
Hybrid teaching-learning-based optimization algorithms
for the Quadratic Assignment Problem

Tansel Dokeroglu*

Computer Engineering Department of Turkish Education Association University, Ankara/Turkey

Abstract

Teaching-Learning-Based Optimization (TLBO) is a novel swarm intelligence metaheuristic that is reported as an
efficient solution method for many optimization problems. It consists of two phases where all individuals are trained
by a teacher in the first phase and interact with classmates to improve their knowledge level in the second phase. In
this study, we propose a set of TLBO-based hybrid algorithms to solve the challenging combinatorial optimization
problem, Quadratic Assignment. Individuals are trained with recombination operators and later a Robust Tabu Search
engine processes them. The performances of sequential and parallel TLBO-based hybrid algorithms are compared
with those of state-of-the-art metaheuristics in terms of the best solution and computational effort. It is shown exper-
imentally that the performance of the proposed algorithms are competitive with the best reported algorithms for the
solution of the Quadratic Assignment Problem with which many real life problems can be modeled.

Keywords: Teaching-learning, hybrid algorithm, robust tabu, quadratic assignment, stagnation

1. Introduction

The QAP is a mathematical model for the location of indivisible economic activities and it was first introduced by
Koopmans and Beckmann (1957). Variations of the QAP have been studied over the years in the domains of telecom-
munications, transportation systems, and signal processing (Burkard, Karisch, & Rendl, 1991). Typewriter keyboard
design, backboard wiring (Steinberg, 1961), layout design (Rossin, Springer, & Klein, 1999), turbine balancing (Pfis-
ter, 1998), scheduling (Lim, Yuan, & Omatu, 2000), and data allocation (Adl, & Rankoohi, 2009) are some instances
of the problems that have been successfully modeled as a QAP. The service allocation problem with the purpose of
minimizing the container re-handling operations at a shipyard (Cordeau, Gaudioso, Laporte, & Moccia, 2007), trav-
elling salesman, bin-packing, maximum clique, linear ordering, and the graph-partitioning problem are among the
applications of the QAP (Pentico, 2007).

In its simplest form, the QAP is the problem of assigning facilities to locations with a cost of transportation. The
objective is to find an allocation such that the total cost of allocating and operating all facilities is minimized. The
QAP can be formally modeled by using three n×n matrices, A, B, and C.

A = (aik) (1)

where aik is the flow amount from facility i to facility k.

B = (b jl) (2)

where b jl is the distance from location j to location l.

∗Corresponding author
Email address: tansel@ceng.metu.edu.tr (Tansel Dokeroglu*)

Preprint submitted to Computers & Industrial Engineering Journal September 22, 2016

C = (ci j) (3)

where ci j is the cost of placing facility i at location j.
The Koopmans-Beckmann form of the QAP can be written as:

minφεS n (
n∑

i=1

n∑
k=1

aikbφ(i)φ(k) +

n∑
i=1

ciφ(i)) (4)

where Sn is permutation of integers 1,2 ,..., n. Each term aikbφ(i)φ(k) is the transportation cost from facility i at
location φ (i) to facility k at location φ (k). Each term ciφ(i) is the total cost for installing facility i, at location φ(i), plus
the transportation costs to all other facilities k, installed at locations φ(1), φ(2) ,..., φ(n) (the range of the indexes i, l,
j, k is 1,...,n). The QAP (A, B is an instance where A, B, and C are input matrices given at Equations 1,2,3. If there is
no C term, we can write it as a QAP (A, B). Lawler introduced a four-index cost array D = (di jkl) instead of the three
matrices and obtained the general form of the QAP as (Lawler, 1963):

minφεS n (
n∑

i=1

n∑
k=1

diφ(i)kφ(k)) (5)

The relationship with the Koopmans-Beckmann problem is:

di jkl = aikb jl(i, j, k, l = 1, 2, ..., n; i , k or j , l) (6)

di ji j = aiib j j + ci j(i, j = 1, 2, ..., n) (7)

Although small QAP instances can be solved with exact solution methods, the optimal solutions for large in-
stances cannot be found due to the computational limitations. However, metaheuristic approaches are robust tools
with their ability to produce high-quality solutions for such conditions. Genetic Algorithms (GA) (Tate, & Smith,
1995), Simulated Annealing (Connolly, 1990), Neural Networks (Calzon-Bousono, 1995), GRASP (Li, Pardalos, &
Resende, 1994), Robust Tabu Search (RTS) (Taillard, 1991), and Ant Colony Optimization (Gambardella, & Taillard,
& Dorigo, 1999) are some of the well-known of these methods that have been successfully applied to the QAP.

Heuristic-based methods have different techniques ranging from simple local searches to complex learning pro-
cesses. They guide the search strategically and use mechanisms to avoid becoming stuck into a local optimum.
Metaheuristics such as GA (Holland, 1975; Goldberg, 1989; Dokeroglu, & Cosar, 2014), Ant Colony Optimization
(ACO) (Dorigo, & Caro, 1999), Particle Swarm Optimization (PSO) (Kennedy, & Eberhart, 1995), Differential Evo-
lution (DE) (Storn, & Price, 1997), Harmony Search (HS) (Geem, Kim, & Loganathan, 2001), Shuffled Frog Leaping
(SFL) (Eusuff, & Lansey, 2003), Artificial Bee Colony (ABC) (Karaboga, & Basturk, 2007), Gravitational Search
Algorithm (GSA) (Rashedi, Nezamabadi-Pour, & Saryazdi, 2009), and Grenade Explosion Method (GEM) (Ahrari,
& Atai, 2010) have been applied to many engineering optimization successfully.

Teaching Learning Based Optimization (TLBO) has been recently introduced as a novel metaheuristic that is
inspired by the knowledge passing mechanism of teachers and learners in a classroom (Rao, Savsani, & Vakharia,
2011; Rao, Savsani, & Vakharia, 2012a; Rao, Savsani, & Balic, 2012b; Rao, & Patel, 2012a; Rao, & Patel, 2012b;
Rao, & Patel, 2012c; Rao, & Patel, 2012d; Rao, & Patel, 2012e). Learners are first trained by a knowledgable teacher
and later they continue improving their knowledge level through interactions between classmates. The TLBO has
an algorithm-specific parameterless concept that does not require any parameters to be optimized. Population size,
number of generations, elite size, etc. are the common control parameters that need to be tuned by all of the population
based metaheuristics (including TLBO). However, in addition to these parameters, PSO uses inertia weight, social and
cognitive parameters, GA uses crossover and mutation rate, ABC uses number of bees, HS uses harmony memory
consideration rate, pitch adjusting rate, and number of improvisations. The optimal tuning of these parameters is
crucial for the optimization that either it may increase the computational effort or yield local optimal solutions. On
the other hand, TLBO requires only the common control parameters to be tuned.

Remarkable results have been reported about the performance of TLBO in comparison with the other meta-
heuristics on different constrained benchmark functions, constrained mechanical design problems (Rao, Savsani, &

2

Vakharia, 2011), and on continuous non-linear numerical optimization problems (Rao, Savsani, & Vakharia, 2012a)
in terms of computational efforts and solution quality. Although there are still ongoing discussions about its perfor-
mance and promises, this success of the TLBO has drawn our attention and we modeled the solution of the challeng-
ing combinatorial optimization problem, QAP, with TLBO (Waghmare, 2013; Črepinšek, Liu, & Mernik, 2012). In
our proposed hybrid algorithms (TLBO-RTS), individuals are trained with recombination operators by using TLBO
methods before they are given to a RTS engine. The recombination operators do not require any parameter settings
in accordance with the parameterless optimization concept of TLBO. There is also no need to apply an additional
selection mechanism such as roulette wheel, tournament, or truncation. It is shown experimentally that proposed
hybrid TLBO-RTS algorithm is an effective optimization approach for the QAP compared to the other state-of-the-art
metaheuristics.

In section 2, state-of-the-art solution metaheuristics for the solution of the QAP are given. A detailed information
about the TLBO optimization method is presented in section 3. RTS (used in the hybrid algorithms) is presented
in section 4. Recombination operators and proposed hybrid TLBO-based algorithms are explained in section 5.
The setup of the experimental environment, obtained results, and comparison with state-of-the-art metaheuristics are
presented in section 6. Concluding remarks are provided in the last section.

2. Related Work

Several algorithms have been proposed for both exact and approximate solutions of the QAP. Exact algorithms are
limited to solving small data sets of the QAP with massively parallel computers, whereas metaheuristics can provide
(near-)optimal solutions within reasonable optimization times for larger problem instances.

Branch and Bound (BB) algorithms are the most elegant exact solution approaches to solve the QAP (Lawler,
1963; Carraresi, & Malucelli, 1992; Gilmore, 1962; Pardalos, Rendl, & Wolkowicz, 1994). Until 1990 an exact solu-
tion of the QAP instances of size 20 was not possible. Mautor, & Roucairol (1994) gave exact solutions for ’nug16’,
’els19’, and size-20 problem instances. Clausen and Perregaard (1997) solved ’nug20’ with a parallel BB algorithm.
Marzetta & Brungger (1995) solved ’nug25’ instance by using parallel dynamic programming. Anstreicher, Brixius,
Goux, & Linderoth (2002) developed a convex quadratic programming relaxation within a BB algorithm and this
algorithm provided an exact solution for ’nug25’ instance after 13 days of CPU time using sequential processing.
Hahn, & Krarup, (2001) solved ’kra30a’ after 99 days of work with a sequential workstation. Nystrom (1999) gave
the optimal solution for ’ste36b’ and ’ste36c’ instances after 200 days of work in a distributed environment. Anstre-
icher, Brixius, Goux, & Linderoth, (2002) reported the exact solution of ’nug30’, which required seven days with 650
processors (seven years of computation on a single CPU).

RTS, is one of the best known algorithms that can produce high quality solutions (Taillard, 1991). James, Rego,
& Glover (2006) introduced a multi-start TS algorithm (JRG-DivTS). When the search stagnates, JRG-DivTS restarts
from a diversified copy of the best solution found up to that point. Two categories of multi start TS methods are de-
veloped. The first category searches by modifying the so-called continuous diversification and describes a Restricted
Descent TS (RDTS) and a Tabu Tenure Modification TS (TTMTS) which alter the tabu list matrix and tenure parame-
ters. The second category implements a discontinuous diversification TS process and contains the Random Restart TS
(RRTS). The performance of the second category methods are reported to be better than the first category and DivTS
is used to build the proposed Cooperative Parallel TS (CPTS) algorithm. Misevičius, A. (2012) proposes an effective
implementation of the heuristic algorithm based on an Iterated Tabu Search (ITS) paradigm recently.

