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Abstract. Gauss-Seidel (GS) is a widely-used iterative method for solving sparse linear system5
of equations and also known to be effective as a smoother in algebraic multigrid methods. Paralleliza-6
tion of GS is a challenging task since solving the sparse lower triangular system in GS constitutes7
a sequential bottleneck at each iteration. We propose a distributed-memory parallel GS (dmpGS)8
by implementing a parallel sparse triangular solver (stSpike) based on the Spike algorithm. stSpike9
decouples the global triangular system into smaller systems that can be solved concurrently and10
requires the solution of a much smaller reduced sparse lower triangular system which constitutes a11
sequential bottleneck. In order to alleviate this bottleneck and to reduce the communication over-12
head of dmpGS, we propose a partitioning and reordering model consisting of two phases. The first13
phase is a novel hypergraph partitioning model whose partitioning objective simultaneously encodes14
minimizing the reduced system size and the communication volume. The second phase is an in-block15
row reordering method for decreasing the nonzero count of the reduced system. Extensive experi-16
ments on a dataset consisting of 359 sparse linear systems verify the effectiveness of the proposed17
partitioning and reordering model in terms of reducing the communication and the sequential com-18
putational overheads. Parallel experiments on 12 large systems using up to 320 cores demonstrate19
that the proposed model significantly improves the scalability of dmpGS.20
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1. Introduction. A wide range of applications in science and engineering re-24

quire the solution of a sparse linear system of equations25

(1.1) Ax = f,26

where A ∈ Rm×m is a general large sparse invertible matrix; and x and f ∈ Rm are27

the unknown and right hand side vectors, respectively. Depending on the numerical28

and structural properties of the coefficient matrix, various solvers have been proposed.29

Direct solvers require a sequence of operations: reordering and partitioning, sym-30

bolic factorization, numerical factorization, and finally obtaining the solution, typ-31

ically via forward and backward sweeps. The reordering and partitioning schemes32

are used both to reduce the amount of fill-in and to enhance the parallel scalability.33

Symbolic factorization is used to determine the sparsity structure of the factors, and34

finally the numerical factorization (such as sparse LU [23], QR [34], SVD [13] and WZ35

[17]) is computed. Direct solvers are robust and, in general, are known to be very36

scalable during the factorization phase [5, 43], but not so much during the triangular37

solution phase [45].38
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Iterative solvers, on the other hand, are known to be more scalable but not as39

robust as direct solvers. Nevertheless, they are still preferred for large sparse systems40

due to their lower memory requirements. Starting with an initial guess for the solution41

vector, these methods improve the solution at each iteration. There are two main types42

of iterative solvers: stationary and non-stationary methods. Stationary methods have43

the general form x(k+1) =φ(x(k)) where x(k) is the solution vector at the kth iteration44

and φ(·) is a function which does not change during the iterations. Some examples45

are Jacobi, Gauss-Seidel, Successive Over Relaxation (SOR) and Symmetric SOR46

(SSOR) [34, 59]. Non-stationary methods have the form x(k+1) =φ(k)(x(k)) in which47

the function φ(k)(·) changes at each iteration. Some examples are projection methods,48

Krylov subspace methods and Chebyshev iterations [9, 35, 59].49

In practice, linear systems are preconditioned to reduce the required number of50

iterations of the iterative solvers and to improve their robustness. There could be a51

variety of choices of preconditioners, some are problem specific and others are more52

general. General classical preconditioners include, incomplete factorization based pre-53

conditoners (such as incomplete LU [58, 59]), sparse approximate inverse [11], alge-54

braic multigrid (AMG) [51, 57], and others. We refer the reader to [10] for a detailed55

survey of preconditioners. Among these preconditioners, AMG has been widely used56

recently in many applications [12, 30, 53] which is a generalization of Geometric Multi-57

grid (GMG) [70]. GMG requires some knowledge of the physical problem and/or its58

geometry, while there is no such requirement for AMG. AMG can be also used as a59

direct solver [36, 71]. Furthermore, AMG typically uses another iterative method as60

a “smoother” which is required to reduce the error at each level and the smoother61

itself can also be preconditioned. More recently a preferred smoother for AMG is62

