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Abstract

Teaching Learning Based Optimization (TLBO) is a new metaheuristic that has been suc-
cessfully applied to several intractable optimization problems in recent years. In this study,
we propose a set of novel multiobjective TLBO algorithms combined with supervised ma-
chine learning techniques for the solution of Feature Subset Selection (FSS) in Binary Clas-
sification Problems (FSS-BCP). Selecting the minimum number of features while not com-
promising the accuracy of the results in FSS-BCP is a multiobjective optimization problem.
We propose TLBO as a FSS mechanism and utilize its algorithm-specific parameterless con-
cept that does not require any parameters to be tuned during the optimization. Most of
the classical metaheuristics such as Genetic and Particle Swarm Optimization algorithms
need additional efforts for tuning their parameters (crossover ratio, mutation ratio, velocity
of particle, inertia weight, etc.), which may have an adverse influence on their performance.
Comprehensive experiments are carried out on the well-known machine learning datasets of
UCI Machine Learning Repository and significant improvements have been observed when
the proposed multiobjective TLBO algorithms are compared with state-of-the-art NSGA-II,
Particle Swarm Optimization, Tabu Search, Greedy Search, and Scatter Search algorithms.

Keywords: Teaching learning based optimization, Multiobjective feature selection,
Supervised learning

1. Introduction1

With the recent improvements in science and technology, huge amounts of data is being2

generated everyday. The size of data is larger than a human can process without help of3

an intelligent system [1]. This exploding growth of data makes researchers search for new4

methods to extract meaningful information. Effective decision-making requires high quality5

in information/knowledge [2]. However, it becomes harder to extract meaningful information6

as the amount of raw input data increases. If the raw input data is not preprocessed (e.g.7
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filtering), it may have adverse effects and mislead the decision making processes. This8

creates a rapidly increasing demand for advanced data processing techniques such as data9

mining and machine learning.10

Data mining identifies the existing patterns that might help predict future behaviours.11

In addition to data mining techniques, machine learning techniques are also widely used in12

modern decision making process. Data mining modifies data by filtering, formatting, etc.,13

whereas machine learning techniques benefit from historical data to build a smart model14

[3]. Large amounts of data can be analyzed in a limited time by using machine learning15

techniques.16

Researchers agree on the fact that preprocessing enables data mining tools to perform17

more effectively [4]. One of the most commonly applied data preprocessing techniques is18

Feature Subset Selection (FSS), which is the process of reducing the number of features by19

identifying irrelevant or redundant attributes of a dataset that do not affect or make no con-20

tribution to the solution of the problem [5]. However, in the meantime, we should minimize21

any loss of critical information. Machine learning algorithms will, naturally, execute faster22

when the amount they process is decreased by using FSS. The accuracy of the results may23

also improve in some cases [6]. As data grow massively, FSS becomes indispensable in order24

to be able to extract meaningful information. FSS algorithms are widely applied in various25

real-world problems such as text categorization and recommendation systems [7][8][9].26

FSS is a multiobjective optimization process with two objectives, maximizing the ac-27

curacy of the results and minimizing the number of features. Therefore, there can be a28

set of solutions rather than a single one. The set of solutions serves both objectives and29

cannot dominate each other. For example, a solution may have an accuracy value of 0.8530

with five features whereas another solution may have an accuracy value of 0.75 with three31

features. The first solution provides a better result for the first objective (higher accuracy)32

and the second one is better for the second objective (minimum number of features). Figure33

1 presents an example of pareto- optimal set of solutions for FSS in Binary Classification34

Problems (FSS-BCP).35

In this study, we propose a set of novel multiobjective TLBO algorithms for the FSS-BCP.36

TLBO has been recently introduced as a novel metaheuristic that has an algorithm-specific37

parameterless concept [10][11]. During the optimization process, TLBO does not require38

any parameters to be optimized. Population size, number of generations, elite size, etc. are39

the common control parameters that need to be tuned by all of the population based meta-40

heuristics (including TLBO). In addition to these parameters, Particle Swarm Optimization41

(PSO) uses inertia weight, social and cognitive parameters, Genetic Algorithms use crossover42

and mutation rate, Artificial Bee Colony uses number of bees, Harmony Search uses har-43

mony memory consideration rate, pitch adjusting rate, and the number of improvisations.44

The optimal tuning of these parameters is crucial for successful optimization, otherwise we45

might unnecessarily increase the computational effort or get stuck at local optimal solutions.46

On the other hand, TLBO requires only the common control parameters to be tuned. The47

TLBO algorithm resembles a classroom environment of a teacher and learners/students. The48

algorithm has two phases: Teacher phase and Learner phase. In the first phase, individuals49

in the classroom (population) are evaluated and the best one is selected as teacher. Then,50
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Figure 1: Non-dominated solutions fitting to a pareto curve for the multiobjective FSS problem.

each learner is trained by the selected teacher. In the second phase, learners interact with51

each other and train themselves. This iteration continues until the termination criteria is52

fulfilled.53

Remarkable results have been reported about the performance of the TLBO in com-54

parison with the other metaheuristics on many different constrained benchmark functions,55

constrained mechanical design problems and on continuous non-linear numerical optimiza-56

tion problems in terms of computational efficiency and also solution quality. Our proposed57

multiobjective TLBO algorithms use different selection mechanisms to construct the pareto-58

optimal set of solutions. Learners are trained by using recombination operators before they59

are given to a machine learning technique. The recombination operators do not require any60

parameter settings in accordance with the parameterless optimization concept of TLBO.61

There is also no need to select and apply an additional selection mechanism such as roulette62

wheel, tournament, or truncation.63

Main contributions of our study are as follows. We introduce three novel multiobjective64

TLBO algorithms for FSS, which have different update mechanisms to find pareto-optimal65

set of solutions. To the best of our knowledge, the approaches we propose are implemented66

for the first time in FSS domain. We evaluate the proposed TLBO algorithms using three67

supervised machine learning techniques. Comprehensive experiments are carried out on the68

well-known machine learning datasets of UCI Machine Learning Repository and significant69

improvements are observed when the proposed algorithm is compared with state-of-the-art70

PSO, Tabu Search (TS), Greedy Search (GS), and Scatter Search (SS) based algorithm.71

Experiment results also show that the proposed TLBO algorithms obtain similar/better72
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solutions when compared to NSGA-II based FSS algorithm.73

