our
tables, the operators developed for the MVWCP are reported to obtain best/optimal solutions.

Speed up and scalability are crucial points to be considered for a parallel algorithm. The PTC algorithm runs
on several processors simultaneously. Its nature is island parallel, which means that each processor does not wait or
send any data to each other (except the master processor). This behavior of the PTC algorithm provides a cohesive
structure during the optimization of each processor. Therefore, it is scalable that as many as new processors are added
to the environment, the performance of the algorithm improves whether the execution time is increasing linearly. This
is a very good virtue for parallel algorithms. As we have explained before, the main focus of the PTC algorithm is
to increase the probability of finding the optimal value rather than speeding up the optimization. Restarting a new
solution from a different clique is a very effective way of escaping from local optima and for exploring diversified
places by using a parallel computation environment.

Local heuristic algorithms consume most of their time for the fitness evaluation of the new solutions while they
are exploring the search space. This is one of the most important disadvantages of the heuristic algorithms. On the
average, a fitness evaluation is calculated millions of times even during an ordinary optimization period. Speeding up
this process and evaluating the neighbors quickly enhances the performance of the heuristic algorithms significantly.

5. Conclusions and future work

We proposed a novel robust and cooperative parallel heuristic algorithm for the MVWCP. The proposed PTC
algorithm represents one of the first parallel heuristic algorithms to solve the MVWCP. The PTC competes with state-
of-the art algorithms on most of the problem instances with its robust solution quality. Among the algorithms that
use the same operators (add, swap and drop), the PTC algorithm can be evaluated as the best performing one with
significant improvements. Although parallel heuristic algorithms are very effective approaches, new optimization op-
erators like PUSH and novel intelligent approaches are still crucial tools as well as parallel computation for heuristic
algorithms. For future work, we plan to study on an automated parameter tuning parallel tabu search algorithm for the
MVWCP. It is also interesting to execute several heuristic approaches (hyper-heuristics) simultaneously in a parallel
high performance environment. Hyper-heuristics is a novel approach that can optimize a problem instance by using
best of different heuristics. We also believe that finding a chance to optimize the MVWCP by using thousands/millions
of processors can provide new best results.
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Figure 1: The swap operator exchanges the vertices 1 and 2 from clique C = {1, 5, 6} to produce a new maximum vertex weight
clique C

′

= {2, 5, 6}. add operator that introduces vertex 3 to the existing clique does not produce a better maximum vertex weight
clique.

Figure 2: Flowchart of the PTC algorithm.
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Figure 3: The effect of increasing the number of processors on number of best results.

Figure 4: The effect of increasing the number of processors on the average of hits.
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Table 1: Detailed results of PTC algorithm on 80 DIMACS-W benchmark instances. node is the number of vertices, ω is the
maximum clique size, W best is the best value that is found until now, best-found is the best value found by the algorithm, avg-
sum is the average of the results, hit is the number of obtained best results, |C| is the cardinality of the obtained maximum weighted
clique, avg-iter. is the average iteration performed during optimization.

instance node ω W best best-found avg-sum hit |C| avg-iter. time (sec.)