Gauss-Seidel [3, 16, 67], as in BoomerAMG [36] and Trilinos-ML [32].63

Gauss-Seidel (GS) is a well-known stationary iterative method which solves the64

linear system (1.1) by splitting the coefficient matrix into its lower and strictly upper65

triangular parts, A=L+U . Then the solution is obtained iteratively by66

x(k+1) = L−1(f − Ux(k)).67

At each iteration of GS, both a lower triangular system is required to be solved68

and an upper triangular SpMV (sparse matrix-vector multiplication) is performed.69

GS is guaranteed to converge if A is strictly or irreducibly diagonal dominant [7]70

or symmetric positive definite [34]. It is known to be effective and preferred as a71

smoother for a wide variety of problems [3, 72]. However, a true distributed-memory72

parallelization of GS is considered to be a challenging task [3].73

In the literature, parallel GS implementations are proposed either to solve the74

original problem (1.1) [6, 42, 62] or to use it as a smoother in multigrid schemes75

[38, 64, 73]. A commonly-used method to parallelize GS by finding independent76

sub-tasks is the red-black coloring strategy [2, 31, 41], which has been extended to77

multi-coloring [33, 52, 4] to attain more parallelism for complicated regular problems.78

However, multi-colored GS is not feasible for some cases such as unstructured finite79

element applications since the number of colors becomes too large [42]. Another80

approach is to use a processor-localized GS in which each processor performs GS as a81

subdomain solver, but its convergence rate is low and may diverge for a large number82

of processors [3].83

The main difficulty in parallelizing GS inherits from the sequential nature of tri-84

angular solve included in GS [72]. Along with its importance in several applications,85

solving triangular systems often constitutes a sequential bottleneck because of the86

dependencies between unknowns in forward or backward substitutions. In [60], a87
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parallel banded triangular solver is proposed. This algorithm is extended for solving88

banded linear systems [21, 28] and further improved by implementing various alterna-89

tives in each step of the factorization including the solution of the reduced system in90

[55, 56, 63]. At this point, the algorithm is called Spike algorithm. For sparse linear91

systems, Spike is also proposed as a solver for a banded preconditioner that is sparse92

within the band [49, 61], and it is generalized for sparse linear systems [15, 47, 48].93

In [69], a Spike-based parallel solver for general tridiagonal systems is implemented94

for GPU architectures. A recent study [22] proposes a multi-threaded parallel solver95

for sparse triangular systems by extending the Spike algorithm [60].96

We propose a distributed-memory parallel GS (dmpGS) by implementing and97

using a distributed-memory version of the sparse triangular Spike (stSpike) algorithm.98

stSpike enables obtaining the solution of the system by solving independent sparse99

triangular subsystems and a smaller reduced triangular system. Solving this reduced100

system constitutes a sequential computational bottleneck in dmpGS. The size of this101

reduced system is equal to the number of nonzero columns in the lower off-diagonal102

blocks of the coefficient matrix. The computational cost of solving the reduced system103

is proportional to its nonzero count. The communication volume of dmpGS is equal104

to the number of nonzero column segments in the off-diagonal blocks plus the reduced105

system size. Both of these communication and computational overheads highly depend106

on the sparsity structure of the coefficient matrix.107

We note that solving the reduced system is embarrassingly parallel if the coeffi-108

cient matrix is banded and diagonally dominant [50, 54]. In case the coefficient matrix109

is not diagonally dominant, another way to alleviate the cost of solving the reduced110

system is to further parallelize the solution of the reduced system which has been done111

iteratively [55], or recursively [15, 56]. Instead, we propose to minimize the size and112

the nonzero count of the reduced system, together with the communication volume,113

and show that the resulting reduced system is so small that further parallelization of114

the solution of the reduced system is often no longer needed. For attaining these min-115

imization objectives, we propose a partitioning and reordering model that exploits the116

sparsity of the coefficient matrix. The proposed model consists of two phases. The117

first phase is a row-wise partitioning of the coefficient matrix, whereas the second118

phase is a row reordering within the row blocks induced by the partition obtained in119

the first phase.120

For the first phase, we propose a novel hypergraph model that extends and en-121

hances the conventional column-net model for simultaneously decreasing the reduced122

system size and the communication volume. We introduce vertex fixing, net anchor-123

ing and net splitting schemes within the recursive bipartitioning framework to encode124

the minimization of the number of nonzero column segments in the lower triangular125

part of the resulting partition.126

For the second phase, we propose an intelligent in-block row reordering method127

with the aim of decreasing the computational costs of both forming the coefficient128

matrix of the reduced system once and solving the reduced system at each iteration.129