The rest of the manuscript is organized as follows. Related studies about FSS and TLBO74

algorithm are given in Section 2. In Section 3, FSS-BCP is defined formally. In Section 4,75

proposed multiobjective TLBO algorithms and applied machine learning techniques (Logis-76

tic Regression, Support Vector Machines, and Extreme Learning Machine) are explained.77

Experimental environment and obtained results are presented in Section 5. Concluding78

remarks and future works are given in the last section.79

2. Related Work80

In this section, we give information about FSS and TLBO algorithms. FSS has been an81

ongoing research topic for many decades. Dash and Liu conduct a survey on FSS methods82

[12]. After giving a definition of FSS by discussing previous definitions of many other authors,83

the procedure of a typical FSS is explained. It is stated that when selecting a specific method84

for the problem, the guideline given in the paper is practical. A very recent survey conducted85

by Xue et al. [13] includes comprehensive evaluations on the FSS problem. They examine86

several evolutionary methods in literature by reviewing how and which analysis techniques87

are used and their number of objectives. The challenges and contributions of several FSS88

algorithms are presented. Moreover, it is stated that by reducing the number of dimensions,89

FSS improves the accuracy of classification.90

Many different algorithms have been proposed to solve the FSS problem. Yang and91

Honavar [14] propose an algorithm that combines a genetic algorithm for finding a suitable92

subset with a neural network algorithm for classification, DistAI. The tests executed on93

benchmark datasets show that it improves the results obtained from DistAI by using all94

features (without subset selection). A state-of-the-art description of FSS problem is given95

by Inza et al. [15] and they present FSS by Estimation of Bayesian Network Algorithm.96

It is an evolutionary and randomized search algorithm that can be applicable when there97

is limited information about domain as it is derived from Estimation of Distribution Algo-98

rithm. Naive-Bayes and ID3 learning algorithms are used in experiments. As a result of the99

experiments, FSS does not affect accuracy significantly; however, it reduces CPU execution100

times dramatically. A genetic algorithm that optimizes the process of FSS and setting SVM101

parameters is proposed by Huang and Wang [16]. It is compared with the Grid Algorithm102

which is mostly applied for parameter searching. The experiments on 11 known real-world103

datasets present that this approach significantly affects the accuracy of classification in a104

favorable way.105

Cervante et al. [17] combine PSO with two information metrics, Mutual Information106

and Entropy. Benefiting each measure, relevance and redundancy of the selected subsets107

are examined and they are used for fitness evaluation. For classification, they use Deci-108

sion Trees. Experiments on benchmark datasets show that minimizing mutual information109

usually results in selecting a smaller feature subset; on the other hand, maximizing group110

entropy obtains higher accuracy. Unler and Murat [18] propose a PSO algorithm. In this111

study, features are selected according to two properties which are independent likelihood112

and predictive contribution to the feature subset that is already chosen. It is stated that113
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they developed this algorithm for binary classification problems and they applied Logistic114

Regression as a machine learning technique. The evaluations of this algorithm presents that115

this adaptive feature selection algorithm performs better than TS and SS algorithms. Lopez116

et al. [19] propose a Parallel SS method for the FSS problem. In order to produce new117

feature subsets as solutions, they make use of greedy approach. The results show that the118

performance of this parallelized algorithm is better than Sequential SS. In order to solve the119

problem of feature selection for LR models, a TS method is proposed by Pacheco et al. [20].120

The statistical comparisons with the classic ones support that the new method generates a121

better set of solutions than the other ones. However, more computation time is required.122

Mlakar et al. [21] propose an efficient feature selection system that is applied to a Facial123

Expression Recognition (FER) system. The proposed system is based on a histogram of124

oriented gradient descriptor and difference feature vectors. The emotion feature selection125

is carried out by using a multi-objective differential evolution algorithm. Zhang et al. [22]126

present a multi-objective particle swarm optimization (PSO) algorithm for cost-based feature127

selection problems. In order to improve the exploration capability of the proposed algorithm,128

a probability-based encoding technology and an effective hybrid operator, together with the129

ideas of the crowding distance, the external archive, and the Pareto domination relationship,130

are implemented. Yong et al. [23] focus on tackling the feature selection problem with131

unreliable data. The problem is formulated as a multi-objective optimization one with132

objectives, the reliability and the classification accuracy. A novel effective multi-objective133

feature selection algorithm based on bare-bones particle swarm optimization is proposed by134

incorporating two new operators.135

A multiobjective evolutionary algorithm is presented by Khan and Baig [24]. They apply136

NSGA-II, a multiobjective genetic algorithm, on four datasets obtained from UCI database.137

The results of the experiments show that NSGA-II is a promising algorithm for the FSS138

problem. They use ID3 as classifier and maximize both first class and second class accuracy139

values. A Multiobjective Differential Evolution is proposed by Sikdar et al. [25] for FSS and140

classifier altogether. Their objectives are adjusted as minimizing the number of features and141

maximizing the f-measure value. For the experiments, they use three biomedical datasets.142

Xue and Zhang [26] introduce multiobjective approach into PSO for the feature selection143

problem. In this recent study, they describe two PSO algorithms and make a comparison144

against two existing single objective PSO algorithms. They also compare their proposal145

algorithms against three existing multiobjective evolutionary algorithms. As a result of the146

experiments, the performance of first proposed algorithm is better than single objective147

methods and it obtains comparable results against multiobjective algorithms; whereas the148

other algorithm performs better than all mentioned algorithms.149

TLBO is a recent optimization algorithm introduced by Rao et al. [10]. Later, TLBO is150

tested on different benchmark datasets in another study by Rao and Savsani [11]. Results151

present that it is more efficient than some other population based optimization algorithms.152

Another study by Rao and Patel [27] investigates the effects of population size and number153

of generations on the performance of the algorithm. They suggest that this algorithm can be154

easily applied on various optimization problems. Črepinšek et al. [28] use TLBO to solve the155

exact problems given in [10] and [11] and they state that those results are not reproducible.156
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Nayak and Rout [29] implement a type of multiobjective TLBO. For each objective, they157

create a matrix of solutions. Teachers are chosen according to the best solution in their158

related matrix of solutions and learners are taught only for maximization of that objective.159

Finally, they sort all solutions in all matrices and create a pool of optimal solutions. Similar160

to this approach, Xu et al. [30] present a multiobjective TLBO with a different teaching161

method. Instead of using a scalar function, they use crossover operator between solutions162

in both teaching and learning phases.163

Dokeroglu [31] proposes a hybrid TLBO algorithm that merges TLBO and Robust TS.164