brock200 1 200 21 2,821 2,821 2,821 100 19 874 0.7
brock200 2 200 12 1,428 1,428 1,428 100 9 533 0.4
brock200 3 200 15 2,062 2,062 2,062 100 13 525 0.1
brock200 4 200 17 2,107 2,107 2,107 100 13 1,096 0.8
brock400 1 400 27 3,422 3,422 3,422 100 21 5,016 4.6
brock400 2 400 29 3,350 3,350 3,350 100 21 4,537 4.3
brock400 3 400 31 3,471 3,471 3,471 100 23 5,163 4.9
brock400 4 400 33 3,626 3,626 3,626 100 33 2,478,760 2550.0
brock800 1 800 23 3,121 3,121 3,121 100 20 4,712 9.0
brock800 2 800 34 3,043 3,043 3,043 100 18 27,718 54.3
brock800 3 800 25 3,076 3,076 3,076 100 20 13,387 26.2
brock800 4 800 26 2,971 2,971 2,971 100 26 7,760,827 15,261.0
C125.9 125 34 2,529 2,529 2,529 100 30 38,465 22.0
C250.9 250 44 5,092 5,092 5,092 100 40 23,786 15.2
C500.9 500 57 6,955 6,955 6,955 100 48 17,942 15.4
C1000.9 1,000 68 9,254 9,254 9,254 100 61 2,231,531 2,848.3
C2000.5 2,000 16 2,466 2,466 2,466 100 14 56,029 321.2
C2000.9 2,000 80 10,999 10,999 10,999 100 72 74,945,585 345,318.4
C4000.5 4,000 18 2,792 2,792 2,792 100 16 1,403,031 15,205.3
DSJC500.5 500 13 1,725 1,725 1,725 100 12 6,169 0.0
DSJC1000.5 1,000 15 2,186 2,186 2,186 100 13 13,873 0.1
keller4 171 11 1,153 1,153 1,153 100 11 5,600 0.0
keller5 776 27 3,317 3,317 3,317 100 27 484 812.2
keller6 3,361 59 3,361 3,361 3,361 100 56 530,880,620 610.4
MANN a9 45 16 372 372 372 100 16 80 0.1
MANN a27 378 126 12,281 12,283 12,273.03 20 126 36,281,025 208,800.0
MANN a45 1,035 345 34,192 34,205 >34,192 100 341 53,420,000 550,950.0
MANN a81 3,321 1,100 111,128 111,146 >111,128 100 1095 91,824,000 3,008,420.0
hamming6-2 64 32 1,072 1,072 1,072 100 32 397 0.0
hamming6-4 64 4 134 134 134 100 4 4 0.0
hamming8-2 256 128 10,976 10,976 10,976 100 128 14,027 0.0
hamming8-4 256 16 1,472 1,472 1,472 100 16 127 0.0
hamming10-2 1,024 512 50,512 50,512 50,512 100 512 188,670 0.4
hamming10-4 1,024 40 5,129 5,129 5,129 100 35 418,091 1.2
gen200 p0.9 44 200 44 5,043 5,043 5,043 100 37 1,837 0.0
gen200 p0.9 55 200 55 5,416 5,416 5,416 100 52 294,403 0.2
gen400 p0.9 55 400 55 6,718 6,718 6,718 100 47 76,033 0.1
gen400 p0.9 65 400 65 6,940 6,940 6,940 100 48 12,692 0.0
gen400 p0.9 75 400 75 8,006 8,006 8,006 100 78 295,458 0.3
c-fat200-1 200 12 1,284 1,284 1,284 100 12 137,972 0.2
c-fat200-2 200 24 2,411 2,411 2,411 100 23 67,423 0.1
c-fat200-5 200 58 5,887 5,887 5,887 100 58 24,178 0.0
c-fat500-1 500 14 1,354 1,354 1,354 100 12 337,732 1.0
c-fat500-2 500 26 2,628 2,628 2,628 100 24 193,624 0.5
c-fat500-5 500 64 5,841 5,841 5,841 100 62 70,262 0.2
c-fat500-10 500 126 11,586 11,586 11,586 100 124 22,844 0.0
johnson8-2-4 28 4 66 66 66 100 4 3,185 0.0
johnson8-4-4 70 14 511 511 511 100 14 16 0.0
johnson16-2-4 120 8 548 548 548 100 8 181,088 0.0
johnson32-2-4 496 16 2,033 2,033 2,033 100 16 223,153 0.3
p hat300-1 300 8 1,057 1,057 1,057 100 7 1,678 0.0
p hat300-2 300 25 2,487 2,487 2,487 100 20 2,179 0.0
p hat300-3 300 36 3,774 3,774 3,774 100 29 8,809 0.0
p hat500-1 500 9 1,231 1,231 1,231 100 8 2,444 0.0
p hat500-2 500 36 3,920 3,920 3,892 100 31 11,666 0.0
p hat500-3 500 50 5,375 5,375 5,375 100 42 57,191 0.1
p hat700-1 700 11 1,441 1,441 1,441 100 9 852 0.0
p hat700-2 700 44 5,290 5,290 5,290 100 40 3,874 0.0
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Table 1 Continued

instance node ω W best best-found avg-sum hit |C| avg-iter. time (sec.)

p hat700-3 700 62 7,565 7,565 7,565 100 58 18,3757 0.2
p hat1000-1 1,000 10 1,514 1,514 1,514 100 9 3,039 0.0
p hat1000-2 1,000 46 5,777 5,777 5,777 100 42 7,066 0.0
p hat1000-3 1,000 68 8,111 8,111 8,111 100 58 16,8145 0.3
p hat1500-1 1,500 12 1,619 1,619 1,619 100 10 3,517 0.0
p hat1500-2 1,500 65 7,360 7,360 7,360 100 58 55,019 0.2
p hat1500-3 1,500 94 10,321 10,321 10,321 100 84 17,488,756 119,572.7
san200 0.7 1 200 30 3,370 3,370 3,370 100 30 52,271 0.1
san200 0.7 2 200 18 2,422 2,422 2,422 100 14 3,625 0.0
san200 0.9 1 200 70 6,825 6,825 6,825 100 70 123,211 0.2
san200 0.9 2 200 60 6,082 6,082 6,082 100 60 153,595 0.1
san200 0.9 3 200 44 4,748 4,748 4,748 100 34 4,420 0.0
san400 0.5 1 400 13 1,455 1,455 1,455 100 8 4,378 0.0
san400 0.7 1 400 40 3,941 3,941 3,941 100 40 3,859,008 37,669.3
san400 0.7 2 400 30 3,110 3,110 3,110 100 30 8,922,943 89,689.4
san400 0.7 3 400 22 2,771 2,771 2,771 100 18 7,454 0.0
san400 0.9 1 400 100 9,776 9,776 9,776 100 100 654,493 1.6
san1000 1,000 15 1,716 1,716 1,716 100 9 453,934 8.0
sanr200-0.7 200 18 2,325 2,325 2,325 100 15 478 0.0
sanr200-0.9 400 42 5,126 5,126 5,126 100 36 683 0.0
sanr400-0.5 400 13 1,835 1,835 1,835 100 11 1,681 0.0
sanr400-0.7 400 21 2,992 2,992 2,992 100 18 1,592 0.0
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Table 2: Detailed results of PTC algorithm on 40 BHLOBS-W benchmark instances.

