
 METU Department of Computer Eng

Ceng 302 Introduction to DBMS

Basic Concepts

by

Pinar Senkul

resources: mostly froom Elmasri, Navathe

and other books

Data Models

 Data Model: A set of concepts to describe the
structure of a database, and certain constraints
that the database should obey.

Categories of data models

● Conceptual (high-level, semantic) data models:
Provide concepts that are close to the way many
users perceive data. (Also called entity-based or
object-based data models.)
e.g. ER model

● Implementation (representational) data models:
Provide concepts that fall between the above two,
balancing user views with some computer storage
details.

 e.g. Relational model, OO model, network model
● Physical (low-level, internal) data models:

Provide concepts that describe details of how data
is stored in the computer.

History of Data Models

● Network Model: the first one to be implemented by
Honeywell in 1964-65 (IDS System). Adopted heavily due
to the support by CODASYL (CODASYL - DBTG report of
1971). Later implemented in a large variety of systems -
IDMS (Cullinet - now CA), DMS 1100 (Unisys), IMAGE
(H.P.), VAX -DBMS (Digital Equipment Corp.).

● Hierarchical Data Model: implemented in a joint effort by
IBM and North American Rockwell around 1965. Resulted
in the IMS family of systems. The most popular model.
Other system based on this model: System 2k (SAS inc.)

● Relational Model: proposed in 1970 by E.F. Codd (IBM),
first commercial system in 1981-82. Now in several
commercial products (DB2, ORACLE, SQL Server,
SYBASE, INFORMIX).

History of Data Models

● Object-oriented Data Model(s): several models have been
proposed for implementing in a database system. One set
comprises models of persistent O-O Programming
Languages such as C++ (e.g., in OBJECTSTORE or
VERSANT), and Smalltalk (e.g., in GEMSTONE).
Additionally, systems like O2, ORION (at MCC - then
ITASCA), IRIS (at H.P.- used in Open OODB).

● Object-Relational Models: Most Recent Trend. Started with
Informix Universal Server. Exemplified in the latest
versions of Oracle-10i, DB2, and SQL Server etc. systems.

Network Model

• ADVANTAGES:
• Network Model is able to model complex relationships and

represents semantics of add/delete on the relationships.
• Can handle most situations for modeling using record types and

relationship types.
• Language is navigational; uses constructs like FIND, FIND

member, FIND owner, FIND NEXT within set, GET etc.
Programmers can do optimal navigation through the database.

• DISADVANTAGES:
• Navigational and procedural nature of processing
• Database contains a complex array of pointers that thread

through a set of records.
 Little scope for automated "query optimization”

Hierarchical Model

• ADVANTAGES:
• Hierarchical Model is simple to construct and operate on
• Corresponds to a number of natural hierarchically organized

domains - e.g., assemblies in manufacturing, personnel
organization in companies

• Language is simple; uses constructs like GET, GET UNIQUE,
GET NEXT, GET NEXT WITHIN PARENT etc.

• DISADVANTAGES:
• Navigational and procedural nature of processing
• Database is visualized as a linear arrangement of records
• Little scope for "query optimization"

Relational Model

• Data is described as a set of relations (can be thought of
as a set of records, or a table of values)

• Records are not considered to be linear (as opposed to
previous models), therefore access to the data is more
efficient

• Sophisticated algorithms for query optimization

Schemas vs. Instances

• Database Schema: The description of a database.
Includes descriptions of the database structure and
the constraints that should hold on the database.

• Schema Diagram: A diagrammatic display of
(some aspects of) a database schema.

• Database Instance: The actual data stored in a
database at a particular moment in time. Also
called database state (or occurrence).

Database Schema Vs. Database State

• Database State: Refers to the content of a database at
a moment in time (snapshot).

• Initial Database State: Refers to the database when it
is loaded

• Valid State: A state that satisfies the structure and
constraints of the database.

• Distinction
• The database schema changes very infrequently. The

database state changes every time the database is updated.
• Schema is also called intension, whereas state is called

extension.