He runs the proposed algorithm both sequentially and parallel. Tests are executed on 126165

instances of real-life Quadratic Assignment Problems and reported that 102 of them are166

solved optimally using the sequential algorithm, and 115 of them solved optimally by us-167

ing the parallel TLBO algorithm. The performance of the TLBO algorithm is tested on168

combinatorial optimization problems, flow shop (FSSP) and job shop scheduling problems169

(JSSP) by Baykasoglu and Hamzadayi [32]. The performance of TLBO algorithm on these170

problems gives an idea about its possible performance for solving combinatorial optimization171

problems. Experimental results show that the TLBO algorithm has a considerable potential172

when compared to the best-known heuristic algorithms for scheduling problems. Niknam et173

al. [33] propose a new multiobjective optimization algorithm based on modified TLBO opti-174

mization algorithm in order to solve the optimal location of automatic voltage regulators in175

distribution systems at presence of distributed generators. The objective functions including176

energy generation costs, electrical energy losses and the voltage deviation are considered.177

3. Feature Subset Selection Problem178

FSS can be defined as a process of choosing a subset of features from a larger set of179

features. By reducing the number of features in a dataset, FSS can prevent complicated180

calculations, and hence, classifiers run much faster. There are many conceptually differ-181

ent definitions for FSS in the literature [12]. While some deal with reducing the size of182

selected subset, others care much about improving prediction accuracy. Essentially, FSS183

is constructing an effective subset that represents the dataset most informatively by elimi-184

nating irrelevant or redundant features. The main idea is finding the minimum number of185

features while keeping the classification accuracy (increasing it if possible). Since extracting186

the optimal feature subset is a challenging process and there is no exact polynomial time187

algorithm for solving it, FSS is known to be an NP-hard problem [34]. A typical FSS follows188

four steps [12]. In the first step, a search strategy selects candidate features and constitutes189

the subsets. These subsets are evaluated in the second step, and compared with each other.190

Third step, determines whether termination condition is fulfilled, or repeats first two steps,191

otherwise. The final step is to check whether optimal feature subset is found using apriori192

knowledge.193

194

Problem Definition: There are two main parts in our study; selecting the best fea-195

ture subset and evaluating its performance. Since there are two objectives, FSS should be196
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regarded as a multiobjective problem. Equation 1 gives a formal definition to find optimal197

solutions by satisfying both objectives.198

min(f1)

max(f2)

subject to

f1 = |k|
f2 = accuracy(k) where k ⊆ K

(1)

where k is a subset of original dataset (K) which optimizes both objectives (f1 and f2).199

In the second part, quality of selected subset of features is evaluated by using a well-known200

performance metric, Accuracy, as given in Equation 2. To calculate Accuracy, correctly clas-201

sified instances (true positives and true negatives) should be divided by all instances (true202

positives (TP), false positives (FT), false negatives (FN) and true negatives (TN)).203

204

Accuracy =
TP + TN

TP + FP + FN + TN
(2)

4. Proposed Algorithms and Applied Machine Learning Techniques205

In this section, we give information about the representation of the problem solution,206

operators (crossover and mutation), proposed multiobjective TLBO algorithms and applied207

machine learning techniques.208

4.1. Problem Representation and TLBO Multiobjective Optimization Operators209

TLBO algorithm is implemented at the FSS phase of the proposed algorithms. TLBO al-210

gorithms start by randomly generating an initial population (set of students and the teacher).211

The population is the set of solutions. Every solution in the population (classroom) is called212

an individual or a chromosome (see Figure 2 for the structure of a chromosome). A feature213

gene of a chromosome is assumed to be selected if its value is 1, whereas the value 0 denotes214

1 1 1 1 

1 indicates selected features. 

0 indicates unselected features. 

0 0 0 0 

Figure 2: Chromosome structure of a solution for the FSS.
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Figure 3: Crossover operator for the FSS

1 0 1 1 

1 0 1 

1 

1 0 0 0 0 

0 0 0 

Figure 4: Mutation operator for the FSS

an unselected feature. In Figure 2, the dataset has eight features and the first, third, sixth215

and seventh features are selected for the solution of the problem.216

TLBO algorithms run through iterations in which, the best individual in the population217

is defined as teacher and each remaining individual becomes a student. After selecting the218

teacher, TLBO works in two phases: teacher and learner phases. In teacher phase, the219

teacher shares its knowledge with every student and tries to improve their knowledge level.220

In the learner phase, students randomly interact with each other and try to improve their221

knowledge levels.222

We used a special crossover operator called half uniform crossover and bit-flip mutation223

operators to generate new chromosomes in our proposed TLBO algorithms (see Figures 3224

and 4). For the crossover operator, two parent chromosomes are required. Parent chromo-225

somes may either be a teacher and a student, or two students. Crossover operator uses the226

information of both parent chromosomes. If a feature gene is the same in both parents, it227

is kept, whereas it randomly chooses a parent’s gene for every different feature gene. One228

new chromosome is generated after this operation. Bit-flip mutation operates on a single229

chromosome and changes a single gene with respect to a probabilistic ratio. If the gene value230

is zero, then its value is updated as one, or vice versa.231
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Algorithm 1: MTLBO-ST Algorithm

1 Generate population(population);
2 Calculate weighted average of individuals (population);

3 for ( k:=1 to number of generations) do
4 Xteacher:= Best individual (population);

5 /* Learning from Teacher */

6 for ( i:=1 to number of individuals) do
7 Xnew := Crossover(Xteacher, Xi);

8 Xnew := Mutation(Xnew);

9 if (Xnew is better than Xi) then
10 Xi := Xnew;

11 /* Learning from Classmates */

12 for ( i:=1 to number of individuals) do
13 m:=Select random individual from (population);
14 n:=Select random individual from (population); /* n 6= m 6= teacher*/
15 Xnew := Crossover(Xm, Xn);
16 Xnew := Mutation(Xnew);

17 if (Xnew is better than Xm) then
18 Xm := Xnew;

19 if (Xnew is better than Xn) then
20 Xn := Xnew;