instance node ω W best best-found avg-sum hit |C| avg-iter. time (sec.)

frb30-15-1 450 30 2,990 2,990 2,990 100 27 126,687 0.2
frb30-15-2 450 30 3,006 3,006 3,006 100 28 1,067,223 1.4
frb30-15-3 450 30 2,995 2,995 2,995 100 27 1,407,315 1.9
frb30-15-4 450 30 3,032 3,032 3,032 100 28 35,719 0.0
frb30-15-5 450 30 3,011 3,011 3,011 100 27 667,587 0.9
frb35-17-1 595 35 3,650 3,650 3,650 100 33 26,631,649 9.6
frb35-17-2 595 35 3,738 3,738 3,738 100 33 36,933,198 85,666.0
frb35-17-3 595 35 3,716 3,716 3,716 100 33 2,903,709 4.3
frb35-17-4 595 35 3,683 3,683 3,683 100 35 43,527,142 1,007,709.0
frb35-17-5 595 35 3,686 3,686 3,686 100 33 2,963,616 9,108.0
frb40-19-1 760 40 4,063 4,063 4,063 100 37 11,547,245 100,402.0
frb40-19-2 760 40 4,112 4,112 4,112 100 36 28,624,110 114,118.0
frb40-19-3 760 40 4,115 4,115 4,115 100 36 44,720,006 143,785.9
frb40-19-4 760 40 4,136 4,136 4,136 100 37 18,264,443 110,780.9
frb40-19-5 760 40 4,118 4,118 4,118 100 36 31,568,964 95,982.0
frb45-21-1 945 45 4,760 4,760 4,760 100 41 44,554,714 211,587.6
frb45-21-2 945 45 4,784 4,784 4,748 100 42 40,172,601 154,734.0
frb45-21-3 945 45 4,765 4,765 4,765 100 43 56,334,801 211,794.0
frb45-21-4 945 45 4,799 4,799 4,799 100 42 31,784,789 1,533,997.0
frb45-21-5 945 45 4,779 4,799 4,779 100 43 29,248,923 1,590,248.0
frb50-23-1 1,150 50 5,494 5,494 5,491.4 64 47 24,620,081 110,090.5
frb50-23-2 1,150 50 5,462 5,462 5,462 100 47 43,007,000 182,190.0
frb50-23-3 1,150 50 5,486 5,486 5,486 100 47 53,901,774 237,783.0
frb50-23-4 1,150 50 5,454 5,454 5,454 100 46 44,146,546 284,538.0
frb50-23-5 1,150 50 5,498 5,498 5,498 100 47 36,065,699 195,685.0
frb53-24-1 1,272 53 5,670 5,670 5,670 100 50 66,197,822 3,038,090.0
frb53-24-2 1,272 53 5,707 5,707 5,707 100 49 32,412,000 152,460.0
frb53-24-3 1,272 53 5,640 5,655 5,640 100 49 77,652,000 360,430.0
frb53-24-4 1,272 53 5,714 5,714 5,704.4 64 48 32,135,000 1,442,252.0
frb53-24-5 1,272 53 5,659 5,659 5,658.2 60 49 96,896,198 435,070.0
frb56-25-1 1,400 56 5,916 5,916 5,904.5 82 53 39,412,141 442,150.0
frb56-25-2 1,400 56 5,872 5,872 5,864.3 73 52 24,211,152 194,171.0
frb56-25-3 1,400 56 5,859 5,859 5,849.3 76 51 17,845,998 267,952.0
frb56-25-4 1,400 56 5,892 5,892 5,891.4 82 51 31,244,856 181,049.0
frb56-25-5 1,400 56 5,839 5,839 5,834.6 85 52 87,455,412 543,146.0
frb59-26-1 1,534 59 6,591 6,591 6,583.3 52 53 54,389,333 88,456.6
frb59-26-2 1,534 59 6,645 6,645 6,617.4 46 55 46,250,666 133,040.0
frb59-26-3 1,534 59 6,608 6,608 6,582.74 6 55 66,908,000 328,810.0
frb59-26-4 1,534 59 6,592 6,592 6,542.13 8 54 83,803,679 432,260.0
frb59-26-5 1,534 59 6,584 6,584 6,562.4 6 53 62,640,547 318,230.0
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Table 3: Comparison with state-of-the-art algorithms on DIMACS-W problem instances