Successful algorithms such as the Ant Colony Optimization (Gambardella, & Taillard, & Dorigo, 1999; Stützle,
& Dorigo, 1999), Simulated Annealing (Connolly, 1990), and Neural Networks (Chakrapani, & Skorin-Kapov, 1992)
have been proposed. The combination of population based metaheuristics and TS shows a hybrid behavior that
provides competitive high quality solutions. The solution provided by TS procedure is combined with a so-called
RTS (Taillard, 1991) by Misevičius (2005) while perturbing the solution via diversification operators. This algorithm
effectively explores symmetric and asymmetric instances given by Taillard (Burkard, Karisch, & Rendl, 1991). Hybrid
algorithms which exploit RTS like sequential metaheuristics produce high quality solutions in combination with GA
variants (Misevičius, 2005). Ahuja, Orlin, & Tiwari, (2000) and Drezner (2005) have successfully incorporated GA
variants into TS.

3

Zhang et al., (2010) apply two formulation reductions to the QAP. Xia (2010) proposes a Lagrangian Smooth-
ing Algorithm (LagSA), where the continuation subproblems are solved by the truncated FrankWolfe algorithm.
Fescioglu-Unver et al. (2011) address the application of the principles of feedback and self-controlling software to
the TS algorithm with Self Controlling TS (SC-Tabu) algorithm. Duman et al. (2012) propose a new nature inspired
metaheuristic approach based on the V flight formation of the migrating birds which is proven to be an effective
formation in energy saving (Migrating Birds Optimization (MBO) algorithm).

The granularity of the solution space, the repetitive behavior of the metaheuristic methods, and the solution com-
plexity make parallelization an attractive alternative for the QAP (Dokeroglu, Tosun, & Cosar, 2012; Luque & Alba,
2011; Kumar, 2002). Crainic and Toulouse (2003) illustrate the differences and the design choices of the parallel
metaheuristic algorithms. By looking at the work assigned to processors, they grouped these algorithms into three
types. In Type 1, parallelization is low and the master first assigns works to each processor, then collects the results.
Type 2 divides decision variables among processors , dramatically reducing the search space assigned to each proces-
sor. The resulting solutions are combined by a master process. Type 3 is a multi-heuristic parallel model in which
each processor executes a different heuristic. This model uses cooperative strategies that make use of information
exchange. In this model, different heuristics can be employed at each processor.

If we inspect the parallel algorithms from the perspective of Crainic, & Toulouse, (2003), Taillard proposed an
example of Type 1 algorithms (Taillard, 1991). He studied the subdivision of the neighborhood exploration between
processors, represented by a permutation. The swap of two facilities to each other’s previously occupied location
is subdivided between processors. After calculating the costs, each processor sends its best move to all processors
and the others perform the global best move on their copy of the permutation. Chakrapani and Skorin-Kapov (1992)
examined a similar algorithm implemented on a single instruction-multiple data (SIMD) computer. James et al. (2005)
developed another member of this category, the path-relinking algorithm which applies path-relinking to solutions in
a global reference set. There is no known Type 2 algorithm for the QAP.

Taillard proposed a parallel Type 3 TS algorithm that uses different initial solutions (Taillard, 1991). There is no
migration of solutions between the processors and when all threads complete, the best solution is returned. Talbi et al.,
(1997) proposed a multi-heuristic parallel TS with different initial starting states. Talbi and Bachelet (2006) proposed
both an independent TS and a cooperative multi-threaded metaheuristic, COSEARCH, which combines the TS results
with a GA for diversification purposes. Tsutsui and Fujimoto (2009) proposed a new parallel scheme using parallel
graphic processing units (GPUs) to solve the QAP by combining the computational power of parallel machines with
GAs for solving instances up to 40 locations. James, Rego, & Glover (2009) introduced a cooperative parallel TS
algorithm (CPTS) for the QAP. Czapiňski, M. (2013) proposed a Parallel Multistart Tabu Search (PMTS) running
many Tabu Search instances on a GPU using CUDA.

3. Teaching-learning-based optimization

When we consider two teachers that teach a subject to the same merit level learners in two different classes, we
can see that they exhibit varying successes in terms of teaching. The main difference between them is that a good
teacher produces a better average achieved merit levels for the learners. Learners also acquire knowledge through
interaction with their classmates. TLBO is based on this teaching process. A mathematical formulation is prepared and
implemented for TLBO based optimization in (Rao, Savsani, & Vakharia, 2011; Rao, Savsani, & Vakharia, 2012a).
The teacher is the most knowledgeable person in the population, so the best learner is employed as a teacher. The
teacher disseminates knowledge among learners, which increases the knowledge level of the class and helps learners
to get good grades. A teacher increases the average success of the class in accordance with his teaching capability,
thereby increasing the level of learners. Teacher’s success is measured by average knowledge level achieved by
students in the class which is determined by quality of teaching as well as the learners’ quality. Teacher works to
improve class quality and when improvement stops, assigning a new and better quality teacher may be necessary to
achieve even higher class quality. The quality of the students is judged from the mean value of the population. Teacher
puts effort in order to increase the quality of the students and at some stage the students may require a new teacher, of
superior quality than themselves. Therefore, a new teaching process will start with a new teacher.

Like other nature-inspired algorithms, TLBO is also a population-based method that uses the solutions presented
by individuals search for the global optimum. The population in TLBO is considered as a class of students and each

4

individual in the class has a fitness value. The teacher is the individual with the best fitness value. TLBO consists of
two phases, teacher phase and learner phase.

3.1. Teacher phase
Teacher quality determines the eventual achieved class quality. A teacher can increase class level only up to his

own level and the capability of the class to learn also affects the level that a class can attain. This process depends on
many factors. Let Mi be the mean and Ti be the teacher at any iteration i. Ti will try to move mean Mi towards its
own level, so that the new mean will be Ti designated as Mnew. The solution is updated according to the difference
between the existing and the new mean given by:

Di f f erence Meani := ri(Mnew − TF Mi) (8)

where TF is a teaching factor that decides how the mean value will be changed by a teacher, and ri is a random
number in the range [0, 1]. The value of TF can be either 1 or 2, which is again a heuristic step that is decided
randomly with equal probability as TF = round[1 + rand(0, 1){2-1}].

This difference modifies the existing solution according to the following expression:

Xnew,i := Xold,i + Di f f erence Meani (9)

3.2. Learner phase
Learners increase their knowledge through input from the teacher and interaction between classmates. A learner

interacts randomly with other learners with group discussions, presentations, formal communications, etc. A learner
learns new things if the other classmate has more knowledge than him or her. A random classmate is selected from
the population and this selected classmate trains his friend. If the resulting individual is better than the former one it is
replaced with the new generated individual (see Algorithm 1).The modification of the learners for randomly selected
two learners where Xi , X j is expressed as:

i f (Xi < X j) then Xnew,i := Xold,i + ri(Xi − X j) (10)

i f (Xi > X j) then Xnew,i := Xold,i + ri(X j − Xi) (11)

4. Robust Tabu Search

TS starts with a steepest descent algorithm and continues exploring with upward and downward moves towards the
solution. Earlier moves affect the future moves and a tabu list prevents moving in a reverse direction for a certain
number of moves. This way the process is forced to search through unexplored areas. When the search process gets
stuck in a local minimum, it tries to find a better solution by escaping from it, even if it means moving to a worse
solution. Moves that force the search back into a local minimum are not allowed by the tabu list.

TS has an adaptive memory to explore the search space and uses this memory to forbid returning to recently visited
solutions. Variants of TS use different strategies such as diversification and intensification to focus on more promising
search regions. Changing the tabu list size is the basic strategy. A smaller size tabu list enables the search in and around
local minima, whereas bigger lists will help the search to escape from the local minima. Several aspiration criteria
can be used with tabu restrictions to make a decision about a particular move. Taillard’s RTS has an effective short-
term memory with multiple-levels of aspiration criteria. Although the short-term memory is adequate for high-quality
solutions, the longer term memory components have promising results. There are several TS algorithms exploring
intensification and diversification strategies with a variety of parameter settings (Kelly, Laguna, & Glover, 1994;
Laguna, Marti, & Campos, 1999). The long-term memory generally keeps track of the frequency of the components
that occur in high-quality solutions. For long-term intensifications, components with a high frequency are selected for
future searches. Diversifications can eliminate these components so that the search can move into unexplored regions.

5

Algorithm 1: TLBO

1 generate population(population);
2 calculate fitness of individuals (population);

3 for (k:=1 to number of generations) do
4 for (i:=1 to number of individuals) do

5 /* Learning from Teacher */

6 TF := round (1 + r);
7 Xmean:= calculate mean vector (population);
8 Xteacher:= best individual (population);
9 Xnew := Xi + r(Xteacher − (TF Xmean));

10 if (Xnew is better than Xi) then
11 Xi := Xnew;

12 /* Learning from Classmates */

13 j:=select random individual from (population);
14 if (Xi is better than X j) then
15 Xi,new := Xi + r(Xi − X j);
16 else
17 Xi,new := X j + r(X j − Xi);

18 if (Xi,new is better than Xi) then
19 Xi := Xi,new;

20 show the best individual(population);

RTS seeks a neighbor solution with the best evaluation. This evaluation forces the choice of a move that improves
the objective function most. In order to avoid returning to the local optimum just visited, the reverse moves are
forbidden (tabu list forbids the moves). There may be some moves exempt by the tabu criterions. These moves may
lead to better solutions. Aspiration criterion is introduced to allow tabu moves whenever a move may have a chance
to come up with a better result. Moreover, RTS uses tabu list size and number of failures as parameters. Number
of failures define the range in which no improving solution is found in terms of number of iterations. According to
Taillard, allowing more iterations provides better results (see Algorithm 2). Our proposed hybrid algorithms use RTS
in its decision phase and we use the optimal RTS parameters set by Taillard (1991).

Exchanging the previous locations of two facilities with each other is an efficient way to generate new permutations
for the neighborhood relations of the QAP. The computational simplicity of the swap makes it very appropriate when
compared with the other larger exchange methods. In Taillard’s RTS, these two-exchange moves save great amount of
execution time. RTS uses a matrix to store the costs of each swap that will be executed in the current permutation and
these costs are added to obtain the cost value of the new permutation. The fast evaluation of the moves is an important
issue that contributes to the efficiency of the search.

5. Proposed Hybrid TLBO-RTS Algorithms

In this section, we give information about the sequential and parallel hybrid TLBO (TLBO-RTS) algorithms we
propose. TLBO-RTS has two phases where TLBO constitutes the first phase and the second phase, RTS, explores the
solution space of each individual that is produced by TLBO iterations.

