CEng 501 Deep Learning

Department of Computer Engineering @ METU – Fall 2023

Instructor: Emre Akbas; Office B-208; emre@ceng.metu.edu.tr; Office hours: https://dar.vin/ea-oh.

Lectures: Monday 09:40-12:30 @ BMB4.

Web: https://dar.vin/501-F231 and https://odtuclass.metu.edu.tr/.

Description: This course aims to teach the fundamentals of deep learning. We will study the three major types of deep neural networks, namely, Multi-layer Perceptrons, Convolutional Neural Networks, and Recurrent Neural Networks, and take an in-depth look at their use in supervised learning, unsupervised learning, generative modeling and reinforcement learning. We will also explore the most recent developments in the field and state of the art applications of deep neural networks in computer vision and natural language processing. Weekly tentative schedule is as follows.

Date		Topic	Activities
1	Oct 2	Course logistics. High-level introduction to deep learning.	Hw1 given Oct 2
2	Oct 9	Machine learning background and basics.	Hw1 due Oct 11
		An overview of supervised learning	
3	Oct 16	Artificial neurons. Multi-layer Perceptrons	
		Biological neuron, artificial neuron, Perceptron, Multilayer Percep-	
		trons, Activation Functions, Loss Functions, Backpropagation, Stochas-	
		tic Gradient Descent	
4	Oct 23	Convolutional neural networks (CNNs)	
		Connectivity types, Convolution, Convolutional neural networks, Pool-	
		ing, AlexNet, Data augmentation, Dropout, Batch and group norm.	
5	Oct 30	CNNs	
		More loss functions, Initialization, Implementing backpropagation in a	
		modular way, Adaptive learning rate methods, Deconvolution	
6	Nov 6	Applications of CNNs	Hw2 given Nov 6
		Practical aspects of training deep models	
7	Nov 13	Recurrent neural networks (RNNs)	Hw2 due Nov 19
		Recurrent neural networks, Backpropagation through time, Long short-	
		term memory networks, Gated recurrent units, Encoder-decoder archi-	
		tectures	
8	Nov 20	Applications of RNNs	
9	Nov 27	Self-attention, Transformers	
10	Dec 4	Applications of Transformers	Hw3 given Dec 4
11	Dec 11	Deep generative models	Hw3 due Dec 17
		Boltzmann machines, Deep belief networks, Auto-encoders, Variational	
		autoencoders, Generative Adversarial Networks, Diffusion	
12	Dec 18	Deep reinforcement learning (RL)	
		Intro to RL, Deep Q-Learning, Deep policy gradient, Applications of	
		RL	
13	Dec 25	Misc. topics – latest trends, limitations, open issues	
14	Jan 1	No class – New year's day	

Textbook: There is no official textbook for the class. We will follow the state of the art mainly with papers and by using parts of the "Deep Learning" book by Goodfellow et al., which is available online.

Grading: Homework assignments 55% (15+20+20); Final exam 40%; Participation 5%

Prerequisities: Foundational knowledge in machine learning, calculus, linear algebra. Proficiency in Python.

 $^{^1\}mathrm{Full}\ \mathrm{url}$: http://user.ceng.metu.edu.tr/~emre/Fall2023-DeepLearning.html