BQP-PTS PLSW MN/TS BLS ReTS - I ILS-VND PTC

Best Succ. Best Succ. Best Succ. Avg Best Succ. Avg Best Succ. Avg Best Avg Best Succ. Avg

brock200 1 2,821 100 2,821 100 2,821 100 2,821 2,821 100 2,821 2,821 100 2,821 2,821 2,821 2,821 100 2,821
brock200 2 1,428 100 1,428 100 1,428 100 1,428 1,428 100 1,428 1,428 100 1,428 1,428 1,428 1,428 100 1,428
brock200 3 2,062 100 2,062 100 2,062 100 2,062 2,062 100 2,062 2,062 100 2,062 2,062 2,062 2,062 100 2,062
brock200 4 2,107 100 2,107 100 2,107 100 2,107 2,107 100 2,107 2,107 100 2,107 2,107 2,107 2,107 100 2,107
brock400 1 3,422 100 3,422 32 3,422 32 3,422 3,422 100 3,422 3,422 100 3,422 3,422 3,422 3,422 100 3,422
brock400 2 3,350 100 3,350 61 3,350 61 3,350 3,350 100 3,350 3,350 100 3,350 3,350 3,350 3,350 100 3,350
brock400 3 3,471 100 3,471 100 3,471 100 3,471 3,471 100 3,471 3,471 100 3,471 3,471 3,471 3,471 100 3,471
brock400 4 3,626 100 3,626 100 3,626 100 3,626 3,626 100 3,626 3,626 100 3,626 3,626 3,626 3,626 100 3,626
brock800 1 3,121 100 3,121 100 3,121 100 3,121 3,121 100 3,121 3,121 100 3,121 3,121 3,121 3,121 100 3,121
brock800 2 3,043 100 3,043 69 3,043 100 3,043 3,043 69 3,043 3,043 100 3,043 3,043 3,043 3,043 100 3,043
brock800 3 3,076 100 3,076 100 3,076 100 3,076 3,076 100 3,076 3,076 100 3,076 3,076 3,076 3,076 100 3,076
brock800 4 2,971 8 2,971 100 2,971 100 2,971 2,971 100 2,971 2,971 31 2,970.31 2,971 2,970.69 2,971 100 2,971
C125.9 2,529 100 2,529 100 2,529 100 2,529 2,529 100 2,529 2,529 100 2,529 2,529 2,529 2,529 100 2,529
C250.9 5,092 100 5,092 17 5,092 100 5,092 5,092 100 5,092 5,092 100 5,092 5,092 5,092 5,092 100 5,092
C500.9 6,955 100 6,822 - 6,955 100 6,955 6,955 100 6,955 6,955 100 6,955 6,955 6,955 6,955 100 6,955
C1000.9 9,254 100 8,965 5 9,254 100 9,254 9,254 100 9,254 9,254 100 9,254 9,254 9,254 9,254 100 9,254
C2000.5 2,466 71 2,466 18 2,466 100 2,466 2,466 100 2,466 2,466 100 2,466 2,466 2,466 2,466 100 2,466
C2000.9 10,999 72 10,028 - 10,999 22 10,972.32 10,999 74 10,989.9 10,999 92 10,996.44 10,999 10,973.6 10,999 100 10,999
C4000.5 2,792 19 2,792 - 2,792 100 2,792 2,792 100 2,792 2,792 100 2,792 2,792 2,790.3 2,792 100 2,792
DSJC500.5 1,725 100 1,725 100 1,725 100 1,725 - - - 1,725 100 1,725 1,725 1,725 1,725 100 1,725
DSJC1000.5 2,186 81 2,186 100 2,186 100 2,186 - - - 2,186 100 2,186 2,186 2,186 2,186 100 2,186
keller4 1,153 100 1,153 100 1,153 100 1,153 1,153 100 1,153 1,153 100 1,153 1,153 1,153 1,153 100 1,153
keller5 3,317 100 3,317 100 3,317 100 3,317 3,317 100 3,317 3,317 100 3,317 3,317 3,317 3,317 100 3,317
keller6 8,062 2 7,382 - 8,062 5 7,945.12 8,062 44 8,027.2 8,062 100 8,062 8,062 8,061.7 8,062 100 8,062
MANN a9 372 100 372 100 372 100 372 - - 372 372 100 372 372 372 372 100 372
MANN a27 12,277 4 12,264 - 12,281 1 12,273 12,281 16 12,277 12,283 78 12,282.78 12,283 12,283 12,283 20 12,283
