CEng 501 Deep Learning

Department of Computer Engineering @ METU – Fall 2022

Instructor: Emre Akbas; Office B-208; emre@ceng.metu.edu.tr; Office hours by appointment.

Lectures: Tuesday 09:40-12:30 @ BMB4.

Web: https://dar.vin/501-F22¹ and https://odtuclass.metu.edu.tr/.

Description: This course aims to teach the fundamentals of deep learning. We will study the three major types of deep neural networks, namely, Multi-layer Perceptrons, Convolutional Neural Networks, and Recurrent Neural Networks, and take an in-depth look at their use in various machine learning problems such as supervised learning, unsupervised learning, generative modeling, and reinforcement learning. We will also explore the most recent developments in the field and state of the art applications of deep neural networks in computer vision and natural language processing. Weekly tentative schedule is as follows.

Date		Topic	Activities
1	Oct 4	Course logistics. High-level introduction to deep learning.	Hw1 given Oct 5
2	Oct 11	Machine learning background and basics.	Hw1 due Oct 16
		An overview of supervised learning	
3	Oct 18	Artificial neurons. Multi-layer Perceptrons	
		Biological neuron, artificial neuron, Perceptron, Multilayer Percep-	
		trons, Activation Functions, Loss Functions, Backpropagation, Stochas-	
		tic Gradient Descent	
4	$Oct \ 25$	Convolutional neural networks (CNNs)	
		Connectivity types, Convolution, Convolutional neural networks, Pool-	
		ing, AlexNet, Data augmentation, Dropout, Batch and group norm.	
5	Nov 1	CNNs	
		More loss functions, Initialization, Implementing backpropagation in a	
		modular way, Adaptive learning rate methods, Deconvolution	
6	Nov 8	Applications of CNNs	Hw2 given Nov 8
7	Nov 15	Recurrent neural networks (RNNs)	
		Recurrent neural networks, Backpropagation through time, Long short-	
		term memory networks, Gated recurrent units, Encoder-decoder archi-	
	N 00		IL O L NL OO
8	Nov 22	Applications of RNNs	Hw2 due Nov 22
9	Nov 29	Self-attention, Transformers	
10	Dec 6	Applications of Transformers	Hw3 given Dec 6
11	Dec 13	Deep generative models	
		Boltzmann machines, Deep belief networks, Auto-encoders, Variational	
10	Dec 20	autoencoders, Generative Adversarial Networks, Diffusion	Hw3 due Dec 20
12	Dec 20	Deep reinforcement learning (RL)	nws due Dec 20
		Intro to RL, Deep Q-Learning, Deep policy gradient, Applications of RL	
13	Dec 27	RL Misc. topics	
10	Dec 21	Double descent, Dynamic Filter Networks, Non-local neural networks,	
		Graph Neural Networks, Neural architecture search	
14	Jan 3	Misc. topics – latest trends, limitations, open issues	Exam
1.4	Jan J	mise. topics fatest trends, initiations, open issues	DAalli

Textbook: There is no official textbook for the class. We will follow the state of the art mainly with papers and by using parts of the "Deep Learning" book by Goodfellow et al., which is available online.

Grading: Homework assignments 55% (15+20+20); Written exam 40%; Participation 5%

Prerequisities: Foundational knowledge in machine learning, calculus, linear algebra. Proficiency in Python.

¹Full url: http://user.ceng.metu.edu.tr/~emre/Fall2022-DeepLearning.html