CEng 783 Deep Learning

Department of Computer Engineering @ METU – Fall 2020

Instructor: Emre Akbas; Office B-208; emre@ceng.metu.edu.tr; Office hours by appointment.

Lectures: Tuesdays 09:40-12:30.

Web: http://bit.do/783-20201¹ and https://odtuclass.metu.edu.tr/.

Description: This course aims to teach the fundamentals of deep learning. We will study the three major types of deep neural networks, namely, Multi-layer Perceptrons, Convolutional Neural Networks, and Recurrent Neural Networks, and take an in-depth look at their use in various machine learning problems such as supervised learning, unsupervised learning, generative modeling, and reinforcement learning. We will also explore the most recent developments in the field and state of the art applications of deep neural networks in computer vision and natural language processing. Weekly tentative schedule is as follows.

Date		Topic	Activities
1	Oct 13	Course logistics. High-level introduction to deep learning.	Hw1 given Oct 14
2	Oct 20	Machine learning background and basics.	Hw1 due Oct 21
		An overview of supervised learning	
3	Oct 27	Artificial neurons. Multi-layer Perceptrons	
		Biological neuron, artificial neuron, Perceptron, Multilayer Percep-	
		trons, Activation Functions, Loss Functions, Backpropagation, Stochas-	
		tic Gradient Descent, Momentum	
4	Nov 3	Convolutional neural networks (CNNs)	
		Convolutional neural networks, Convolution, Connectivity types, Pool-	
		ing, AlexNet, Data augmentation, Dropout, Batch and group norm.	
5	Nov 10	Convolutional neural networks	
		More loss functions, Initialization, Implementing backpropagation in a	
		modular way, Adaptive learning rate methods, Deconvolution	
6	Nov 17	Applications of CNNs	
7	Nov 24	Recurrent neural networks (RNNs)	Hw2 given Nov 24
		Recurrent neural networks, Backpropagation through time, Long short-	
		term memory networks, Gated recurrent units, Encoder-decoder archi-	
		tectures	
8	Dec 1	Applications of RNNs	
9	Dec 8	Deep generative models	Hw2 due Dec 8
		Boltzmann machines, Deep belief networks, Generative Adversarial	
		Networks, Variational autoencoders	
10	Dec 15	Deep reinforcement learning (RL)	
		Intro to RL, Deep Q-Learning, Deep policy gradient, Applications of	
	D 00	RL	TTT 1
11	Dec 22	Misc. topics	Written exam
		Non-local neural networks, Transformers, Graph Neural Networks, Neu-	
10	D 20	ral architecture search	
12	Dec 29	Discussion on latest trends, limitations, open issues. Deep hierarchies	
10	T ~	in human vision	
13	Jan 5	Paper presentations & discussions	
14	Jan 12	Paper presentations & discussions	

Textbook: There is no official textbook for the class. We will follow the state of the art mainly with papers and by using parts of the "Deep Learning" book by Goodfellow et al., which is available online.

Grading: Homework assignments 45%; Written exam 35%; Paper presentation 15%; Participation 5%

Prerequisities: Foundational knowledge in machine learning, calculus, linear algebra. Proficiency in Python.

¹Full url: http://user.ceng.metu.edu.tr/~emre/Fall2020-DeepLearning.html