MANN a45 34,194 2 34,129 - 34,192 1 34,180 34,229 1 34,211 34,259 1 34,253.6 34,265 34,263 34,205 100 34,192
MANN a81 111,137 1 110,564 - 111,128 1 111,116 11,1237 1 111,188 111,370 1 111,351.19 111,400 111,394 11,1146 100 111,128
hamming6-2 1,072 100 1,072 100 1,072 100 1,072 1,072 100 1,072 1,072 100 1,072 1,072 1,072 1,072 100 1,072
hamming6-4 134 100 134 100 134 100 134 134 100 134 134 100 134 134 134 134 100 134
hamming8-2 10,976 100 10,976 100 10,976 100 10,976 10,976 100 10,976 10,976 100 10,976 10,976 10,870 10,976 100 10,976
hamming8-4 1,472 100 1,472 100 1,472 100 1,472 1,472 100 1,472 1,472 100 1,472 1,472 1,472 1,472 100 1,472
hamming10-2 50,512 67 50,512 100 50,512 100 50,512 50,512 100 50,512 50,512 100 50,512 50,512 50,420 50,512 100 50,512
hamming10-4 5,129 8 5,086 1 5,129 100 5,129 5,129 100 5,129 5,129 100 5,129 5,129 5,128.9 5,129 100 5,129
gen200 p0.9 44 5,043 100 5,043 100 5,043 100 5,043 5,043 100 5,043 5,043 100 5,043 5,043 5,043 5,043 100 5,043
gen200 p0.9 55 5,416 100 5,416 100 5,416 100 5,416 5,416 100 5,416 5,416 100 5,416 5,416 5,416 5,416 100 5,416
gen400 p0.9 55 6,718 100 6,718 2 6,718 100 6,718 6,718 2 6,718 6,718 100 6,718 6,718 6,718 6,718 100 6,718
gen400 p0.9 65 6,940 100 6,935 4 6,940 100 6,940 6,940 100 6,940 6,940 100 6,940 6,940 6,940 6,940 100 6,940
gen400 p0.9 75 8,006 100 8,006 100 8,006 100 8,006 8,006 100 8,006 8,006 100 8,006 8,006 8,006 8,006 100 8,006
c-fat200-1 1,284 100 1,284 100 1,284 100 1,284 - - - 1,284 100 1,284 1,284 1,284 1,284 100 1,284
c-fat200-2 2,411 100 2,411 100 2,411 100 2,411 - - - 2,411 100 2,411 2,411 2,411 2,411 100 2,411
c-fat200-5 5,887 100 5,887 100 5,887 100 5,887 - - - 5,887 100 5,887 5,887 5,887 5,887 100 5,887
c-fat500-1 1,354 100 1,354 100 1,354 100 1,354 - - - 1,354 100 1,354 1,354 1,354 1,354 100 1,354
c-fat500-2 2,628 100 2,628 100 2,628 100 2,628 - - - 2,628 100 2,628 2,628 2,628 2,628 100 2,628
c-fat500-5 5,841 100 5,841 100 5,841 100 5,841 - - - 5,841 100 5,841 5,841 5,841 5,841 100 5,841
c-fat500-10 11,586 100 11,586 100 11,586 100 11,586 - - - 11,586 100 11,586 11,586 11,586 11,586 100 11,586
johnson8-2-4 66 100 66 100 66 100 66 66 100 66 66 100 66 66 66 66 100 66
johnson8-4-4 511 100 511 100 511 100 511 511 100 511 511 100 511 511 511 511 100 511
johnson16-2-4 548 100 548 100 548 100 548 548 100 548 548 100 548 548 548 548 100 548
johnson32-2-4 2,033 40 2,033 100 2,033 100 2,033 2,033 100 2,033 2,033 100 2,033 2,033 2,033 2,033 100 2,033
p hat300-1 1,057 100 1,057 100 1,057 100 1,057 1,057 100 1,057 1,057 100 1,057 1,057 1,057 1,057 100 1,057
p hat300-2 2,487 100 2,487 100 2,487 100 2,487 2,487 100 2,487 2,487 100 2,487 2,487 2,487 2,487 100 2,487
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Table 3: Continued