21 Show the pareto optimal set(population);

4.2. Proposed Multiobjective TLBO Algorithms232

In a multiobjective optimization process, finding the best solution or deciding whether233

the new individual (solution) has improved is not a straightforward process. An improvement234

in one objective may result in a massive decrement on the other objective. We implement235

three different approaches for solving this problem. The proposed algorithms are defined in236

the following subsections.237

Multiobjective TLBO with Scalar Transformation (MTLBO-ST)238

The first approach is suggested by Rao et al. [35]. In this approach, objective values are239

normalized and combined into a single scalar value. Therefore, the name of this approach240

is chosen as Multiobjective TLBO with Scalar Transformation (MTLBO-ST). The scalar241

value is used for determining better individuals and replacing them with worse individuals242

in the classroom (population). Later, the classical TLBO algorithm is executed (see Figure243

5). Algorithm 1 presents the details of MTLBO-ST algorithm.244
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calculate weighted average of every individual in the population

choose best individual as teacher

crossover teacher with all other individuals (students) separately

is new

one better than old 

one?

keep old one
no

keep new one
yes

select any two parent students randomly and apply crossover

is new 

one better than the 

worse parent?

no
keep parentkeep new one

yes

is termination

criteria satisfied?

yes

no

Teacher 

phase

Learner 

phase

initialize population randomly

apply non-dominated sorting and find the pareto set 

for each student

for number of individuals in population

Figure 5: MTLBO with Scalar Transformation (MTLBO-ST).

Multiobjective TLBO with Non-Dominated Selection (MTLBO-NS)245

We use non-dominated sorting and selection in our second algorithm (see Figure 6). Thus,246

this algorithm is named as Multiobjective TLBO with Non-Dominated Selection (MTLBO-247

NS). In this approach, an individual is said to dominate another one if and only if at least248

one of its objectives is better than the other one’s while keeping all other objectives same. If249

an individual is not dominated by any other individual, then it is said to be non-dominated.250
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find non-dominated individuals (first front) and set them as teachers

for each teacher apply teacher phase separately

combine all students, remove duplicates, and apply non-dominated 

selection to decrease size of individuals to population size

 ...

select any two parent 

students randomly and 

apply crossover

select any two parent 

students randomly and 

apply crossover

calculate both objectives of every individual in the population

initialize population randomly

keep both old and 

new students

crossover teacher1 

with all students 

separately

crossover teachern 

with all students 

separately

keep both old and 

new students

for number of individuals in population

keep all three of 

the students

keep all three of 

the students

is termination

criteria satisfied?

yes

apply non-dominated sorting and find the pareto set 

no

Teacher 

phase

Learner 

phase

Figure 6: MTLBO with Non-Dominated Selection (MTLBO-NS).

All non-dominated individuals constitute the first front of the solution set. Individuals in the251

first front are selected as teachers. At the teacher and learner phases, all teachers teach all252

students discretely. In other terms, every teacher trains every student, but students which253

are taught by different teachers do not have the chance to interact with each other until254

the end of iteration. Distinct from regular TLBO, we do not compare students until the255

end of each iteration (before/after teaching/learning phases) and keep them in the possible256

11



population list. Finally, we combine all teachers and students into the same population,257

remove duplicates and use non-dominated selection algorithm to select the most promising258

chromosomes. For this purpose, we divide the possible population into fronts and starting259

from first front, select as many individuals as possible to fulfill the population size. Crowd-260

ing distance value is used to select individuals in a front, if only a portion of the front is261

required in the new population.262

263

Multiobjective TLBO with Minimum Distance (MTLBO-MD)264

Our third approach, Multiobjective TLBO with Minimum Distance (MTLBO-MD), is a265

simplification of MTLBO-NS algorithm. In this approach, similar to MTLBO-NS, we find266

the chromosomes in the first front. However, we select the only one individual that is closest267

to the ideal point as teacher, rather than selecting all first front individuals. Thus, we expect268

a better performance when compared to MTLBO-NS in terms of computation time.269

4.3. Applied Machine Learning Techniques270

Solutions obtained by TLBO are evaluated using three supervised machine learning tech-271

niques: Logistic Regression (LR), Support Vector Machines (SVM) and Extreme Learning272

Machine (ELM). LR is a well-known, easy and fast classifier. SVM is also popular as an273

effective classifier for binary classification. ELM, on the other hand, is a relatively new but274

promising classifier.275

Logistic Regression: LR performs classification by estimating the occurrence probability276

of an event with respect to similarity of given data points. It uses Sigmoid Function (see277

Equation 3) in order to find probability of an event to occur. If event occurrence probability278

is greater than 0.5 then the event is predicted as ’occurred’ otherwise it is predicted as ’not279

occurred’.280

P (y = 1 | X, θ) =
1

1 + e−θX
(3)

where X is the given feature set, θ is the weights for all features, and y is the probability281

result. Matlab function, glmfit, is used for LR classification in our experiments.282

283

Support Vector Machines : SVM performs classification by constructing a separating line284

between given data points [36]. The closest data points to the separating line are called285

support vectors and the optimal separating line is constructed iteratively by maximizing the286

margin between the line and the support vectors of the classes. The idea comes from the287

intuition that the generalization error decreases as the margin increases. Matlab function,288

fitcsvm, is used for SVM classification in our experiments.289

290

Extreme Learning Machine: ELM is a type of feedforward neural network with a single291

hidden layer. There are three layers in this model; input, hidden and output. Training292

data is given to the network by the input layer. Data is weighted and transferred by a293

function and passed to the hidden layer. Same transformation is done between the hidden294

layer and the output layer. Feedforward neural networks need iterative parameter tuning,295
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whereas ELM does not require tuning. Therefore, learning time of ELM is much less when296

compared to the traditional feedforward neural networks since parameter tuning increases297

the learning time considerably. ELM library, developed by Huang et al. [37], is used for298

ELM classification in our experiments.299

5. Experimental Setup and Results300

In this section, experimental environment and problem instances are introduced and301

results of experiments are reported. Experiments are carried out on 13 datasets. 12 of them302

are obtained from a well-known machine learning data repository, University of California303

UCI Machine Learning Repository. Remaining dataset, Financial, is obtained from a study304

by Pacheco et al. [20]. All datasets are chosen or reduced to have two classes since the305

study is on binary classification. Reduction is applied by selecting the most occurred two306

classes in the dataset. Number of features in the datasets varies between 8 and 1558 and307

number of instances varies between 351 and 581, 012. Table 1 introduces these datasets.308

Experiments are carried on a computer with the following specifications: an Intel Core i7-309

6700 processor with a CPU clock rate of 3.40 GHz and 16 GB main memory. Java is utilized310

to implement FSS part of the algorithms. Matlab 2015a is utilized for the classification part311

of the algorithms.312

In this study, a specialized random selection method is applied to generate training and313

test sets. For this purpose, 10 different training sets, and 10 test sets for each training314

set (100 test sets in total) are generated. First, proportions of each classes in the original315

dataset are calculated. Then, with regard to these proportions, training and test instances316

were randomly selected to meet the sizes given in Table 1. If an instance is in the training317

set, it is not included in any test set of that training set.318

Population size and number of generations are two important parameters that must be319

decided before running TLBO. Higher values provide higher accuracy results but also they320

cause excessive computation time. Investigation of a new individual requires massive amount321

Table 1: Specification of the datasets used in the experiments.