5.1. Main characteristics of the algorithms
The most important factor of TLBO is that it provides an algorithm-specific parameterless optimization, which

was the main goal of our study to develop such a combinatorial algorithm for the QAP (Rao, Savsani, & Vakharia,

6

Algorithm 2: Robust Tabu Search Algorithm (Taillard, 1991)

1 Authorized: If a move is not tabu, it is authorized.
2 Aspired: Allow tabu moves if they are decided to be interesting.
3 Tabu List: A list to forbid reverse move.
4 Neighbor: Each location in the permutation is considered as neighbor.

5 RTS (FLOW, DIST, MaxIter, BestPerm, MinSize(<n×n/2), MaxSize(<n×n/2), Aspiration(>n×n/2));
6 TABU LIST = {};
7 CurCost = QAP Cost(BestPerm);
8 CurSol = BestPerm;
9 Delta[i][j] = ComputeDelta(); /* i = 0,...,n, j = 0,...,n */

10 TABU LIST[i][j] = - (n×i+j); /* i = 0,...,n-1, j = 0,...,n-1 */

11 for (iteration = 1; iteration < MaxIter; iteration++) do
12 i retained = infinite;
13 MinDelta = infinite;
14 Already Aspired = false;

15 for (each Neighbor (i, j)) do
16 current1 = TABU LIST[i][CurSol[j]];
17 current2 = TABU LIST[j][CurSol[i]];
18 Authorized = (current1 < iteration) ‖ (current2 < iteration);
19 Aspired = (current1 < iteration-Aspiration)‖ (current2 < iteration-Aspiration)‖ (CurCost + Delta[i][j] <

BestCost);
20 if ((Aspired && Already Aspired) ‖ (Aspired && Delta[i][j] < MinDelta) ‖
21 (!Aspired && !Already Aspired && Delta[i][j] < MinDelta && Authorized)) then
22 i retained = i;
23 j retained = j;
24 MinDelta = Delta[i][j];
25 if (Aspired) then
26 Already Aspired = true;

27 if (i retained != infinite)) then
28 SWAP(CurSol[i retained], CurSol[j retained]);
29 CurCost = CurCost + Delta[i retained][j retained];
30 TABU LIST[i retained][CurSol[j retained]] = iteration + getRandom(MinSize, MaxSize);
31 TABU LIST[j retained][CurSol[i retained]] = iteration + getRandom(MinSize, MaxSize);
32 if (CurCost < BestCost) then
33 BestCost = CurCost;

34 UPDATE MOVE COSTS(FLOW, DIST, CurSol, Delta, i, j, i retained, j retained);

7

2011; Rao, Savsani, & Vakharia, 2012a; Waghmare, 2013). The common control parameters such as the number of
individuals and generations are still needed to be set optimally by our algorithms as they are needed by all of the
population based algorithms.

Recombination operators are efficiently used tools to pass the properties of the selected learners to the newly gen-
erated solutions (Goldberg, 1989; Tosun, Dokeroglu, & Cosar, 2013). The average mean value of individuals in the
population can be improved with the properties of a teacher by using recombination operators. The recombination
operators that work without any parameter settings are efficient tools to provide this feature of the TLBO. We have
redesigned three conventional recombination operators to get rid of setting any parameter (the recombination opera-
tors do not need any additional parameters such as crossover rate (Holland, 1975)). These parameters are randomly
selected. We have used three different recombination operators in the algorithms, Order Based Recombination opera-
tor (OBX), Cohesive Recombination operator (COHX), and Swap Path Recombination operator (SPX) (Ahuja, Orlin,
& Tiwari, 2000; Drezner, 2003). SPX starts its process from a random starting point, OBX provides random number
of facilities to pass to the learner, and COHX selects a random starting point to train the learner. We have neither
defined nor tuned any additional parameters for a recombination operator when they are training the learners. In this
sense, we can say that our proposed hybrid algorithms work with an algorithm-specific parameterless design in the
TLBO phase. The individuals are first trained by a teacher (the fittest individual in the population) and later, they
are trained by a randomly selected classmate by using recombination operators through generations. Therefore, we
do not use any selection mechanism to train the learners either. Teacher trains all of the learners and learners train
each other by a mechanism that randomly couples them. In GAs, this procedure goes on with selection mechanisms
such as roulette-wheel, truncation, and tournament whereas, in TLBO-based algorithms all of individuals are trained
by a teacher (fittest individual in the population) and random interactions of the learners between themselves (see
Algorithm 3).

TLBO-RTS algorithm removes duplicate solutions in the classroom with randomly generated individuals as it is
implemented in previous TLBO studies (Rao, Savsani, & Vakharia, 2011; Rao, Savsani, & Vakharia, 2012a) and
the individuals are not eliminated by the new solutions unless new individuals are better. An additional Stagnation
Prevention Procedure (SPP) is also proposed for the developed TLBO-RTS algorithms.

5.2. Solution representation and recombination operators
The representation of an individual is presented in Figure 1. The facilities are located on an array in accordance

with the order of the sites. In the given example, facility 4 is placed at location 3.
Mutation is an operator that swaps the locations of two facilities. More than one interchange can be applied to the

individual. In our algorithms we swap two facilities in a mutation operator. The facilities are randomly selected to
produce new solutions (see Figure 2).

Swap Path Recombination operator (SPX) starts from a random facility of the teacher and examines all the fa-
cilities of the learner (Ahuja, Orlin, & Tiwari, 2000). If the facilities are the same it moves to the next facility, else
it performs a swap of two facilities and so that the current positions of the teacher and learner become the same. If
the new generated learner has a better fitness value it takes the place of the current learner. The facilities in the two
resulting solutions are considered starting from the next position. The best solution obtained serves the new learner.
The illustrative example of SPX is shown in Figure 3.

Order Based Recombination operator (OBX) preserves the relative order of facilities in the teacher solution. A
number of facilities are randomly selected from the teacher and copied to the new learner. The other facilities are
copied from the learner in their original order. Figure 4 shows how OBX recombination operator works (Lawrence,
D. 1991).

Cohesive Recombination operator (COHX) is introduced by Drezner as an original and efficient recombination
operator (Drezner, 2003). A median distance value is evaluated for a randomly chosen pivot value in the teacher (7 is
the pivot in Figure 5) and a distance matrix is constructed. Sites closer than the median value to the pivot value are
assigned from the teacher (Median value is 2 in the example). All other sites are assigned from the learner.

5.3. Stagnation Prevention Procedure (SPP)
Heuristics for the combinatorial problems suffer from the stagnation of the search. It is possible to define various

methods to prevent this drawback, depending on the diversification and intensification implementations. In our SPP,

8

Algorithm 3: Teaching-learning-based-optimization-Robust Tabu Search (TLBO-RTS)

1 p: population;
2 teacher: the best individual in the population;
3 classmate: any individual in the population other than the teacher;

4 p← generate random individuals (number of individuals);
5 evaluate fitness of individuals (p);
6 generate population(population);
7 calculate fitness of individuals (population);

8 for k:=1 to number of generations do

9 /* Learning from Teacher */

10 teacher=select the best individual(p);
11 for i:=1 to number of individuals do
12 temp individual:=learn from teacher (teacher, individuali);
13 if (temp individual is better than individuali)
14 individuali:=temp individual;

15 eliminate duplicate individuals and replace with random individuals(p);

16 /* Learning from Classmates */

17 for i:=1 to number of individuals do
18 select a random classmate(classmate);
19 temp individual:=learn from classmate (classmate, individuali);
20 if (temp individual is better than individuali)
21 individuali:=temp individual;

22 eliminate duplicate individuals and replace with random individuals(p);
23 Stagnation Prevention Procedure (teacher); // Algorithm 4

24 for i:=1 to number of individuals do
25 Robust Tabu Search(individuali); /* see Algorithm 2 for Robust Tabu Search; */

26 return the best result in the population;

9

we apply mutation operator as a diversification tool to the locally optimal teachers. The teachers tend to be stuck
in local optima during early stages of the optimization. If the teacher individual is not improved in m=3 successive
generations, SPP is applied to the teacher. This diversification mechanism is proposed in (Dokeroglu, Tosun, & Cosar,
2013).

SPP works on teacher individual and uses the mutation operator. It starts from the leftmost facility of the teacher
and swaps the current facility with the following one until it reaches to the end of the individual. The next loop starts
from the second leftmost facility of the teacher and swaps the current facility through to the end of the solution and
this continues until all the facilities have been swapped. Before each mutation operation, the new solution is set to
the teacher so that the flow of the search continues in the teacher. Every new solution tries to replace the teacher (see
Algorithm 4).

Algorithm 4: Stagnation Prevention Procedure

1 n:=problem size;
2 itr1:=0;
3 itr2:=0;

4 while itr1 ≤ (n-2) do
5 itr2:=itr1+1;
6 while itr2 ≤ (n-1) do
7 solution:=teacher;
8 Swap Facilities (solution, itr1, itr2);
9 Evaluate Fitness (solution);

10 if solution < teacher then teacher:= solution;
11 itr2++;

12 itr1++;

5.4. Parallel TLBO-RTS algorithm
In addition to the sequential TLBO-RTS algorithms, we have also implemented a simple parallel TLBO-RTS

algorithm. With this algorithm, we aim to provide better results rather than decreasing the execution time of fitness
evaluation. The parallel TLBO-RTS works on multiple island processors with larger total number of learners to
explore the search space with more individuals that diversify to different dimensions. In order to generate distinctive
populations at each processors, we use a random number generator that is seeded with the number of the processor.
This mechanism produce diversification of starting populations at each island processor. Slave nodes generate their
own population and execute the TLBO and RTS phases separately. Later they send their best result to the master node.
The master processor selects the global best solution. It is possible to work with larger number of individuals and RTS
iterations by using the parallel version of the TLBO-RTS algorithm to provide better solutions (see Algorithm 5).

Algorithm 5: Parallel TLBO-RTS

1 if Master Node then
2 for rank:=1 to number of slaves do
3 receive the best individual from slave[rank];

4 if Slave Node then
5 generate population;
6 execute TLBO phase;
7 execute RTS phase; /* see algorithm 3 for details*/

8 send the best result in the population to the master;

10

6. Experimental Results and Discussion

In this section, we present the results of the experiments obtained with the proposed sequential and parallel TLBO-
RTS algorithms. 126 problem instances given in the QAPLIB are solved (Burkard, Karisch, & Rendl, 1991). Most of
the state-of-the-art QAP solution algorithms are tested on these problem instances therefore, QAPLIB provides a fair
environment to compare our solutions with the other algorithms in the literature. Problem instances of QAPLIB are
derived either from real life applications or randomly generated problem instances such as the hospital layout (kra30),
Manhattan distances of rectangular grids (Had12), and the backboard wiring (Ste36a).