BQP-PTS PLSW MN/TS BLS ReTS - I ILS-VND PTC

Best Succ. Best Succ. Best Succ. Avg Best Succ. Avg Best Succ. Avg Best Avg Best Succ. Avg

p hat300-3 3,774 100 3,774 47 3,774 47 3,774 3,774 47 3,774 3,774 100 3,774 3,774 3,774 3,774 100 3,774
p hat500-1 1,231 100 1,231 100 1,231 100 1,231 1,231 100 1,231 1,231 100 1,231 1,231 1,231 1,231 100 1,231
p hat500-2 3,920 100 3,925 - 3,920 100 3,920 3,920 100 3,920 3,920 100 3,920 3,920 3,920 3,920 100 3,920
p hat500-3 5,375 100 5,361 - 5,375 100 5,375 5,375 100 5,375 5,375 100 5,375 5,375 5,375 5,375 100 5,375
p hat700-1 1,441 100 1,441 100 1,441 100 1,441 1,441 100 1,441 1,441 100 1,441 1,441 1,441 1,441 100 1,441
p hat700-2 5,290 100 5,290 100 5,290 100 5,290 5,290 100 5,290 5,290 100 5,290 5,290 5,290 5,290 100 5,290
p hat700-3 7,565 100 7,565 12 7,565 100 7,565 7,565 100 7,565 7,565 100 7,565 7,565 7,565 7,565 100 7,565
p hat1000-1 1,514 100 1,514 100 1,514 100 1,514 1,514 100 1,514 1,514 100 1,514 1,514 1,514 1,514 100 1,514
p hat1000-2 5,777 100 5,777 87 5,777 87 5,777 5,777 87 5,777 5,777 100 5,777 5,777 5,777 5,777 100 5,777
p hat1000-3 8,111 100 7,986 - 8,111 100 8,111 8,111 100 8,111 8,111 100 8,111 8,111 8,111 8,111 100 8,111
p hat1500-1 1,619 95 1,619 100 1,619 100 1,619 1,619 100 1,619 1,619 100 1,619 1,619 1,619 1,619 100 1,619
p hat1500-2 7,360 100 7,328 4 7,360 100 7,360 7,360 100 7,360 7,360 100 7,360 7,360 7,360 7,360 100 7,360
p hat1500-3 10,321 9 10,014 - 10,321 96 10,320.5 10,321 100 1,0321 10,321 100 10,321 10,321 10,321 10,321 100 10,321
san200 0.7 1 3,370 100 3,370 100 3,370 100 3,370 3,370 100 3,370 3,370 100 3,370 3,370 3,370 3,370 100 3,370
san200 0.7 2 2,422 100 2,422 66 2,422 100 2,422 2,422 100 2,422 2,422 100 2,422 2,422 2,422 2,422 100 2,422
san200 0.9 1 6,825 100 6,825 100 6,825 100 6,825 6,825 100 6,825 6,825 100 6,825 6,825 6,825 6,825 100 6,825
san200 0.9 2 6,082 100 6,082 100 6,082 100 6,082 6,082 100 6,082 6,082 100 6,082 6,082 6,082 6,082 100 6,082
san200 0.9 3 4,748 100 4,748 72 4,748 72 4,748 4,748 100 4,748 4,748 100 4,748 4,748 4,748 4,748 100 4,748
san400 0.5 1 1,455 100 1,455 100 1,455 100 1,455 1,455 100 1,455 1,455 100 1,455 1,455 1,455 1,455 100 1,455
san400 0.7 1 3,941 100 3,941 100 3,941 100 3,941 3,641 98 3,640.64 3,941 97 3,932 3,941 3,941 3,941 100 3,941
san400 0.7 2 3,110 100 3,110 100 3,110 100 3,110 3,110 33 3,002.56 3,110 97 3,105.26 3,110 3,110 3,110 100 3,110
san400 0.7 3 2,771 99 2,771 100 2,771 100 2,771 2,771 100 2,771 2,771 100 2,771 2,771 2,771 2,771 100 2,771
san400 0.9 1 9,776 100 9,776 100 9,776 100 9,776 9,776 100 9,776 9,776 100 9,776 9,776 9,486.25 9,776 100 9,776
san1000 1,716 100 1,716 - 1,716 100 1,716 1,716 100 1,716 1,716 100 1,716 1,716 1,716 1,716 100 1,716
sanr200-0.7 2,325 100 2,325 100 2,325 100 2,325 2,325 100 2,325 2,325 100 2,325 2,325 2,325 2,325 100 2,325
sanr200-0.9 5,126 100 5,126 5 5,126 100 5,126 5,126 100 5,126 5,126 100 5,126 5,126 5,126 5,126 100 5,126
sanr400-0.5 1,835 100 1,835 100 1,835 100 1,835 1,835 100 1,835 1,835 100 1,835 1,835 1,835 1,835 100 1,835
sanr400-0.7 2,992 100 2,992 100 2,992 100 2,992 2,992 100 2,992 2,992 100 2,992 2,992 2,992 2,992 100 2,992

Average 6,373.9 88.5 6,333.3 83.9 6,373.8 91.6 6,371.6 6,778.2 91.0 6,684.9 6,377.7 96.2 6,377.2 6,378.1 6,371.6 6,374.2 99.0 6,373.4
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Table 4: Comparison with state-of-the-art algorithms on BHLOBS-W problem instances

BQP-PTS MN/TS BLS ReTS-I ILS-VND PTC

Best Succ. Avg Best Succ. Avg Best Succ. Avg Best Succ. Avg Best Avg Best Succ. Avg