The rest of the paper is organized as follows. Section 2 provides the background130

information on hypergraph and sparse matrix partitioning, and stSpike. In section 3,131

we discuss the dmpGS algorithm along with its communication and computational132

costs. The proposed partitioning and reordering model for dmpGS is introduced in133

section 4. We provide the experimental results in section 5 and conclude in section 6.134

2. Background.135
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2.1. Hypergraph Partitioning. A hypergraph H=(V,N ) consists of a set of136

vertices V = {vi}1≤i≤n and a set of nets N = {nj}1≤j≤m. Each net nj ∈N connects137

a subset of vertices in V, which is referred to as the pins of nj , and denoted by138

Pins(nj ,H). Each vertex vi is assigned a weight w(vi) and each net nj is assigned a139

cost cost(nj). Π = {V1,V2, . . . ,Vk} denotes a K-way partition of H, where parts are140

mutually disjoint and exhaustive. The weight of a part is the sum of the weights of141

vertices in that part. For a given partition, if a net connects at least one vertex in142

a part, it is said to connect that part. Connectivity λ(nj) of net nj is the number143

of parts connected by nj . If a net nj connects multiple parts (i.e. λ(nj)> 1), it is144

called cut; and otherwise internal (i.e. λ(nj)=1). The set of cut nets is denoted by145

Ncut. The cutsize of Π is defined in various ways. Two most commonly used cutsize146

definitions are the cut-net and the connectivity metrics [18], which are respectively147

defined as148

(2.1) cscutn(Π) =
∑

n∈Ncut

cost(n), and csconn(Π) =
∑

n∈Ncut

(λ(n)−1)cost(n).149

Hypergraph partitioning (HP) is the problem of finding a K-way partition which150

minimizes the cutsize and satisfies the balance criterion Wmax ≤Wavg(1+ε). Here,151

ε is the given maximum allowable imbalance ratio; and Wmax and Wavg respectively152

denote the maximum and average part weights. HP with fixed vertices ensures to153

assign some preassigned vertices which are called fixed vertices to the respective parts.154

The recursive bipartitioning (RB) is a widely used paradigm to obtain a K-way155

HP. It first partitions the hypergraph into two and then each part is further biparti-156

tioned recursively until reaching the desired number of parts K. In order to encode157

the cut-net and connectivity metrics, cut-net removal and cut-net splitting methods158

are utilized in the RB-based HP, respectively [18].159

2.2. Sparse Matrix Partitioning with HP. Several HP models and methods160

have been proposed and successfully utilized for obtaining matrix partitioning [8, 14,161

19, 20, 25, 39, 65, 68]. Among these, the most relevant one is the column-net model162

[18] that represents a given sparse matrix A as a hypergraph HCN (A) in which nets163

and vertices respectively represent columns and rows. In this model, vertex vi is164

added to the pin list of net nj for each nonzero A(i, j) in A. Throughout the paper,165

ri and cj respectively denote row i and column j.166

A K-way ordered partition Π=〈V1,V2, . . . ,VK〉 of the column-net modelHCN (A)167

is decoded as a partial reordering of the rows of A in such a way that the rows168

corresponding to vertices in Vk are ordered before the rows corresponding to the169

vertices in V` for k<`. This is a partial reordering since the rows corresponding to the170

vertices in the same part can be ordered arbitrarily. Let Brk denote the kth row block171

which contains the rows corresponding to the vertices in Vk. We consider a symmetric172

row-column reordering that yields a 2D grid structure of A. The submatrix consisting173

of the rows of Brk and columns of `th column block Bc` is referred as block-(k, `) of174

A. A column is said to connect a row block Brk if it contains at least one nonzero in175

Brk. A column is called cut if it connects more than one row block. For a matrix with176

nonzero diagonal entries, each column connects a diagonal block and becomes a cut177

column if it connects at least one off-diagonal block.178

In the column-net model with unit net cost, the partitioning objective using the179

connectivity and cut-net metrics (2.1) respectively encode the minimization of the180

number of nonzero column segments in off-diagonal blocks and the number of cut181

columns. The former partitioning objective is successfully utilized in encoding the182
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minimization of the row parallel SpMV operations [18].183