First, we present our results on the global parameter settings of TLBO (number of individuals, generations) and
RTS phases of the algorithm. Later, we give the results of our experiments on 55 problem instances (that are larger
than 30 facilities/locations) with three proposed algorithms. We have selected the best performing algorithm, analyzed
its performance on the four types of problem instances categorized by Stützle (2006). Later, the results of the parallel
TLBO-RTS algorithm on the problem instances that are not solved optimally by the sequential version are given.
In the last phase of the experiments, we compare our results to those of the recent state-of-the-art metaheuristics in
terms of solution quality and computational effort and discuss the robustness and scalability issues of the proposed
algorithms.

6.1. Experimental environment
Experiments with sequential versions of our algorithms are performed on a personal computer with Intel I5 3470

(3.20 GHz) processor and 8 GB RAM. Parallel algorithms are performed on a High Performance Cluster (HPC)
computer which has 46 nodes, each with 2 CPUs giving 92 CPUs. Each CPU has 4 cores giving a total of 368 cores.
Each node has 16GB of RAM giving 736 GB of total memory. High-bandwidth communication is available among
nodes, using two 24 port Gbps ethernet switches, and one 24 port infiniband switch, providing very low latency
messaging with a capacity of 8Gbps. C++ and the MPI libraries (Kumar, 2002) are used during the development.

6.2. Tuning the global parameters of TLBO phase
Before the experiments, we need to tune global parameters for the TLBO phase of the algorithms (the number of

individuals and the number of generations). Tests are performed 10 times with generations up to 100 and the average
values are reported. First, we made experiments to find the (near-)optimal number of individuals in the population.
Figure 6 presents the results of the experiments ranging from 10 to 80 individuals (with SPX recombination operator).
Small number of individuals such as 10 are observed to stuck into a local optimum. Larger number of individuals
perform well but they have negative effect on the optimization time of the algorithms.

Test results to find the optimal number of generations are reported in Figure 8. All of the recombination operators
improve their solution quality as the number of generations increases. 100 generations is set to be the (near-)optimal
value for our experiments where the algorithms tend to slow down their improvements after 80 generations.

The total number of fitness evaluations performed during the optimization is the sum of evaluations in the TLBO
and RTS phases of the algorithm. In the TLBO phase, the number of evaluations is equal to (2 × number of generation
× number of individuals) and in the RTS phase, the number of fitness evaluations depends on the maximum number
of failures. Five different parameter settings are used in the TLBO-RTS algorithms to take advantage of different
parameters (see Table 1). Mutation ratio is selected as 1% for all parameter settings. The parameters presented in
Table 2 give the settings for RTS phase of the algorithms.

6.3. Tuning the parameters for Robust Tabu Search phase
Maximum number of failures, tabu tenure lower/upper limits, and aspiration value are the parameters that must

be well tuned for the RTS phase. We have used parameter settings that were proposed by Taillard (1991). Maximum
number of failures has an important effect on the solution quality of the algorithms. Larger maximum number of
failures (with well tuned tabu tenure lower/upper limits and aspiration value) provide good results however, they
have longer execution times. Figure 7 gives the improvement of randomly generated 40 individuals by using RTS
algorithm with increasing number of iterations for ’sko100a’ instance. The experiments range from 1,000 up to
200,000 iterations. The average percentage deviation is 0.48% with 1,000 iterations and it improves to 0.08% with

11

200,000 iterations. In order to provide adaptivity in accordance with the problem size (n), the iteration parameter is
obtained by multiplying the problem size with constant numbers such as (2,000×n).

The settings given in Tables 1 and 2 take advantage of different parameters for the proposed algorithms. The
number of generations is set to 100 for all of the parameter settings, which is observed to be a (near-)optimal value
for the algorithms and the number of maximum failures depends on the problem size, (n). Setting 1 provides a fast
converging choice with smaller number of individuals and RTS iterations, setting 2 increases the number of maximum
failures and spends more time to provide better results for hard problem instances such as Tai*a, setting 3 works with
smaller number of maximum failures to produce solutions earlier than setting 2, setting 4 increases the number of the
processors for better results, and setting 5 reduces the number of maximum failures to produce faster solutions for
very large problem instances (n ≥ 150) while still benefiting from larger number of multiprocessors.

6.4. Selecting the best performing TLBO-RTS algorithm
Three TLBO-RTS algorithms (TLBO-SPX, TLBO-OBX, and TLBO-COHX) are tested with 55 different problem

instances (with sizes larger than 30) to select the best performing one. The results are presented in Table 3 (BKS=Best
Known Solution of the problem instance in the QAPLIB, Found=the number of solutions that are equal to BKS out
of 10 runs, APD=Average Percentage Deviation of the obtained results from the best results, BPD=Best Percentage
Deviation, min.=optimization time of the algorithm in minutes). 31 of the 55 problem instances are found optimally.
TLBO-OBX is selected as the best performing algorithm (with small differences). The best overall APD and BPD
values found by TLBO-OBX are 0.089 and 0.078 respectively. It is observed that the optimization time of the algo-
rithms increases in accordance with the size of the problem instances (n) and the most time consuming part of the
algorithms is the RTS phase (depending on the value of maximum number of failures).

6.5. Additional computational analysis
After selecting the best performing TLBO-RTS algorithm (TLBO-OBX), we have extended the set of problem

instances up to 126. The instances are classified according to the four categories given by Stützle (2006).

Type 1. Unstructured, randomly generated instances have distance matrix that is randomly generated based on a
uniform distribution.

Type 2. Instances with Grid-based distances contain instances in which the distances are the Manhattan distance
between points on a grid.

Type 3. Real-life instances are produced from real-life QAP applications.
Type 4. Real-life-like instances are generated instances that are similar to real-life QAP problems.

Tables 4-7 present the results of our experiments on 126 QAP problem instances by their categories. The results
show that TLBO-RTS algorithm performs well. The APD percentage of the solutions was between 0.000-0.190
%. The optimization time is between 0.1 and 119 minutes for problem sizes 12 and 150, respectively. TLBO-RTS
performed well for all of the problem categories. The best performance is observed on Type-3 instances with 0 %
APD. TLBO-RTS has the worst performance on Type-1 instances with 0.190% APD due to the difficulty of solving
Tai*a instances.

We have performed experiments with parallel TLBO-RTS algorithm on 24 problem instances (the optimal solu-
tions were not found with our sequential algorithms for these problems). We have increased the number of individuals
in the population, the number of RTS iterations, and the number of processors (the parameter settings of 4 and 5 given
in Table 1). Each processor consists of 30-50 individuals which means that the overall population is increased as
many as the number of processors times the number of the individuals. The number of RTS iterations was between
(2,000×n) and (5,000×n). We have used 40-50 processors during the experiments and improved the solution quality
of all of the 24 instances with parallel TLBO-RTS algorithm. 13 of the 24 instances are solved optimally. The results
can be seen in Table 8. There are only 11 instances that we have not solved optimally in the QAPLIB. Tai*a instances
were the hardest problems for our algorithms. For 24 problem instances, the overall APD and the average optimization
are observed as 0.099% and 341.1 minutes respectively.

12

6.6. Comparison with the state-of-the-art metaheuristics
TLBO is a population based metaheuristic which uses a group of individuals to proceed for the optimum solution.

There are many parameters that affect the performance of the algorithms. PSO requires learning factors, variation
of weight, and maximum value of velocity; GA needs optimal crossover probability, mutation rate, and selection
method; ABC needs optimal number of employed bees, onlooker bees and value of limit; ACO requires exponent
parameters, pheromone evaporation rate and reward factor; HS needs optimal harmony memory consideration rate,
pitch adjusting rate, and number of improvisations. Unlike the other population based algorithms TLBO does not
require any algorithm-specific parameters to be tuned, this makes the implementation of our TLBO-RTS algorithm
simpler. TLBO makes use of the best solution of the population to change the existing solution thereby increasing the
convergence rate. TLBO does not divide the population into subpopulations and implements greediness to accept the
good solution like ABC algorithm.

In the last part of our experiments, we compare the results of TLBO-RTS algorithm with the best performing
sequential and parallel state-of-the-art algorithms in literature. The sequential algorithms we make comparisons with
are:
Ant Colony Optimization GA/Local Search Hybrid ACO/GA/LS (Tseng, & Liang, 2005),
GA Hybrid with Concentric TS Operator GA/C-TS (Drezner, 2005),
GA Hybrid with a Strict Descent Operator GA/SD (Drezner, 2005),
Multi-Start TS Algorithm JRG-DivTS (James, Rego, & Glover, 2006),
Lagrangian Smoothing Algorithm (LagSA) (Xia, 2010)
Self Controlling Tabu Search (SC-Tabu) (Fescioglu-Unver et al.,2011)
Iterated Tabu Search (ITS) (Misevičius, A., 2012)
Migrating Birds Optimization (MBO) (Duman et al., 2012)

The parallel algorithms we make comparisons with are:
Independent Parallel TS (TB-MTS) (Talbi, & Bachelet, 2006),
Cooperative Parallel TS Hybrid with a GA (TB-COSEARCH) (Talbi, & Bachelet, 2006),
Cooperative Parallel TS (CPTS) (James, Rego, & Glover, 2009).
Robust Island Parallel Genetic Algorithm (QAP-IPGA) (Tosun, Dokeroglu, & Cosar, 2013).
Parallel Multistart Tabu Search (PMTS) (Czapiňski, M. 2013)

Tables 9-12 present the comparison of our TLBO-RTS algorithm with the state-of-the-art metaheuristics. Figure
9 is the visualized version of Table 10 for ’Skorin-Kapov’ problem instances. Our algorithm is observed to be com-
petitive with the solution quality and the execution times of the other algorithms. Although the execution time of the
algorithms changes depending on the hardware (the number of processors), programming language, and compilers,
we report some of their running times to give an idea to the reader. It can be seen from the results of the experiments
that the execution time of our algorithm is reasonable.

We have reported the available results of the best algorithms in accordance with the Types of the problem instances
in terms of APD. The results of the best four algorithms are reported in bold face. For Type-1 problem instances (the
hardest set), the APD of TLBO-RTS is 0.342 (the second best performing algorithm after ITS). We produced 5 optimal
solutions out of 9. For Type-2 problems, TLBO-RTS produces 9 high quality solutions of 13 problems and is the third
best performing algorithm. For Type-3 problems, TLBO-RTS gives the optimal solutions for all of the problem
instances. For Type-4 problems, TLBO-RTS is the second best performing algorithm in the literature. As a result, our
study illustrates that TLBO-RTS performs well on all of the problem instances in the QAPLIB and competitive with
the other metahuristics.