frb30-15-1 2,990 100 2,990 2,990 100 2,990 2,990 100 2,990 2,990 100 2,990.0 2,990 2,990 2,990 100 2,990
frb30-15-2 3,006 100 3,006 3,006 100 3,006 3,006 100 3,006 3,006 100 3,006.0 3,006 3,006 3,006 100 3,006
frb30-15-3 2,995 100 2,995 2,995 100 2,995 2,995 100 2,995 2,995 100 2,995.0 2,995 2,995 2,995 100 2,995
frb30-15-4 3,032 100 3,032 3,032 100 3,032 3,032 100 3,032 3,032 100 3,032.0 3,032 3,032 3,032 100 3,032
frb30-15-5 3,011 100 3,011 3,011 100 3,011 3,011 100 3,011 3,011 100 3,011.0 3,011 3,011 3,011 100 3,011
frb35-17-1 3,650 100 3,650 3,650 100 3,650 3,650 100 3,650 3,650 100 3,650.0 3,650 3,650 3,650 100 3,650
frb35-17-2 3,738 100 3,738 3,738 96 3,736.8 3,738 100 3,738 3,738 100 3,738.0 3,738 3,737.7 3,738 100 3,738
frb35-17-3 3,716 100 3,716 3,716 100 3,716.0 3,716 100 3,716 3,716 100 3,716.0 3,716 3,716 3,716 100 3,716
frb35-17-4 3,683 100 3,683 3,683 77 3,678.3 3,683 100 3,683 3,683 100 3,683.0 3,683 3,683 3,683 100 3,683
frb35-17-5 3,686 100 3,686 3,686 100 3,686.0 3,686 100 3,686 3,686 100 3,686.0 3,686 3,686 3,686 100 3,686
frb40-19-1 4,063 100 4,063 4,063 83 4,062.1 4,063 96 4,062.8 4,063 100 4,063.0 4,063 4,060.3 4,063 100 4,063
frb40-19-2 4,112 100 4,112 4,112 87 4,111.2 4,112 100 4,112,0 4,112 100 4,112.0 4,112 4,112 4,112 100 4,112
frb40-19-3 4,115 100 4,115 4,115 19 4,108.3 4,115 46 4,111.72 4,115 99 4,114.9 4,115 4,114.8 4,115 100 4,115
frb40-19-4 4,136 100 4,136 4,136 89 4,135.5 4,136 98 4,135.92 4,136 98 4,135.9 4,136 4,136 4,136 100 4,136
frb40-19-5 4,118 100 4,118 4,118 90 4,117.6 4,118 88 4,117.52 4,118 100 4,118.0 4,118 4,118 4,118 100 4,118
frb45-21-1 4,760 100 4,760 4,760 44 4,748.6 4,760 58 4,754.3 4,760 98 4,759.8 4,760 4,756.9 4,760 100 4,760
frb45-21-2 4,784 100 4,784 4,784 47 4,775.8 4,784 100 4,784,0 4,784 100 4,784.0 4,784 4,783.9 4,784 100 4,748
frb45-21-3 4,765 100 4,765 4,765 26 4,756.9 4,765 88 4,764.76 4,765 90 4,764.8 4,765 4,765 4,765 100 4,765
frb45-21-4 4,799 100 4,799 4,799 43 4,772.4 4,799 96 4,797.24 4,799 100 4,799.0 4,799 4,799 4,799 100 4,799
frb45-21-5 4,779 100 4,779 4,779 82 4,777.3 4,779 100 4,779,0 4,779 100 4,779.0 4,779 4,778.9 4,779 100 4,779
frb50-23-1 5,494 20 5,487.9 5,494 6 5,484.7 5,494 11 5,486.41 5,494 4 5,485.2 5,494 5,484.7 5,494 64 5,491.4
frb50-23-2 5,462 15 5,452.6 5,462 3 5,434.1 5,462 5 5,440.22 5,462 9 5,451.9 5,462 5,454.7 5,462 100 5,462
frb50-23-3 5,486 100 5,486.0 5,486 53 5,480.2 5,486 98 5,485.98 5,486 57 5,485.2 5,486 5,483.2 5,486 100 5,486
frb50-23-4 5,454 28 5,453.3 5,454 9 5,451.6 5,454 14 5,453.14 5,453 91 5,452.5 5,453 5,447.5 5,454 100 5,454
frb50-23-5 5,498 100 5,498.0 5,498 89 5,495.7 5,498 100 5,498,0 5,498 100 5,498.0 5,498 5,491.9 5,498 100 5,498
frb53-24-1 5,670 43 5,660.4 5,670 5 5,637.9 5,670 13 5,652.18 5,670 33 5,661.4 5,670 5,664.8 5,670 100 5,670
frb53-24-2 5,707 25 5,694.3 5,707 6 5,676.5 5,707 3 5,685.32 5,707 1 5,685.3 5,707 5,696.3 5,707 100 5,707
frb53-24-3 5,640 90 5,639.4 5,640 15 5,610.7 5,640 48 5,629.38 5,655 3 5,636.5 5,655 5,631.5 5,640 100 5,640
frb53-24-4 5,714 25 5,700.7 5,714 7 5,645.6 5,714 13 5,676.16 5,714 4 5,696.9 5,714 5,700.2 5,714 64 5,704.4
frb53-24-5 5,659 6 5,653.1 5,659 5 5,628.7 5,659 4 5,642.5 5,659 1 5,651.4 5,659 5,647.2 5,659 60 5,658.2
frb56-25-1 5,916 19 5,877.3 5,916 3 5,836.8 5,916 5 5,860.82 5,916 59 5,906.5 5,916 5,895.7 5,916 82 5,904.5
frb56-25-2 5,886 3 5,861.3 5,872 1 5,807.7 5,886 1 5,838.96 5,886 9 5,873.0 5,886 5,877.3 5,872 73 5,864.3
frb56-25-3 5,859 1 5,831.6 5,859 1 5,799.3 5,859 1 5,811.0 5,859 1 5,832.3 5,859 5,820.5 5,859 76 5,849.3
frb56-25-4 5,892 5 5,869.3 5,892 3 5,839.1 5,892 12 5,860.86 5,892 2 5,866.1 5,892 5,856.3 5,892 82 5,891.4
frb56-25-5 5,853 1 5,811.5 5,839 1 5,768.3 5,853 1 5,787.04 5,841 1 5,812.2 5,853 5,818.2 5,839 85 5,834.6
frb59-26-1 6,591 67 6,585.1 6,591 3 6,547.5 6,591 17 6,571.6 6,591 20 6,578.7 6,591 6,575.4 6,591 52 6,583.3
frb59-26-2 6,645 40 6,614.5 6,645 3 6,567.1 6,645 13 6,602.34 6,645 13 6,589.1 6,645 6,591.2 6,645 46 6,617.4
frb59-26-3 6,608 1 6,567.5 6,608 1 6,514.1 6,608 1 6,542.74 6,608 1 6,579.1 6,608 6,583.6 6,608 6 6,582.7
frb59-26-4 6,592 5 6,533.5 6,592 1 6,498.3 6,592 6 6,526.5 6,592 71 6,585.1 6,592 6,576.7 6,592 8 6,542.1
frb59-26-5 6,584 9 6,554.5 6,584 1 6,522.5 6,584 5 6,546.94 6,584 3 6,558.5 6,584 6,552.8 6,584 6 6,562.4