2.3. Sparse Triangular Spike (stSpike) Algorithm. We describe stSpike for184

lower triangular systems since the algorithm for the upper triangular case is similar.185

Given a lower triangular linear system of equations186

(2.2) Ly = b,187

a DS factorization of sparse lower triangular matrix L is computed as L=DS, where188

D is the lower block diagonal of L and S is the Spike matrix. These blocks are189

assumed to be obtained by matrix partitioning. Multiplying both sides of (2.2) from190

the left by D−1, we obtain a modified system191

(2.3) Sy = g,192

where g=D−1b and S =D−1L. By splitting L=D+R, we obtain S = I+G where193

G=D−1R, and R is the block off-diagonal part of L. The sparse triangular system194

DG=R with multiple right hand side vectors can be solved for the block rows of G195

independently with perfect parallelism.196

The nonzero column segments of R constitute dense column segments (called197

spikes) in the off-diagonal blocks of S. The block diagonal of S is identity. Ad-198

ditional nonzeros (fill-in) are introduced within the off-diagonal blocks of S only in199

the locations below the top nonzero (having the smallest row index) for each nonzero200

column segment of R. The submatrix consisting of rows and columns C of S, namely201

Ŝ=S(C, C), constitutes an independent reduced system where C is the set of nonzero202

columns of R, i.e., cut columns of L. Then the reduced system is of the form203

(2.4) Ŝŷ = ĝ,204

where ĝ = g(C) and ŷ = y(C), which can be solved independent from the rest of the205

unknowns in y. After solving the reduced system, the only remaining computation206

for retrieving the solution of the original system is207

(2.5) y = g −D−1(R̂ŷ),208

which can be obtained in perfect parallelism where R̂=R(:, C) (in MATLAB notation).209

We only partially compute S just to form Ŝ, since forming S explicitly is expensive210

and requires a large amount of memory. Partial computation of S constitutes the211

factorization phase, whereas computation of ĝ, solving (2.4) and (2.5) constitutes the212

solution phase of stSpike.213

An example L matrix and the corresponding S and Ŝ matrices are shown in214

Figure 1. The reduced system indices C = {1, 3, 4, 6, 7, 9, 11} are colored in red and215

circled. The nonzeros that constitute the reduced system are bold and colored in red.216

The background colors of the original nonzeros and possible fill-in are green and blue,217

respectively. Depending on the sparsity structure of the corresponding column and218

block diagonal, spikes may not fill the entire column segment. For example, nonzero219

L(4, 1) in block-(2,1) of L leads to the spike consisting of three nonzeros in the first220

column of block-(2,1) of S.221

3. Distributed-Memory Parallel GS (dmpGS) Algorithm. The pseudo-222

code of dmpGS is given in Algorithm 3.1 for processor Pk in a K-processor system.223

Matrix A is assumed to be partitioned into K row blocks, where mk denotes the224
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11   
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14    

(a) Matrix L

① 2 ③④ 5 ⑥⑦ 8 ⑨ 10 ⑪ 12 13 14

① 1

2 1

③ 1

④  1

5   1

⑥ 1

⑦   1

8  1

⑨   1

10    1

⑪   1

12   1

13    1

14     1

(b) Matrix S

①③④⑥⑦⑨⑪

① 1

③ 1

④  1

⑥ 1

⑦   1

⑨   1

⑪   1

(c) Matrix Ŝ

Fig. 1: Sparsity structure of L and resulting S and Ŝ matrices derived from stSpike.

number of rows in the kth row block. In the algorithm, Rk, Dk and Uk respectively225

denote the kth row block of the strictly block lower triangular, lower triangular part of226

the block diagonal, and strictly upper triangular parts of A as shown in Figure 2. The227

number of columns in Rk, Dk and Uk are respectively
∑k−1
i=1 mi, mk and

∑K
i=kmi.228

fk, gk, xk, hk, wk and zk denote the local subvectors of size mk that are computed by229

Pk. These subvectors are partitioned conformably with row-wise partitioning of A230

as shown in Figure 2. Ŝ, x̂ and ĝ respectively denote the |C|×|C| coefficient matrix,231

|C|×1 unknown and |C|×1 right hand side vectors of the reduced system in stSpike.232