Dataset
Problem

ID
Number

of features
Actual number

of classes
Number

of instances
Size of each
training set

Size of each
test set

Covertype CT 54 7 581, 012 600 200
Mushrooms MR 22 2 8124 1300 200
Spambase SB 57 2 4601 600 200
Nursery NU 8 5 12, 960 400 200
Connect-4 Opening C4 42 3 67, 557 1200 200
Waveform WF 40 3 5000 400 200
Financial FI 93 2 17, 108 1000 200
Pima Indian Diabetes PM 8 2 768 268 200
Breast Cancer BC 9 2 699 199 100
Ionosphere IO 34 2 351 101 50
Wisconsin Breast Cancer WBC 30 2 569 169 80
Musk MU 168 2 6598 400 200
Internet Advertisements NA 1558 2 3279 400 200
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of time. In order to improve the overall performance, we keep the objective values of investi-322

gated individuals in a hash map and do not reevaluate the same individual. Summing it up,323

it is important to decide the most promising values for these parameters. In our previous324

study [38], we ran extensive tests interchanging population size and number of generations325

between 10 and 100. The study shows that, increase in population size affects computation326

time worse than increase in number of generations; because as population size gets larger,327

number of diverse individuals in the population and hence number of evaluations increase.328

The ratio of number of evaluations decreases in each generation, since the probability of329

generating same individuals gets higher after each generation. As a result, we decide to330

choose population size as 40 and number of generations as 60, as similar to that study.331

In order to see the effect of TLBO algorithm, initial, final and non-dominated solutions332

are presented in Figures 7, 8 and 9. Three datasets are selected to represent small, medium333

and large datasets according to their number of features (BC, MR and SB, respectively).334

In all these figures, initial population is randomly distributed, but the final population fits335

onto a pareto-like curve. Moreover, since we want to maximize accuracy and minimize the336

number of features, our ideal point can be represented as the point (1,1) and it can be seen337

from the results that, pareto-like curve converges to the ideal point. This is a process that338

individuals in the classroom improve through generations.339

Accuracy results obtained for every dataset using each of the proposed algorithms and340

machine learning techniques are given in Table 2 in a multiobjective manner. Only non-341

dominated solutions in the final iteration are given in this table. Moreover, execution times342

of the algorithms and the number of unique evaluations are also presented at the bottom of343

each table.344

Obtained results show that, MTLBO-ST tends to achieve single results like in a sin-345

gle objective optimization process, whereas non-dominated solutions of MTLBO-NS and346

MTLBO-MD fit to a pareto curve. On accuracy comparisons, MTLBO-NS could achieve347

higher values for the same number of features. On the other hand, MTLBO-ST dominates348

other two algorithms with its faster execution time. MTLBO-MD resembles MTLBO-NS in349

means of quality of solution set, and MTLBO-ST in means of execution time. As compared350

to MTLBO-NS, MTLBO-MD generates a similar solution set while keeping execution time351

considerably smaller for medium to large datasets. On the other hand, it requires longer ex-352

ecution time when compared to MTLBO-ST, but provides better solution sets. As a result,353

we can conclude that MTLBO-ST is a fast algorithm that provides single results with lower354

accuracy values, MTLBO-NS provides multiobjective solutions with higher accuracy values355

spending more amount of time and MTLBO-MD is an efficient algorithm that combines the356

good properties of the other two.357

With respect to the comparison of machine learning techniques used in this study, there358

is no strict winner. All techniques achieve similar accuracy values with small deviations.359

On execution time comparisons, however, LR requires less execution time and dominates360

the other two techniques. ELM and SVM cannot dominate each other in terms of execution361

time. SVM executes faster in small datasets, but its time requirement massively increases362

as datasets get larger.363

Table 3 presents classification results before and after FSS process is applied. For all364
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Figure 7: Distribution of TLBO-MD solutions on the BC dataset evaluated by LR, SVM, and ELM.
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Figure 8: Distribution of TLBO-MD solutions on the MR dataset evaluated by LR, SVM, and ELM.
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Figure 9: Distribution of TLBO-MD solutions on the SB dataset evaluated by LR, SVM, and ELM.
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Table 2: Solution sets of all FSS algorithms evaluated by all machine learning techniques for all datasets.

(bold values: dominant solution, Time: in seconds, Eval: # of unique evaluations.)

(a) Solution sets of the CT dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 0.743 - 0.743 0.743 0.609 0.743 - 0.609 0.609
2 - 0.752 0.753 0.752 0.754 0.754 0.640 0.640 0.640
3 - 0.764 0.764 - 0.763 0.760 - 0.655 0.654
4 - 0.767 0.767 - 0.767 0.767 - 0.669 0.663
5 - 0.770 0.770 - 0.771 0.771 - 0.677 0.677
6 - 0.772 0.772 - 0.772 0.771 - 0.680 0.681
7 - 0.773 0.773 - 0.773 0.773 - 0.683 0.681
8 - 0.774 0.773 - 0.775 0.774 - 0.684 0.682
9 - 0.774 0.774 - 0.775 0.774 - 0.686 0.683
10 - 0.775 - - 0.775 0.774 - - -
11 - 0.775 - - 0.775 - - 0.686 -
12 - 0.776 - - 0.776 - - - -
13 - 0.776 - - - - - - -
14 - 0.776 - - - - - - -
15 - 0.776 - - - - - - -
16 - 0.776 - - - - - - -
17 - 0.776 - - - - - - -

Time 192.2 6067.9 548.7 293.9 10943.4 1201.1 254.6 5556.6 983.4
Eval 1272 39192 4694 1253 33024 4756 1240 25103 4476