The sequential version of TLBO-RTS algorithm has solved 102 of the 126 problem instances optimally. We have
performed tests with parallel TLBO-RTS on the 24 problem instances that were not solved optimally. We were able
to find additional 13 optimal solutions with the parallel TLBO-RTS algorithm. The total number of problems solved
optimally by our proposed algorithm reach to 115, which is (91.3%) of the 126 problem instances. The results are
reported in Table 8.

In order to illustrate the capabilities of our parallel TLBO-RTS algorithm, we have compared its results to the other
parallel algorithms in the literature. Table 13 contains a summary of comparisons between our parallel TLBO-RTS

13

algorithm and the Cooperative Parallel TS (CPTS), Independent Parallel TS (TB-MTS), Cooperative TS hybrid with a
GA (TB-COSEARCH), Robust Island Parallel Genetic Algorithm (QAP-IPGA), and Parallel Multistart Tabu Search
(PMTS). To the best of our knowledge, these algorithms are the only published parallel metaheuristic algorithms. The
other parallel algorithms from the literature either work on different problem domains or only report on single run re-
sults related to timing and solution quality, which is usually the best case result for that algorithm. We have performed
our experiments with 40-50 processors and solved each instance 10 times to minimize the measurement errors. The
results of the other algorithms are obtained from different execution environments and number of processors. CPTS
uses 10 processors, TB-MTS and TB-COSEARCH use 150 processors, and QAP-IPGA uses processors ranging from
100 to 240. PMTS uses a GPU hardware with 15 multiprocessors and 32 scalar processor cores each. Our parallel
TLBO-RTS is observed to be among the best performing parallel algorithms in the literature in accordance with the
APD values of the selected problem instances.

6.7. Analysis of the robustness and scalability of the algorithms
Since the proposed TLBO-RTS algorithms involve randomization, achieving robustness becomes an important

issue. Each problem instance in the experiments is solved 10 times and the average of the results are reported to
clarify this point. For sequential TLBO-RTS, the APD is observed to be 0.0 % for 102 problem instances. For 126
problem instances, APD is 0.001 % for parallel TLBO-RTS algorithms, which is very robust with respect to the
solutions found by the other algorithms in literature. The robustness of the proposed algorithms can even become
better with additional processors.

Scalability is another important aspect for the performance evaluation of all parallel algorithms and measures the
capability to continue to give good results when the number of processors increases. In other words, scalability enables
us to solve the problem instances without extra delays in execution time. In our proposed parallel algorithms, we aim
to increase the number of processors to have a chance to explore the search space in a better way rather than speeding
up the fitness evaluation process of the individuals. The optimization time is not delayed due to the messaging as we
increase the number of the processors. When the number of processors is increased up to 60, a messaging overhead
of 30 seconds is added to the execution time of the algorithm in our HPC configuration. The proposed algorithms are
acceptable and continue to substantially benefit from increased number of processors with negligible delays.

7. Conclusions and Future Work

In this study, we propose a set of hybrid Teaching-learning-based-optimization (TLBO) algorithms for the solution
of the challenging Quadratic Assignment Problem (QAP). The algorithm-specific parameterless concept of TLBO
provides an easy-to-use approach and there is no need to apply any selection mechanism. Recombination operators of
the proposed algorithms do not require any fine tuning and our algorithms work well with random settings. In addition
to these advantages, the performance of the proposed sequential and parallel hybrid TLBO-RTS algorithms are shown
to be very competitive and among of the best performing algorithms for the QAP. There has been no TLBO-based
solution method for the QAP. From this aspect, this is the first study to show how TLBO-based algorithms can be
applied to the QAP, while also proposing interesting ideas on how parallel processing can be exploited for solving
difficult QAP instances.

As future work, we plan to apply well-known machine learning techniques such as reinforcement learning, in-
ductive logic programming, and support vector machines to train the learners. Also, multiobjective combinatorial
problems such as two/three-dimensional bin packing can be modeled and solved by using TLBO.

Adl, R.K. & Rankoohi, S.M.T.R. (2009). A new ant colony optimization based algorithm for data allocation problem in distributed databases,
Knowledge Information Systems, vol. 20, no. 3, pp. 349-373.

Ahuja, R.K., Orlin, J.B., & Tiwari, A. (2000). A greedy genetic algorithm for the quadratic assignment problem. Computers and Operations
Research, Vol.27, 917-934.

Ahrari, A., & Atai, A.A. (2010). Grenade Explosion Method: A novel tool for optimization of multimodal functions. Applied Soft Computing,
10(4), 1132-1140.

Anstreicher, K., Brixius, N.W., Goux, J-P., & Linderoth, J. (2002) Solving large quadratic assignment problems on computational grids,
Mathematical Programming, vol. 91, no. 3, pp. 563-588.

14

Battiti, R. & Tecchiolli, G. (1994) The reactive tabu search, ORSA Journal on Computing, vol. 6, no. 2, pp. 126-140.
Burkard, R.E., Karisch, S.E., & Rendl, F. (1991) QAPLIB a quadratic assignment problem library, European Journal of Operational Research,

vol. 55, no. 1, pp. 115-119.
Burkard R.E. & Cela, E. (1999) Linear assignment problems and extensions, In Pardalos, P. and Du, D.-Z. (eds), Handbook of Combinatorial

Optimization, Kluwer Academic Publishers, Supplement vol. A, pp. 75-149.
Calzon-Bousono, C. (1995) The hopfield neural network applied to the quadratic assignment problem, Neural Computing and Applications,

vol. 3, no. 2, pp. 64-72.
Carraresi, P. & Malucelli, F. (1992) A new lower bound for the quadratic assignment problem, Operations Research, vol. 40, no. 1, pp. 22-27.
Chakrapani, J. & Skorin-Kapov, J. (1992) A connectionist approach to the quadratic assignment problem, Computers and Operations

Reasearch, vol. 19, no 3-4, pp. 287-295.
Clausen, J. & Perregaard, M. (1997) Solving large quadratic assignment problems in parallel, Computational Optimization and Applications,

vol. 8, no. 2, pp. 111-127.
Connolly, D.T. (1990) An improved annealing scheme for the QAP, European Journal of Operational Research, vol. 46, no. 1, pp. 93-100.
Cordeau, J-F., Gaudioso, Laporte, M.G., & Moccia, L. (2007) The service allocation problem at the Gioia Tauro Maritime Terminal, European

Journal of Operational Research, vol. 176, no. 2, pp. 1167-1184.
Crainic, T.G. & Toulouse, M. (2003) Parallel strategies for metaheuristics. In: F. Glover, G. Kochenberger (Eds.), Handbook of Metaheuristics.

Kluwer Academic Publishers.
Črepinšek, M., Liu, S.H., & Mernik, L. (2012) A note on teaching-learning-based optimization algorithm. Information Sciences, 212, 79-93.
Czapiňski, M. (2013). An effective parallel multistart tabu search for quadratic assignment problem on CUDA platform. Journal of Parallel

and Distributed Computing, 73(11), 1461-1468.
Dokeroglu, T., & Cosar, A. (2014). Optimization of one-dimensional Bin Packing Problem with island parallel grouping genetic algorithms.

Computers & Industrial Engineering, 75, 176-1786.
Dokeroglu, T., Tosun, U., & Cosar, A. (2012) Parallel Optimization with Mutation Operator for the Quadratic Assignment Problem, In

Proceedings of WIVACE 2012, Italian Workshop on Artificial Life and Evolutionary Computation, Parma/Italy.
Dokeroglu, T., Tosun, U., & Cosar, A. (2013) Evaluating the Performance of Recombination Operators with Island Parallel Genetic Algo-

rithms, IFAC MIM, Saint Petersburg, Russia.
Dorigo, M., & Di Caro, G. (1999) Ant colony optimization: a new metaheuristic. In Evolutionary Computation, 1999. CEC 99. Proceedings

of the 1999 Congress on (Vol. 2).
Drezner, Z. (2003) A new genetic algorithm for the quadratic assignment problem, INFORMS Journal on Computing, vol. 15, no. 3, pp.

320-330.
Drezner, Z. (2005) The extended concentric tabu for the quadratic assignment problem, European Journal of Operational Research, vol. 160,

no. 2, pp. 416-422.
Duman, E., Uysal, M., & Alkaya, A. F. (2012). Migrating Birds Optimization: A new metaheuristic approach and its performance on quadratic

assignment problem. Information Sciences, 217, 65-77.
Eusuff, M.M. & Lansey, K.E. (2003) Optimization of water distribution network design using the shuffled frog leaping algorithm. Journal of

Water Resources Planning and Management, 129(3), 210-225.
Fiechter, C.N. (1994) A parallel tabu search algorithm for large traveling salesman problems, Discrete Applied Mathematics vol. 51, no. 3,

pp. 243-267.
Fescioglu-Unver, N., & Kokar, M. M. (2011). Self controlling tabu search algorithm for the quadratic assignment problem. Computers &

Industrial Engineering, 60(2), 310-319.
Gambardella, L.M. & Taillard, E.D., & Dorigo, M. (1999) Ant colonies for the quadratic assignment problem, Journal of the Operational

Research Society, vol. 50, no. 2, pp. 167-176.
Geem, Z. W., Kim, J.H., & Loganathan, G. V. (2001) A new heuristic optimization algorithm: harmony search. Simulation, 76(2), 60-68.
Gilmore, P.C. (1962) Optimal and suboptimal algorithms for the quadratic assignment problem, Journal of the Society of Industrial and

Applied Mathematics, vol. 10, no. 2, pp. 305-313.
Goldberg, D. (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, Mass.
Hahn, P. & Krarup, J. (2001) A hospital facility layout problem finally solved, Journal of Intelligent Manufacturing, vol. 12, no. 5-6, pp.

487-496.
Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor, MI, USA.
James, T., Rego, C., & Glover, F. (2005) Sequential and parallel pathrelinking algorithms for the quadratic assignment problem, IEEE

Intelligent Systems, vol. 20, no. 4, pp. 58-65.
James, T., Rego, C., & Glover, F. (2006) Multi-start tabu search and diversification strategies for the quadratic assignment problem, Working

Paper, Virginia Tech.
James, T., Rego, C., & Glover, F. (2009) A cooperative parallel tabu search algorithm for the QAP, European Journal of Operational Research,

vol. 195, no. 3, pp. 810-826.
Karaboga, D., & Basturk, B. (2007) A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC)

algorithm. Journal of global optimization, 39(3), 459-471.
Kelly, J.P., Laguna, M., & Glover, F. (1994) A study of diversification strategies for the quadratic assignment problem, Computers and

Operations Research, vol 21, no 8, pp.885-893.
Kennedy, J., & Eberhart, R. (1995) Particle swarm optimization. In Neural Networks, 1995. Proceedings., IEEE International Conference on

(Vol. 4, pp. 1942-1948).
—

Koopmans, T.C. & Beckmann, M.J. (1957) Assignment problems and the location of economic activities, Econometrica, vol. 25, no. 1, pp.
53-76.