Three-Schema Architecture

• Defines DBMS schemas at three levels:
• Internal (physical) schema at the internal level to

describe physical storage structures and access paths.
Typically uses a physical data model.

• Conceptual schema at the conceptual level to describe
the structure and constraints for the whole database for a
community of users. Uses a conceptual or an
implementation data model.

• External schemas at the external level to describe the
various user views. Usually uses the same data model as
the conceptual level.

Three-Schema Architecture

Data Independence

• Logical Data Independence: The capacity to change the
conceptual schema without having to change the external
schemas and their application programs.

• Physical Data Independence: The capacity to change the
internal schema without having to change the conceptual
schema.

DBMS Languages

• Data Definition Language (DDL): to specify the
conceptual schema of a database. In many DBMSs,
the DDL is also used to define internal and external
schemas (views).

• In some DBMSs, separate storage definition
language (SDL) and view definition language
(VDL) are used to define internal and external
schemas.

DBMS Languages

• Data Manipulation Language (DML): Used to specify
database retrievals and updates.

• DML commands (data sublanguage) can be embedded
in a general-purpose programming language (host
language), such as COBOL, C or an Assembly
Language.

• Alternatively, stand-alone DML commands can be
applied directly (query language).

DBMS Languages

• SQL is the relational database language

• It contains DDL, VDL, DML

• SDL was a component in the early versions but it has been
removed in the later versions so that SQL becomes a
language for external and conceptual levels only.

Transaction Management

• Transaction: atomic execution of a user program in DBMS
(sequence of read and write operations)

• DBMS should schedule the concurrent transactions so that
each user can safely ignore the fact that others are accessing
the data concurrently.

• To provide a correct interleaving of transactions, locking
protocol is used

Recovery

• In case of failure, DBMS must ensure the correctness of the
date

• The results of complete transactions should still hold.

• The effect of incomplete transactions should be undone.

• To provide this DBMS keeps the log of write operations.

Structure
of a
DBMS

Centralized and Client-Server Architectures

• Centralized DBMS: combines everything into single system
including- DBMS software, hardware, application programs
and user interface processing software.

Basic Client-Server Architectures

• Specialized Servers with Specialized functions

• Clients

• DBMS Server

Specialized Servers with Specialized functions:

• File Servers

• Printer Servers

• Web Servers

• E-mail Servers

Clients:

• Provide appropriate interfaces and a client-version
of the system to access and utilize the server
resources.

• Clients maybe diskless machines or PCs or
Workstations with disks with only the client
software installed.

• Connected to the servers via some form of a
network.
 (LAN: local area network, wireless network,
etc.)

DBMS Server

• Provides database query and transaction services to the
clients

• Sometimes called query and transaction servers

Two Tier Client-Server Architecture

• User Interface Programs and Application Programs run
on the client side

• Interface called ODBC (Open Database Connectivity)
provides an Application program interface (API) allow client
side programs to call the DBMS. Most DBMS vendors
provide ODBC drivers.

Two Tier Client-Server Architecture

• A client program may connect to several DBMSs.
• Other variations of clients are possible: e.g., in some

DBMSs, more functionality is transferred to clients
including data dictionary functions, optimization
and recovery across multiple servers, etc. In such
situations the server may be called the Data Server.

Three Tier Client-Server Architecture

• Common for Web applications
• Intermediate Layer called Application Server or Web

Server:
• stores the web connectivity software and the rules and

business logic (constraints) part of the application used to
access the right amount of data from the database server

• acts like a conduit for sending partially processed data
between the database server and the client.

• Additional Features- Security:
• encrypt the data at the server before transmission
• decrypt data at the client

Classification of DBMSs

• Based on the data model used:

• Traditional: Relational, Network, Hierarchical.

• Emerging: Object-oriented, Object-relational.

• Other classifications:

• Single-user (typically used with micro- computers) vs.
multi-user (most DBMSs).

• Centralized (uses a single computer with one database)
vs. distributed /client-server(uses multiple computers,
multiple databases)

Variations of Distributed Environments:

• Homogeneous DDBMS

• Heterogeneous DDBMS

• Federated or Multidatabase Systems