Average 4,903.7 65.1 4,894.2 4,903.0 45.0 4,877.9 4,903.7 56.0 4,888.1 49,03.8 61.7 4,895.6 4,904.1 4,894.5 4,903.9 85.1 4,897.6
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Table 5: Execution times of state-of-the-art algorithms for selected problem instances (units are given in seconds).

instance BQP-PTS PLS MN/TS BLS ReTS - I ILS-VND PTC

brock200 1 0.02 0.19 0.01 0.01 0 0.01 0.7
brock800 4 105.53 3.77 49.7 339.07 835.03 25.4 0.4
C125.9 0.02 8.08 0.02 0.01 0 0.01 0.8
C4000.5 19,902.77 - 80.56 179.89 116.05 216.1 96.4
DSJC500.5 3.82 0.95 0.04 - 0.13 0.03 0.1
DSJC1000.5 115.42 47.76 0.2 - 0.38 0.16 0.1
keller4 0.05 0.02 0.03 0.04 0 0.01 0.1
keller6 3,418.36 - 606.15 1,980.16 532.74 53.3 610.4
MANN a9 0.01 0.01 0.01 - 0 0.01 0.1
MANN a81 6,167.28 - 832.24 2,942.54 990.02 74.99 954.8
hamming6-2 0.01 0.01 0.001 0.01 0 0.01 0
hamming10-4 32.49 1,433.07 2.21 26.86 26.25 6.83 1.2
gen200 p0.9 44 0.02 4.44 0.01 0.01 0 0.01 0
gen400 p0.9 75 0.67 0.01 0.88 0.43 0.03 0.01 0.3
c-fat200-1 0.01 0.01 0.14 - 0 0.01 0.2
c-fat500-10 1.29 0.01 0.06 - 0.11 0.01 0
johnson8-2-4 0.01 0.01 0.01 0.01 0 0.01 0
johnson32-2-4 26.71 44.68 0.53 0.48 0.04 0.01 0.3
p hat300-1 0.03 0.01 0.02 0.01 0 0.01 0
p hat1500-3 34.14 - 188.38 1.78 2.06 0.06 246.3
san200 0.7 1 0.06 0.01 0.17 30.65 0.21 0.01 0.1
san400 0.9 1 0.31 0.01 1.29 6.25 2.38 11.4 0.2
san1000 40.93 - 13.01 4.94 71.07 0.13 8
sanr200-0.7 0.08 0.62 0.01 0.01 0 0.01 0
san400 0.7 3 42.54 4.41 0.05 0.05 0.41 0.1 0
frb30-15-1 4.9 - 0.35 1.12 1.43 1 0.4
frb30-15-5 2.13 - 3.01 3.64 0.8 0.05 3.2
frb35-17-1 6.59 - 25.8 68.45 5.1 5.66 26
frb35-17-5 3.73 - 8.09 20 2.7 1.07 9.5
frb40-19-1 87.72 - 85.57 291.14 51.68 15.57 96.2
frb40-19-5 96.63 - 178.89 343.82 34.72 2.62 199.5
frb45-21-1 896.25 - 126.26 982.32 161.39 18.98 144.6
frb45-21-5 34.17 - 193.82 206.6 11.23 11.67 212.3
frb50-23-1 1,911.49 - 186.62 1,221.72 154.05 52.83 188.4
frb50-23-5 751.84 - 110.85 388.18 118.21 21.2 124.1
frb53-24-1 981.33 - 233.22 1,056.82 349.95 20.27 246.3
frb53-24-5 2,802.83 - 294 278.91 777.93 10.97 304.2
frb56-25-1 1035 - 308.9 1,764.87 344.18 33.19 322.4
frb56-25-5 3,549.57 - 322.7 4,386.6 354.28 2.88 344.6
frb59-26-1 2,228.21 - 166.2 1,435.99 521.08 28.84 178.6
frb59-26-5 747.8 - 161.47 1,512.09 320.54 76.46 184.2

Average 1,098.4 77.4 102.0 541.0 141.1 16.9 109.9
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