Kumar, V. (2002) Introduction to Parallel Computing. Addison-Wesley.

15

Laguna, M., Marti, R., & Campos, V. (1999) Intensification and diversification with elite tabu search solutions for the linear ordering problem,
Computers and Operations Research, vol. 26, no. 12, pp. 1217-1230.

Lawler, E.L. (1963) The quadratic assignment problem, Management Science, vol. 9, no. 4, pp. 586-599.
Lawrence, D. (1991) Order-based genetic algorithms and the graph coloring problem. Handbook of genetic algorithms: 72-90.
Li, Y., Pardalos, P.M., & Resende, M.G.C. (1994) A greedy randomized adaptive search procedure for the quadratic assignment problem,

Quadratic assignment and related problems, P. M. Pardalos & H. Wolkowicz, eds., DIMACS Series on Discrete Mathematics and Theoret-
ical Computer Science, vol. 16, pp. 237-261, 1994.

Lim, M.H., Yuan,Y., & Omatu, S. (2000) Efficient genetic algorithms using simple genes exchange local search policy for the quadratic
assignment problem, Computational Optimization and Applications, vol. 15, no. 3, pp. 249-268.

Luque G. & Alba E. (2011) Parallel Genetic Algorithms, Theory and Applications. Springer.
Marzetta, A. & Brungger, A. (1999) A dynamic-programming bound for the quadratic assignment problem, Lecture Notes in Computer

Science, vol. 1627, pp. 339-348.
Mautor, T. & Roucairol, C. (1994) A new exact algorithm for the solution of quadratic assignment problems, Discrete Applied Mathematics,

vol. 55, no. 3, pp. 281-293.
Misevičius, A. (2003) Genetic algorithm hybridized with ruin and recreate procedure: application to the quadratic assignment problem,

Knowledge-Based Systems, vol. 16, pp. 261-268.
Misevičius, A. (2005) A tabu search algorithm for the quadratic assignment problem, Computational Optimization and Applications, vol. 30,

no. 1, pp. 95-111.
Misevičius, A. (2012). An implementation of the iterated tabu search algorithm for the quadratic assignment problem. OR spectrum, 34(3),

665-690.
Nystrom, M. (1999) Solving certain large instances of the quadratic assignment problem: Steinberg examples. Department of Computer

Science, California Institute of Technology.
Pardalos, P.M., Rendl, F., & Wolkowicz, H. (1994) The Quadratic Assignment Problem: A Survey and Recent Developments, In Quadratic

Assignment and Related Problems, P. M. Pardalos & H. Wolkowicz, eds., DIMACS Series in Discrete Mathematics and Theoretical
Computer Science, vol 16, pp. 1-42.

Pentico, D.W. (2007) Assignment problems: a golden anniversary survey, European Journal of Operational Research, vol. 176, no. 4, pp.
774-793.

Pfister, G.F. (1998) In Search of Clusters (2nd Edition). Prentice Hall.
Rao, R.V., Savsani, V.J., & Vakharia, D.P. (2011) Teaching-learning-based optimization: a novel method for constrained mechanical design

optimization problems, Computer-Aided Design 43 (3) 303-315.
Rao, R.V., Savsani, & V.J., Vakharia, D.P. (2012a) Teaching-learning-based optimization: an optimization method for continuous non-linear

large scale problems, Information Sciences 183 (1) 1-15.
Rao, R.V., Savsani, V. J., & Balic, J. (2012b). Teaching-learning-based optimization algorithm for unconstrained and constrained real-

parameter optimization problems. Engineering Optimization, 44(12), 1447-1462.
Rao, R.V. & Patel, V., (2012a) An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization prob-

lems, International Journal of Industrial Engineering Computations 3-535-560.
Rao, R.V. & Patel, V., (2012b) Multi-objective optimization of heat exchangers using a modified teaching-learning-based-optimization algo-

rithm, Applied Mathematical Modeling.
Rao, R.V. & Patel, V., (2012c) Multi-objective optimization of combined Brayton and inverse Brayton cycle using advanced optimization

algorithms, Engineering Optimization.
Rao, R.V. & Patel, V. (2012d) Multi-objective optimization of two stage thermoelectric cooler using a modified teaching-learning-based-

optimization algorithm, Engineering Applications of Artificial Intelligence.
Rao, R.V. & Patel, V. (2012e) Comparative performance of an elitist teaching-learning-based optimization algorithm for solving unconstrained

optimization problems, International Journal of Industrial Engineering Computations 4.
Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009) GSA: a gravitational search algorithm. Information sciences, 179(13), 2232-2248.
Rossin, D.F., Springer, M.C., & Klein, B.D. (1999) New complexity measures for the facility layout problem: An empirical study using

traditional and neural network analysis, Computers and Industrial Engineering, vol. 36, no. 3, pp. 585-602.
Steinberg, L., (1961) The backboard wiring problem: A placement algorithm, SIAM Review, vol.3, no. 1, pp. 37-50.
Storn, R., & Price, K. (1997) Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces. Journal

of global optimization, 11(4), 341-359.
Stützle, T. & Dorigo, M. (1999) ACO algorithms for the quadratic assignment problem. In: D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas

for Optimization. McGraw-Hill, pp. 33-50.
Stützle, T. (2006) Iterated local search for the quadratic assignment problem. European Journal of Operational Research, 174(3), 1519-1539.
Taillard, E. (1991) Robust taboo search for the quadratic assignment problem, Parallel Computing, vol. 17, no. 4-5, pp. 443-455.
Talbi, E-G., Hafidi,Z., & Geib, J-M. (1997) Parallel adaptive tabu search for large optimization problems, In: MIC’97-2nd Metaheuristics

International Conference, Sophia Antipolis, France.
Talbi, E-G. & Bachelet, V. (2006) COSEARCH: A parallel cooperative metaheuristic, Journal of Mathematical Modeling and Algorithms,

vol. 5, no. 1, pp. 5-22.
Tate, D.M. & Smith, A.E. (1995) A genetic approach to the quadratic assignment problem, Computers and Operations Research, vol. 22, no.

1, pp. 73-83, .
Tosun, U., Dokeroglu, T., & Cosar, A. (2013) A New Robust Island Parallel Genetic Algorithm for the Quadratic Assignment Problem,

International Journal of Production Research, Volume 51, Issue 14, 4117-4133.
Tseng, L. & Liang, S. (2005) A hybrid metaheuristic for the quadratic assignment problem, Computational Optimization and Applications,

vol. 34, no. 1, pp. 85-113.
Tsutsui, S. & Fujimoto, N. (2009) Solving Quadratic Assignment Problems by Genetic Algorithms with GPU Computation: a Case Study,

16

GECCO, Montreal Quebec, Canada.
Waghmare, G. (2013) Comments on A Note on Teaching-Learning-Based Optimization Algorithm. Information Sciences 229:159-169
Xia, Y. (2010). An efficient continuation method for quadratic assignment problems. Computers & Operations Research, 37(6), 1027-1032.
Zhang, H., Beltran-Royo, C., & Constantino, M. (2010). Effective formulation reductions for the quadratic assignment problem. Computers

& Operations Research, 37(11), 2007-2016.
Figures and Tables

Figure 1: Representation of an individual for the quadratic assignment problem.

Figure 2: Mutation operator.

Figure 3: Swap Path Recombination operator (SPX).

Figure 4: Order Based Recombination operator (OBX).

17

Figure 5: Cohesive Recombination operator (COHX).

Figure 6: Population tests with Sko100a instance and SPX Recombination operator.

Figure 7: Robust tabu search experiments for randomly generated 40 individuals with increasing number of iterations for Sko100a
instance.

18

Figure 8: Generation tests with Sko100a instance.

Figure 9: Vizualized results of Table 10 with sko problem instances.

19

Table 1: Global parameter settings for TLBO phase of the proposed algorithms

Parameter setting 1 setting 2 setting 3 setting 4 setting 5
Population Size 20 20 30 50 30

Number of Generations 100 100 100 100 100

RTS phase configuration (see Table 2) 1 2 3 4 5

number of processors 1 1 1 40 50

Table 2: RTS parameter settings used in our experiments

Configuration maximum # of failures tabu tenure aspiration value

1 2,000 x n
lower limit=(9×n)/10

upper limit=(11×n)/10
n×n×2

2 [400,000-1,000,000]
lower limit=(9×n)/10

upper limit=(11×n)/10
n×n×2

3 5,000 x n
lower limit=(9×n)/10

upper limit=(11×n)/10
n×n×2

4 5,000 x n
lower limit=(2×n)/10

upper limit=(18×n)/10
n×n×2

5 2,000 x n
lower limit=(2×n)/10

upper limit=(18×n)/10
n×n×2

20

Table 3: Results found by the proposed sequential TLBO-RTS algorithms with parameter setting 1.
(20 individuals, 100 generations, 1 processor, and 2,000 x n failures for RTS)