(b) Solution sets of the MR dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 - 0.763 0.763 - 0.750 0.750 0.985 0.985 0.985
2 0.897 0.905 0.905 0.867 0.899 0.899 - 0.989 0.988
3 - 0.937 0.937 - 0.932 0.932 - 0.990 0.990
4 - 0.940 0.940 - 0.946 0.946 - 0.992 -
5 - 0.949 0.949 - 0.956 0.956 - 0.992 -
6 - 0.952 0.950 - - - - - -
7 - 0.953 - - 0.956 - - - -
8 - 0.954 - - 0.958 - - - -
9 - - - - 0.960 - - - -
11 - - - - 0.960 - - - -

Time 27.9 1114.1 158.8 237.7 5262.3 985.5 57.3 1393.6 302.7
Eval 501 6440 2416 495 13654 2584 278 4158 1352
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(c) Solution sets of the SB dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 - - 0.782 - - 0.782 - 0.792 0.792
2 - - 0.835 - - 0.842 - 0.846 0.847
3 - 0.854 0.857 0.865 - 0.865 0.837 0.867 0.851
4 0.856 0.867 0.871 - 0.870 0.875 0.855 - 0.866
5 - 0.883 0.879 - 0.883 0.883 - 0.872 0.869
6 - 0.890 0.891 - 0.890 0.889 - 0.878 0.879
7 - 0.902 0.896 - 0.897 0.897 - 0.883 0.884
8 - 0.906 0.905 - 0.902 0.902 - 0.888 0.887
9 - 0.910 0.910 - 0.906 0.904 - 0.890 0.889
10 - 0.914 0.911 - 0.911 - - 0.894 -
11 - 0.915 0.913 - 0.912 0.910 - 0.896 -
12 - 0.917 - - 0.914 - - 0.899 -
13 - 0.918 0.915 - 0.915 0.911 - 0.901 -
14 - 0.919 - - 0.917 - - 0.903 -
15 - 0.920 - - 0.918 - - - -
16 - 0.920 - - 0.919 - - - -
17 - 0.921 - - 0.919 - - - -
18 - 0.921 - - 0.921 - - - -
19 - 0.922 - - 0.921 - - - -
20 - 0.922 - - 0.922 - - - -
21 - - - - 0.922 - - - -

Time 164.2 7543.7 426.1 420.0 12161.1 1268.2 381.9 12331.9 992.0
Eval 1116 43918 5411 1551 47411 5447 1895 39155 5083

(d) Solution sets of the NU dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Time 6.7 13.7 12.5 10.5 27.5 24.2 15.5 75.9 40.7
Eval 98 195 196 82 207 186 79 232 192
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(e) Solution sets of the C4 dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 0.729 0.729 0.729 0.730 - 0.729 0.731 0.730 0.730
2 - 0.746 0.746 - 0.737 0.737 - 0.746 0.744
3 - 0.755 0.755 - 0.746 0.746 - 0.753 0.753
4 - 0.764 0.764 - 0.757 0.757 - 0.763 0.762
5 - 0.772 0.772 - 0.764 0.758 - 0.768 0.765
6 - 0.778 0.777 - 0.772 0.772 - 0.776 0.776
7 - 0.785 0.784 - 0.781 0.780 - 0.781 0.778
8 - 0.791 0.791 - 0.787 0.787 - 0.787 0.783
9 - 0.796 0.796 - 0.795 0.793 - 0.792 0.789
10 - 0.802 0.797 - 0.800 0.800 - 0.797 -
11 - 0.806 0.799 - 0.805 0.802 - 0.798 -
12 - 0.811 0.799 - 0.811 0.802 - 0.801 0.792
13 - 0.815 - - 0.814 0.804 - 0.804 -
14 - 0.818 - - 0.818 - - - -
15 - 0.821 - - 0.821 - - - -
16 - 0.824 0.805 - 0.824 - - - -
17 - 0.827 - - 0.827 - - - -
18 - 0.828 - - 0.830 - - - -
19 - 0.829 - - 0.831 - - - -
20 - 0.830 - - 0.832 - - - -
21 - 0.830 - - 0.834 - - - -
22 - - - - 0.834 - - - -

Time 112.7 5638.5 431.6 427.9 52883.7 3454.8 178.8 9638.6 872.3
Eval 1315 39738 5218 972 41549 5043 862 28525 4322

(f) Solution sets of the WF dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 - 0.796 0.789 - 0.791 0.806 - 0.794 0.795
2 0.868 0.868 0.868 0.856 0.869 0.869 - 0.867 0.864
3 - 0.893 0.893 0.884 0.893 0.893 0.883 0.890 0.891
4 - 0.902 0.902 - 0.904 0.904 - 0.902 0.899
5 - 0.915 0.915 - 0.914 0.914 - 0.902 0.901
6 - 0.917 0.917 - 0.917 0.917 - 0.904 0.905
7 - 0.919 0.919 - 0.918 0.918 - 0.905 -
8 - 0.921 0.921 - 0.921 0.921 - 0.905 -
9 - 0.922 0.922 - 0.922 0.921 - - -
10 - 0.923 0.923 - 0.923 - - - -
11 - 0.923 - - 0.923 - - - -
12 - 0.924 - - - - - - -
13 - - - - 0.923 - - - -
14 - - - - 0.924 - - - -

Time 21.5 751.8 88.8 278.7 3720.3 696.6 154.0 3820.2 582.7
Eval 896 22758 3817 1418 19679 3783 765 12495 2933
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(g) Solution sets of the FI dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 0.966 0.966 0.966 0.966 - 0.966 0.966 0.966 0.966
2 - - - - - - - 0.966 0.966
3 - - 0.967 - - - - 0.966 0.966
4 - 0.967 - - - - - - -
5 - - - - - - - 0.967 -
8 - - - - 0.966 - - - -
9 - - - - 0.966 - - - -

Time 686.4 2172.2 702.8 3490.3 5382.9 4629.8 776.4 6904.6 1031.5
Eval 3339 11611 5332 2919 2014 5186 3650 36144 5334

(h) Solution sets of the PM dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 0.747 0.747 0.747 0.747 0.747 0.747 0.740 0.729 0.728
2 - 0.760 0.760 - 0.760 0.760 - 0.741 -
3 - 0.766 0.766 - 0.765 0.765 - - -
4 - 0.768 0.768 - 0.766 0.766 - - -
5 - 0.771 0.771 - 0.768 0.768 - - -
6 - - - - 0.769 0.769 - - -
7 - 0.771 - - - - - - -