TLBO-SPX TLBO-OBX TLBO-COHX
Instance BKS Found APD BPD min. Found APD BPD min. Found APD BPD min.
Esc32a 130 10 0 0 1.2 10 0 0 1.2 10 0 0 1.2
Esc32b 168 10 0 0 1.2 10 0 0 1.2 10 0 0 1.2
Esc32c 642 10 0 0 1.2 10 0 0 1.2 10 0 0 1.2
Esc64a 116 10 0 0 9.2 10 0 0 9.2 10 0 0 9.3
Esc128 64 10 0 0 75.4 10 0 0 75 10 0 0 76.3
Kra30a 88900 10 0 0 1.0 10 0 0 1.0 10 0 0 1.0
Kra30b 91420 10 0 0 1.0 10 0 0 1.0 10 0 0 1.0
Lipa30a 13178 10 0 0 1.0 10 0 0 1.0 10 0 0 1.0
Lipa30b 151426 10 0 0 1.0 10 0 0 1.0 10 0 0 1.0
Lipa40a 31538 10 0 0 2.3 10 0 0 2.3 10 0 0 2.3
Lipa40b 476581 10 0 0 2.3 10 0 0 2.3 10 0 0 2.3
Lipa50a 62093 10 0 0 4.3 10 0 0 4.2 10 0 0 4.4
Lipa50b 1210244 10 0 0 4.3 10 0 0 4.2 10 0 0 4.4
Lipa60a 107218 10 0 0 7.6 10 0 0 7.4 10 0 0 7.7
Lipa60b 2520135 10 0 0 7.6 10 0 0 7.4 10 0 0 7.7
Lipa70a 169755 10 0 0 12.5 10 0 0 12.3 10 0 0 12.7
Lipa70b 4603200 10 0 0 12.5 10 0 0 12.3 10 0 0 12.7
Lipa80a 253195 5 0.254 0 18.8 6 0.207 0 18.5 8 0.103 0 19
Lipa80b 7763962 10 0 0 18.8 10 0 0 18.5 10 0 0 19
Lipa90a 360630 6 0.193 0 25.7 4 0.281 0 25.2 4 0.199 0 26.1
Lipa90b 12490441 10 0 0 25.7 10 0 0 25.2 10 0 0 26.1
Nug30 6124 10 0 0 1.0 10 0 0 0.9 10 0 0 1.0
Sko42 15812 10 0 0 2.6 10 0 0 2.4 10 0 0 2.6
Sko49 23386 2 0.034 0 4.1 1 0.037 0 4.0 5 0.019 0 4.2
Sko56 34458 4 0.008 0 6.2 6 0.005 0 6.0 1 0.017 0 6.3
Sko64 48498 5 0.003 0 9.5 6 0.002 0 9.2 4 0.004 0 9.5
Sko72 66256 0 0.033 0.018 13.6 0 0.024 0.009 13.2 0 0.034 0.018 13.8
Sko90 115534 0 0.046 0.010 25.7 0 0.049 0.035 25.2 0 0.026 0.017 26.1
Sko100a 152002 0 0.048 0.027 36.1 0 0.064 0.050 35.7 0 0,057 0.045 36.5
Sko100b 153890 0 0.028 0.023 36.1 0 0.017 0.005 35.7 0 0,042 0.030 36.5
Sko100c 147862 0 0.019 0.012 36.1 0 0.019 0.003 35.7 0 0,032 0.020 36.5
Sko100d 149576 0 0.041 0.017 36.1 0 0.031 0.013 35.7 0 0,058 0.038 36.5
Sko100e 149150 0 0.026 0.019 36.1 0 0.023 0.013 35.7 0 0,025 0.008 36.5
Sko100f 149036 0 0.062 0.015 36.1 0 0.047 0.031 35.7 0 0.049 0.036 36.5
Tai30a 1818146 10 0 0 1.0 10 0 0 1.0 10 0 0 1.0
Tai30b 637117113 10 0 0 1.0 10 0 0 1.0 10 0 0 1.0
Tai35a 2422002 5 0.150 0 1.5 1 0.244 0 1.4 5 0.099 0 1.5
Tai35b 283315445 10 0 0 1.5 10 0 0 1.4 10 0 0 1.5
Tai40a 3139370 0 0.440 0.219 2.3 0 0.446 0.278 2.2 0 0.515 0.331 2.3
Tai40b 637250948 10 0 0 2.3 10 0 0 2.2 10 0 0 2.3
Tai50a 4938796 0 0.961 0.809 4.4 0 0.892 0.810 4.2 0 0.934 0.645 4.5
Tai50b 458821517 10 0 0 4.4 10 0 0 4.2 10 0 0 4.5
Tai60a 7205962 0 1.098 0.899 7.6 0 1.039 0.928 7.2 0 1.044 0.915 7.7
Tai60b 608215054 10 0 0 7.6 10 0 0 7.2 10 0 0 7.7
Tai64c 1855928 10 0 0 9.2 10 0 0 8.8 10 0 0 9.3
Tai80a 13499184 0 1.124 1.079 18.8 0 1.185 1.082 17.5 0 1.189 1.106 19
Tai80b 818415043 0 0.004 0.001 18.8 0 0.005 0.002 17.5 4 0.007 0 19
Tai100a 21052466 0 1.091 1.020 36.1 0 1.041 0.912 35.7 0 1.143 1.106 36.5
Tai100b 1185996137 0 0.039 0.001 36.1 2 0.027 0 35.7 1 0,032 0 36.5
Tai150b 498896643 0 0.119 0.086 123 0 0.095 0.068 119 0 0.074 0.019 123.8
Tho30 149936 10 0 0 1.0 10 0 0 1.0 10 0 0 1.0
Tho40 240516 7 0.003 0 2.3 10 0 0 2.2 10 0 0 2.3
Tho150 8133398 0 0.060 0.047 123 0 0.060 0.046 119 0 0.073 0.052 123.7
Wil50 48816 10 0 0 4.3 10 0 0 4.1 10 0 0 4.5
Wil100 273038 0 0.010 0.004 36.1 0 0.010 0.004 35.7 0 0.014 0.005 36.5
Average 6.07 0.107 0.078 17.39 6.10 0.089 0.078 17.33 6.22 0.105 0.079 17.49

21

Table 4: Results found for Type 1 problem instances with
parameter setting 1 using OBX recombination operator.
(20 individuals, 100 generations, 1 processor, and 2,000 x
n failures for RTS)

Unstructured, randomly generated instances
Instance BKS Found APD BPD min.
Rou12 235528 10 0 0 0.1
Rou15 354210 10 0 0 0.1
Rou20 725522 10 0 0 0.3
Lipa20a 27076 10 0 0 0.3
Lipa20b 13178 10 0 0 0.3
Lipa30a 13178 10 0 0 1.0
Lipa30b 151426 10 0 0 1.0
Lipa40a 31538 10 0 0 2.3
Lipa40b 476581 10 0 0 2.3
Lipa50a 62093 10 0 0 4.3
Lipa50b 1210244 10 0 0 4.3
Lipa60a 107218 10 0 0 7.6
Lipa60b 2520135 10 0 0 7.6
Lipa70a 169755 10 0 0 12.5
Lipa70b 4603200 10 0 0 12.5
Lipa80a 253195 5 0.254 0 18.8
Lipa80b 7763962 10 0 0 18.8
Lipa90a 360630 6 0.193 0 25.7
Lipa90b 12490441 10 0 0 25.7
Tai20a 703482 10 0 0 0.3
Tai25a 1167256 10 0 0 0.3
Tai30a 1818146 10 0 0 1.0
Tai35a 2422002 5 0.150 0 1.5
Tai40a 3139370 0 0.440 0.219 2.3
Tai50a 4938796 0 0.961 0.809 4.4
Tai60a 7205962 0 1.098 0.899 7.6
Tai80a 13499184 0 1.124 1.079 18.8
Tai100a 21052466 0 1.091 1.020 36.1
Average 7.71 0.190 0.144 7.77

Table 5: Results found for Type 2 problem instances with
parameter setting 1 using OBX recombination operator.
(20 individuals, 100 generations, 1 processor, and 2,000 x
n failures for RTS)

Instances with Grid-Distances
Instance BKS Found APD BPD min.
Nug12 578 10 0 0 0.1
Nug14 1014 10 0 0 0.1
Nug15 1150 10 0 0 0.1
Nug16a 1610 10 0 0 0.2
Nug16b 1240 10 0 0 0.2
Nug17 1732 10 0 0 0.2
Nug18 1930 10 0 0 0.2
Nug20 2570 10 0 0 0.3
Nug21 2438 10 0 0 0.3
Nug22 3596 10 0 0 0.4
Nug24 3488 10 0 0 0.5
Nug25 3744 10 0 0 0.5
Nug27 5234 10 0 0 0.7
Nug28 5166 10 0 0 0.8
Nug30 6124 10 0 0 0.9
Sko42 15812 10 0 0 2.4
Sko49 23386 1 0.037 0 4.0
Sko56 34458 6 0.005 0 6.0
Sko64 48498 6 0.002 0 9.2
Sko72 66256 0 0.024 0.009 13.2
Sko90 115534 0 0.049 0.035 25.2
Sko100a 152002 0 0.064 0.050 35.7
Sko100b 153890 0 0.017 0.005 35.7
Sko100c 147862 0 0.019 0.003 35.7
Sko100d 149576 0 0.031 0.013 35.7
Sko100e 149150 0 0.023 0.013 35.7
Sko100f 149036 0 0.047 0.031 35.7
Scr12 31410 10 0 0 0.1
Scr15 51140 10 0 0 0.1
Scr20 110030 10 0 0 0.3
Tho30 149936 10 0 0 1.0
Tho40 240516 10 0 0 2.2
Tho150 8133398 0 0.060 0.046 119
Wil50 48816 10 0 0 4.3
Wil100 273038 0 0.010 0.004 36.1
Average 6,37 0.011 0.006 12.65

22

Table 6: Results found for Type 3 problem instances with parameter setting 1 using OBX recombination operator.
(20 individuals, 100 generations, 1 processor, and 2,000 x n failures for RTS)

Real-life instances
Instance BKS Found APD BPD min. Instance BKS Found APD BPD min.
Bur26a 5426670 10 0 0 0.6 Kra30a 88900 10 0 0 1.0
Bur26b 3817852 10 0 0 0.6 Kra30b 91420 10 0 0 1.0
Bur26c 5426795 10 0 0 0.6 Kra32 88700 10 0 0 1.2
Bur26d 3821225 10 0 0 0.6 Ste36a 9526 10 0 0 1.6
Bur26e 5386879 10 0 0 0.6 Ste36b 15852 10 0 0 1.6
Bur26f 3782044 10 0 0 0.6 Ste36c 8239110 10 0 0 1.6
Bur26g 10117172 10 0 0 0.6 Esc16a 68 10 0 0 0.1
Bur26h 7098658 10 0 0 0.6 Esc16b 292 10 0 0 0.1
Els19 17212548 10 0 0 0.2 Esc16c 160 10 0 0 0.1
Had12 1652 10 0 0 0.1 Esc16d 16 10 0 0 0.1
Had14 2724 10 0 0 0.1 Esc16e 28 10 0 0 0.1
Had16 3720 10 0 0 0.1 Esc16f 0 10 0 0 0.1
Had18 5358 10 0 0 0.2 Esc16g 26 10 0 0 0.1
Had20 6922 10 0 0 0.3 Esc16h 996 10 0 0 0.1
Chr12a 9552 10 0 0 0.1 Esc16i 14 10 0 0 0.1
Chr12b 9742 10 0 0 0.1 Esc16j 8 10 0 0 0.1
Chr12c 11156 10 0 0 0.1 Esc32a 130 10 0 0 1.2
Chr15a 9896 10 0 0 0.1 Esc32b 168 10 0 0 1.2
Chr15b 7990 10 0 0 0.1 Esc32c 642 10 0 0 1.2
Chr15c 9504 10 0 0 0.1 Esc32d 200 10 0 0 1.2
Chr18a 11098 10 0 0 0.2 Esc32e 2 10 0 0 1.2
Chr18b 1534 10 0 0 0.2 Esc32g 6 10 0 0 1.2
Chr20a 2192 10 0 0 0.3 Esc32h 438 10 0 0 1.2
Chr20b 2298 10 0 0 0.3 Esc64a 116 10 0 0 9.2
Chr20c 14142 10 0 0 0.3 Esc128 64 10 0 0 75.0
Chr22a 6156 10 0 0 0.4
Chr22b 6194 10 0 0 0.4
Chr25a 3796 10 0 0 0.5
Average 10 0 0 2.09