Time 2.9 5.3 4.9 15.9 41.4 38.3 19.9 40.5 41.7
Eval 123 249 223 96 251 231 102 219 209

(i) Solution sets of the BC dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 0.927 0.927 0.927 0.926 0.926 0.926 0.924 0.925 0.925
2 - 0.953 0.953 - 0.955 0.955 - 0.956 0.955
3 - 0.963 0.963 - 0.965 0.965 - 0.962 0.961
4 - 0.963 0.963 - 0.968 0.968 - - -
5 - 0.963 0.963 - - - - - -

Time 2.9 8.8 7.2 13.2 52.2 45.5 21.0 61.8 47.4
Eval 148 456 352 119 464 389 134 387 301
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(j) Solution sets of the IO dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 - 0.816 0.816 - 0.811 0.811 - 0.818 0.816
2 - 0.872 0.872 0.848 0.864 0.864 0.900 0.899 0.896
3 0.875 0.876 0.876 - 0.873 0.873 - - -
4 - 0.883 0.882 - 0.878 0.878 - - -
5 - 0.888 0.886 - 0.888 0.884 - - -
6 - 0.893 0.886 - 0.893 0.888 - - -
7 - 0.896 0.887 - 0.896 - - - -
8 - 0.896 0.890 - - - - - -
9 - 0.901 - - 0.898 - - - -
10 - 0.902 - - 0.900 - - - -
11 - 0.906 - - 0.901 - - - -

Time 25.4 1195.8 131.6 70.4 2413.1 326.1 125.4 731.4 322.6
Eval 645 20632 2988 595 20889 2813 908 5225 2314

(k) Solution sets of the WBC dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

1 - 0.920 0.920 0.921 0.919 0.921 0.906 0.917 0.915
2 0.958 0.961 0.961 - 0.960 0.960 - 0.947 0.947
3 - 0.971 0.971 - 0.970 0.970 - 0.954 0.955
4 - 0.975 0.975 - 0.975 0.974 - - -
5 - 0.975 - - 0.976 0.976 - - -
6 - - - - 0.978 0.978 - - -
7 - - - - 0.978 - - - -
8 - - - - 0.979 - - - -
10 - - - - 0.979 - - - -

Time 23.9 157.4 54.1 67.2 1413.4 335.3 97.4 1064.8 419.1
Eval 760 6587 2307 576 12204 2763 639 6997 2685
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(l) Solution sets of the MU dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

3 - - - - - - - 0.858 -
4 - - - - - - - 0.869 -
5 - - - - 0.844 - - 0.889 -
6 - - - - 0.881 - - 0.892 -
7 - - - - 0.901 - - 0.894 -
8 - - - - 0.906 - - - -
9 - - - - 0.913 - - - -
10 - - - - 0.919 - - - -
11 - - - - 0.923 - - - -
12 - 0.891 - - 0.925 - - - -
13 - 0.901 - - 0.927 - - - -
14 - 0.906 - - 0.929 - - - -
15 - 0.910 - - 0.929 - - - -
16 - 0.913 - - 0.930 - - - -
17 - 0.916 - - 0.930 - - - -
18 - 0.918 - - 0.932 - - - -
19 - 0.919 - - 0.932 - - - -
20 - 0.920 - - 0.933 - - - -
21 - 0.921 0.907 - 0.934 - - - -
22 - 0.921 0.910 - - - - - -
23 - 0.922 0.912 - - - - - -
24 - 0.922 0.914 - - - - - 0.849
25 - 0.922 0.916 - - 0.897 - - 0.860
26 - 0.923 0.917 - - 0.904 - - 0.864
27 - - 0.918 - - 0.908 - - 0.866
28 - - 0.919 - - 0.911 - - -
29 - - - - - 0.915 - - -
30 - - - 0.907 - 0.917 - - -
31 - - - - - 0.918 - - -
32 - - - - - 0.920 0.843 - -
33 - - - - - 0.921 - - -
34 - - - - - 0.921 - - -
35 - - - - - 0.922 - - -
36 - - - - - 0.922 - - -
43 0.883 - - - - - - - -

Time 585.6 2410.8 931.2 715.6 16492.4 2494 687.8 7667.9 1725.8
Eval 828 16161 2399 1052 34855 4099 948 10828 2419
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(m) Solution sets of the NA dataset.

# of
features

LR SVM ELM

ST NS MD ST NS MD ST NS MD

246 - 0.998 - - - - - - -
247 - 0.998 - - - - - - -
391 - - - - 0.999 - - - -
479 - - - - - - - 0.999 -
515 - - 0.997 - - - - - -
516 - - 0.997 - - - - - -
517 - - 0.998 - - - - - -
520 - - 0.998 - - - - - -
521 - - - - - 0.999 - - -
522 - - - - - 0.999 - - -
532 - - - - - - - - 0.999
573 - - - 0.998 - - - - -
593 0.997 - - - - - - - -
619 - - - - - - 0.998 - -

Time 9920.8 62066 24001.3 3230.8 12778.4 6551.8 1733.5 4783.7 3276.2
Eval 1847 13790 4873 1693 7648 3570 1673 4568 3065

datasets, classification accuracy increases considerably and the number of features reduces365

after selecting the most valuable subset of features. Specifically, WBC dataset has a classi-366

fication accuracy of 0.924 when all 30 features are included in classification process. After367

finding the most valuable subset of features by applying TLBO algorithm, new instances368

can be classified with an accuracy value of 0.975 by using only 4 features of the dataset.369

The results of the experiments show that applying multiobjective TLBO algorithm improves370

classification performance in terms of both objectives, accuracy and minimum number of371

features.372

In order to verify the efficiency of the multiobjective TLBO algorithms, their results are373

compared with state-of-the-art NSGA-II, PSO, TS, GS, and SS based algorithms in Table 4.374

Table 3: The effect of feature subset selection on classification performance.

Dataset
ID

Before FSS After FSS

accuracy # of features accuracy # of features

CT 0.761 54 0.774 9
MR 0.937 22 0.950 6
SB 0.893 57 0.915 13
NU 1.000 8 1.000 1
C4 0.820 42 0.805 16
WF 0.893 40 0.923 10
FI 0.909 93 0.967 3

PM 0.762 8 0.771 5
BC 0.954 9 0.963 3
IO 0.812 34 0.890 8

WBC 0.924 30 0.975 4
MU 0.877 168 0.926 26
NA 0.993 1558 0.998 520
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In this table, bold results represent domination and underlined texts indicate non-dominated375

results. If two datasets find exact same solutions, both are marked equally. The results show376

that TLBO finds equivalent solutions with NSGA-II. They find the same exact solutions in377

7 datasets, TLBO dominates in 2 datasets and is dominated in the remaining 2 datasets.378

TLBO, on the other hand, outperforms all other algorithms. TLBO dominates the PSO379

algorithm in 8 datasets, and generates solutions that are non-dominated for the remaining380

3 datasets. We have the results of only 7 datasets when TS and GS based algorithms are381

used, and TLBO dominates in 6 of each and finds non-dominated solutions in only 1 of382

them. Similarly, only 4 of our datasets match with the datasets used in SS algorithms, and383

TLBO dominates in all of these datasets.384

385

Discussion386

Consequently, we can evaluate the proposed algorithms from different perspectives.387

These algorithms are robust because they provide stable and high quality accuracy results388

that do not change more than 1% at each run. These algorithms can be used for any classi-389

fication problem in a multiobjective way. The multiobjective property is important because390

it makes these algorithms flexible. One of the objectives is to reduce the size of the problem391

by eliminating redundant and/or unrelated features which is very beneficial for big data392

applications. The proposed algorithms achieve high quality results with faster execution393

times. Crossover and mutation operators are carefully designed to generate diverse new394

candidate solutions and this is good for both the convergence speed and solution quality of395

the optimization process. In addition to having reasonable execution times, the algorithms396

are effective in producing good quality solutions. Crossovers and mutation operators always397

generate valid solutions. For the datasets that have more than 100 features the FSS problem398

becomes very hard, and it takes exponentially more time to analyze these datasets with too399

many features. The same problem is faces with each metaheuristics since the main purpose400

of the metaheuristic algorithms is dealing with exponentially increasing execution time prob-401

lem for datasets with a large number of features. The proposed algorithms eliminate the402

parameter setting issues for the crossover and mutation operators, but the population size403

and the maximum number of generations parameters must still be carefully tuned for these404

algorithms. Increasing the number of generations may not always provide better results even405

though execution times will be increased significantly. As it is seen for the other population406

based algorithms such as PSO and genetic stagnation is always a critical problem that must407

be considered during optimization.408
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6. Conclusion409

In this study, we propose three multiobjective TLBO algorithms (Multiobjective TLBO410

with Scalar Transformation (MTLBO-ST), Multiobjective TLBO with Non-dominated Se-411

lection (MTLBO-NS) and Multiobjective TLBO with Minimum Distance (MTLBO-MD))412

for the FSS-BCP. MTLBO-ST is the fastest of these three algorithms, however, it pro-413

vides small number of non-dominated solutions. MTLBO-NS examines an extensive search414

space and yields to a non-dominated solution set with more individuals and requires massive415

amount of time to execute. MTLBO-MD generates solution sets similar to MTLBO-NS in416

a considerably less amount of time, like MTLBO-ST. A more formal comparison of these417

proposed algorithms are given in Table 5. Three machine learning techniques, LR, SVM,418

and ELM, are used to evaluate the performance of the proposed multiobjective TLBO algo-419

rithms. Among these techniques, LR is more preferable due to its time efficiency, since all of420

them achieve similar accuracy results. Proposed best performing multiobjective algorithm,421

MTLBO-MD with LR, is compared with state-of-the-art algorithms, NSGA-II (genetic al-422

gorithm), Particle Swarm Optimization (PSO), Tabu Search (TS), Greedy Search (GS), and423

Scatter Search (SS). Results show that, our proposed algorithm achieves similar results with424

NSGA-II, while performing better than PSO, TS, GS, and SS algorithms.425

A possible future work can be testing multiobjective TLBO algorithms on different426

datasets and comparing their results with some other state-of-the-art feature selection algo-427

rithms. Moreover, other machine learning techniques such as deep learning can be applied428

in classification phase of the algorithm. Finally, a more intelligent initial population method429

can be employed rather than randomization.430
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Table 5: Overall comparison of the proposed algorithms.

MTLBO - ST MTLBO - NS MTLBO - MD
Teacher
selection

Teacher selection is handled
by combining two fitness
values into a scalar value
and selecting the highest
scalar value as teacher.

Every non-dominated indi-
vidual is selected as teacher
at each generation. All
teachers teach their stu-
dents separately, and even-
tually best students among
all students are selected as
the next generation.

Only the non-dominated
solution that is closest to
the ideal point (1,1) is se-
lected as teacher.

Execution
time

Executes fastest. Executes slowest. It has an average execu-
tion time, that is closer to
MTLBO-ST than MTLBO-
NS.

Exploration Number of unique evalua-
tions is small, and hence, its
search space exploration is
limited.

Number of unique evalua-
tions is large, which means
it explores the search space
deepest.

Number of unique evalua-
tions is medium. It explores
the search space deeper
than MTLBO-ST, but not
as deep as MTLBO-NS.

Feature
selection
perfor-
mance

It reduces number of se-
lected features; however, it
yields to a single solution
and generally does not find
a non-dominated solution
set.

Reduces number of selected
features while converging to
a large non-dominated set.

Reduces number of se-
lected features, and
finds a medium sized
non-dominated set. Its
performance is better than
MTLBO-ST, but not as
good as MTLBO-NS.

Accuracy
perfor-
mance

Accuracy is lower than
other two algorithms.

It generally finds same
accuracy values with
MTLBO-MD, but it finds
better results on large
datasets.

It finds same or close
enough accuracy values
with MTLBO-NS.

Overall
view

MTLBO-ST provides single
solution with a lower accu-
racy value, but in a small
amount of time. It may be
used when fast analysis is
important.

MTLBO-NS provides a
large non-dominated so-
lution set with higher
accuracy values; giving us
a chance to choose optimal
settings for a specific prob-
lem. On the other hand,
its execution time is very
high, especially for large
datasets.

MTLBO-MD compromises
both non-dominated set
size and accuracy as com-
pared to MTLBO-NS, but
are both better than the
MTLBO-ST algorithm. Its
execution time is larger
than MTLBO-ST, but
smaller than MTLBO-NS.
It may be the best option
since it finds acceptable
solutions in an acceptable
amount of time.
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