Table 7: Results found for Type 4 problem instances with parameter setting 1 using OBX recombination operator.
(20 individuals, 100 generations, 1 processor, and 2,000 x n failures for RTS)

Real-life-like instances
Instance BKS Found APD BPD min.
Tai20b 122455319 10 0 0 0.26
Tai25b 344355646 10 0 0 0.55
Tai30b 637117113 10 0 0 1.0
Tai35b 283315445 10 0 0 1.4
Tai40b 637250948 10 0 0 2.2
Tai50b 458821517 10 0 0 4.2
Tai60b 608215054 10 0 0 7.2
Tai80b 818415043 0 0.005 0.002 17.5
Tai100b 1185996137 2 0.027 0 35.7
Average 8 0.003 0 7.77

23

Table 8: Parallel TLBO-RTS algorithm results (parameter setting 4 uses 50 individuals, 100 generations, 5,000 x n failures for
RTS, and 40 processors, parameter setting 5 uses 30 individuals, 100 generations, 2,000 x n failures for RTS and 50 processors)

Instance BKS APD BPD min. par. set.
Lipa80a 253195 0 0 239.8 4
Lipa90a 360630 0 0 360.7 4
Sko49 23386 0 0 54.1 4
Sko56 34458 0 0 81.6 4
Sko64 48498 0 0 119.3 4
Sko72 66256 0 0 170.8 4
Sko90 115534 0 0 342.8 4
Sko100a 152002 0.003 0 594.3 4
Sko100b 153890 0.005 0 482.6 4
Sko100c 147862 0 0 508.5 4
Sko100d 149576 0.009 0.007 509.4 4
Sko100e 149150 0.005 0 614.5 4
Sko100f 149036 0.005 0 482.6 4
Tai35a 2422002 0 0 18.3 4
Tai40a 3139370 0 0 29.0 3
Tai50a 4938796 0.360 0.321 55.0 4
Tai60a 7205962 0.410 0.388 95.3 4
Tai80a 13499184 0.870 0.850 239.5 4
Tai80b 818415043 0 0 239.0 4
Tai100a 21052466 0.596 0.575 483.3 5
Tai100b 1185996137 0 0 508.2 4
Tai150b 498896643 0.015 0.011 428.5 5
Tho150 8133398 0.030 0.027 556.6 5
Wil100 273038 0 0 482.6 4
Average 0.099 0.091 341.1

Table 9: Comparison of the TLBO-based hybrid algorithms with state-of-the-art algorithms on Type-1 problem instances with
parameter setting 2 (20 individuals, 100 generations, 1 processor, and [400,000-1,000,000] failures for RTS).

TLBO-RTS JRG-DivTS ITS SC-Tabu ACO/GA/LS
Instance BKS APD min. APD min. APD APD min. APD min.
Tai20a 70382 0 5.2 0 0.2 0 0.246 0.001 - -
Tai25a 1167256 0 8.3 0 0.2 0 0.239 0.03 - -
Tai30a 1818146 0 12.1 0 1.3 0 0.154 0.07 0.341 1.4
Tai35a 2422002 0 16.7 0 4.4 0 0.280 0.18 0.487 3.5
Tai40a 3139370 0.074 57.5 0.222 5.2 0.220 0.561 0.20 0.593 13.1
Tai50a 4938796 0.550 127.6 0.725 10.2 0.410 0.889 0.23 0.901 29.7
Tai60a 7205962 0.643 128.5 0.718 25.7 0.450 0.940 0.41 1.068 58.5
Tai80a 13499184 0.771 244.8 0.753 52.7 0.360 0.648 1.0 1.178 152.2
Tai100a 21052466 1.045 385.7 0.825 142.1 0.300 0.977 1.99 1.115 335.6
Average 0.342 109.5 0.360 26.88 0.193 0.548 0.45 0.812 84.9

24

Table 10: Comparison of the TLBO-based hybrid algorithms with state-of-the-art algorithms on Type-2 instances with parameter
setting 3 (30 individuals, 100 generations, 1 processor, and 5,000 x n failures for RTS).

TLBO-RTS JRG-DivTS ACO/GA/LS GA/SD LagSA GA/C-TS
Instance BKS APD min. APD min. APD min. APD min. APD min. APD min.
Sko42 15812 0 7.7 0 4.0 0 0.7 0.014 0.16 0.42 3.71 0 1.2
Sko49 23386 0.014 4.1 0.008 9.6 0.056 7.6 0.107 0.28 0.14 6.96 0.009 2.1
Sko56 34458 0.003 18.5 0.002 13.2 0.012 9.1 0.054 0.42 0.12 13.6 0.001 3.2
Sko64 48498 0.003 27.5 0 22.0 0.004 17.4 0.051 0.73 0.12 24.15 0 5.9
Sko72 66256 0.022 39.2 0.006 38.0 0.018 70.8 0.112 0.93 0.26 43.1 0.014 8.4
Sko81 90998 0.023 56.6 0.016 56.6 0.025 112.3 0.087 1.44 0.11 66.2 0.014 13.3
Sko90 115534 0.029 79.4 0.026 89.6 0.042 92.1 0.139 2.31 0.16 116.9 0.011 22.4
Sko100a 152002 0.040 109.5 0.027 129.2 0.021 171.0 0.114 3.42 0.13 170.8 0.018 33.6
Sko100b 153890 0.027 109.4 0.008 106.6 0.012 192.4 0.096 3.47 - - 0.011 34.1
Sko100c 147862 0.016 109.6 0.006 126.7 0.005 220.6 0.075 3.22 - - 0.003 33.8
Sko100d 149576 0.035 109.3 0.027 123.5 0.029 209.2 0.137 3.45 - - 0.049 33.9
Sko100e 149150 0.020 109.7 0.009 108.8 0.002 208.1 0.071 3.31 - - 0.002 30.7
Sko100f 149036 0.024 109.5 0.023 110.3 0.034 210.9 0.148 3.55 - - 0.032 35.7
Average 0.019 69.06 0.012 72.1 0.020 117.1 0.093 2.1 0.183 55.7 0.013 19.9

Table 11: Comparison of the TLBO-based hybrid algorithms with state-of-the-art algorithms on Type-3 instances with parameter
setting 3 (30 individuals, 100 generations, 1 processor, and 5,000 x n failures for RTS).

TLBO-RTS JRG-DivTS ACO/GA/LS GA/SD ITS GA-C/TS SC-TABU MOB
Instance BKS APD min. APD BPD APD APD APD APD
Kra30a 88900 0 1.0 0 0 - 0 - 0.714 -
Kra30b 91420 0 1.0 0 0 0.253 0 0 0.178 -
Kra32 88700 0 1.2 0 0 0.037 - 0 - -
Ste36a 9526 0 1.6 0 0 - 0.04 - - -
Ste36b 15852 0 1.6 0 0 0.246 0 0.005 - -
Ste36c 8239110 0 1.6 0 0 0.015 0 0 - -
Esc32b 168 0 1.2 0 0 0 0 0.039 - -
Esc32c 642 0 1.2 0 0 0 0 0 - -
Esc32d 200 0 1.2 0 0 0 0 0 - -
Esc32e 2 0 1.2 0 0 0 0 0 - 0
Esc32g 6 0 1.2 0 0 0 0 - - 0
Esc32h 438 0 1.2 0 0 0 0 - - 0
Esc64a 116 0 9.2 0 0 0 0 0 - 0
Esc128 64 0 75.0 0 0 0 0.01 0 - -
Average 0 7.1 0 0 0.045 0 0.004 0.446 0

25

Table 12: Comparison of the TLBO-based hybrid algorithms with state-of-the-art algorithms on Type-4 instances with parameter
setting 3 (30 individuals, 100 generations, 1 processor, and 5,000 x n failures for RTS).

TLBO-RTS JRG-DivTS ITS ACO/GA/LS SC-TABU
Instance BKS APD min. APD min. APD min. APD min. APD min.
Tai20b 122455319 0 0.3 0 0.2 0 0.01 - - 0 0.002
Tai25b 344355646 0 0.3 0 0.5 0 0.01 - - 0.007 0.010
Tai30b 637117113 0 1 0 1.3 0 0.01 0 0.3 0 0.034
Tai35b 283315445 0 1.5 0 2.4 0.02 0.08 0 0.3 0.059 -
Tai40b 637250948 0 2.3 0 3.2 0.01 0.2 0 0.6 0 0.092
Tai50b 458821517 0 4.4 0 8.8 0.02 0.5 0 2.9 0.002 0.23
Tai60b 608215054 0 7.6 0 17.1 0.04 1.7 0 2.8 0 0.41
Tai80b 818415043 0.006 18.8 0.006 58.2 0.23 3.0 0 60.3 0.003 1.0
Tai100b 1185996137 0.046 36.1 0.056 118.9 0.14 6.66 0.01 698.9 0.014 1.98
Average 0.006 8.05 0.07 23.4 0.051 1.35 0.001 109.4 0.009 0.47

Table 13: Comparison of the parallel TLBO-RTS algorithm results with other state-of-the-art parallel algorithms.

Instance BKS TLBO-RTS TB-MTS TB-COSEARCH CPTS QAP-IPGA PMTS
APD min. APD APD APD min. APD min. APD min.

Bur26d 3821225 0 9.2 0 0 0 0.4 0 14.7 - -
Nug30 6124 0 14.8 0 0 0 1.7 0 28.6 - -
Tai35b 283315445 0 22.4 0 0 0 2.4 0.820 33.3 - -
Ste36c 8239110 0 24.1 0 0 0 2.5 0 34.7 - -
Lipa50a 62093 0 68.8 0 0 0 11.2 0.840 35.5 - -
Sko64 48498 0 119.3 0.004 0.003 0 42.9 0.350 44.1 0 0.7
Tai64c 1855928 0 117.7 0 0 0 20.6 0 44.2 - -
Tai100a 21052466 0.596 483.3 0.814 0.544 0.589 261.2 0.893 52.1 - -
Tai100b 1185996137 0 508.2 0.397 0.135 0.001 241.0 0 52.3 - -
Sko100a 152002 0.003 594.3 0.073 0.054 0 304.8 0.290 52.4 0 16.9
Wil100 273038 0 482.6 0.035 0.009 0 316.6 0 52.7 - -
Tai150b 498896643 0.015 428.5 1.128 0.439 0.076 1,549.4 0.790 57.3 - -
Tho150 8133398 0.030 556.6 0.012 0.065 0.013 1,991.7 0.940 57.9 - -
Average 0.049 263.8 0.162 0.096 0.052 365.1 0.377 43.1 0 8.8

26