Ck denotes the subset of C corresponding to the row indices in Rk.233

In Algorithm 3.1, lines 2-7 denote the factorization phase of stSpike which com-234

putes Ŝ. This phase is done only once after which we proceed with the GS iterations in235

lines 8-22. Each dmpGS iteration involves two SpMVs at lines 11 and 20, two vector236

subtraction operations at lines 12 and 22, an independent sparse triangular solve at237

line 13, a reduced system solution at line 17, which enables independent sparse trian-238

gular solves at line 21. The upper and lower triangular SpMV operations are incurred239

by the GS and stSpike algorithms, respectively. These two SpMV operations incur240

communication of x-vector entries depending on the sparsity structures of the upper241

triangular U and lower triangular L matrices, respectively. Conformable partitioning242

of the vectors avoids communication during vector subtraction operations.243

At lines 9–10, communication operations are performed for local SpMV (line244

11). After Pk receives all necessary non-local x-vector entries, it forms its augmented245

vector x̆. Each processor sends the selected entries of its gk vector to P1 (line 14) to246

form the right hand side vector ĝ (line 16) for the sequential solution of the reduced247

system to obtain x̂ (line 17). Here x̂ corresponds to those unknowns in x which are at248

the interface of the partitioning of L and obtaining them decouples the global lower249

triangular system into independent much smaller systems. P1 sends only those x-250

vector entries that are required by other processors (line 18) so that each processor251

Fig. 2: Four-way row-wise partition of matrix A and vectors x and f
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Algorithm 3.1 Distributed-Memory Parallel Gauss Seidel (dmpGS) for processor Pk
Input: Submatrices Rk, Dk, Uk, and right-hand side subvector fk
Output: Subvector xk

1: Choose an initial guess for xk
2: if 2≤k≤K−1 then
3: Gk ← D−1

k Rk B local partial sparse triangular solve with multiple RHS

4: Form and send Ĝk to processor P1

5: if k = 1 then
6: Receive Ĝ` from P` for 2≤`≤K−1 to form Ĝ
7: Ŝ ← Ĝ+ I

8: while not converged do
9: Send required local xk entries to respective processors in {P1, . . . , Pk−1}

10: Receive non-local x` entries from processors in {Pk+1, . . . , PK} to form x̆k
11: hk ← Ukx̆k B local SpMV
12: hk ← fk − hk
13: gk ← D−1

k hk B local sparse triangular solve
14: if 2≤k≤K−1 then Send {gk(i)}i∈Ck to processor P1

15: if k = 1 then
16: Receive {g`(i)}i∈Ck from P` for 2≤`≤K − 1 to form ĝ

17: x̂← Ŝ−1ĝ B solve reduced system
18: Send x̂ entries to requiring processors

19: if k 6= 1 then Receive required x̂-entries to form x̄k
20: zk ← Rkx̄k B local SpMV
21: wk ← D−1

k zk B local sparse triangular solve
22: xk ← gk − wk

Pk forms its x̄ vector (line 19) to perform local SpMV (line 20).252

The communication overhead in each iteration of dmpGS is as follows. The253

communication volume incurred by h=Ux (line 11) and z =Rx (line 20) are equal254

to the number of nonzero column segments in the off-diagonal blocks of U and L,255

respectively. Thus the communication volume required by these two SpMVs is equal to256

the total number of off-diagonal nonzero column segments in A (offD nzCol seg(A)).257

The volume of communication incurred at line 16 is equal to the size of the reduced258

system, |C|. Therefore, the total communication volume of dmpGS is259

(3.1) commVol = offD nzCol seg(A) + |C|.260

Note that the different row blocks (Rk) seem to vary in the number of columns261

because of the triangular structure of the problem. On the other hand, the compu-262

tational load imbalance is alleviated by the proposed partitioning model which also263

gathers most of the nonzeros to the diagonal blocks.264

4. The Proposed Partitioning and Reordering Model. We propose a two-265

phase model for reducing the communication overhead of dmpGS while maintaining266

computational balance as well as reducing the sequential computational overhead in-267

curred by solving the reduced system at each iteration. This computational overhead268

is proportional to the number of nonzeros in the off-diagonals of Ŝ. In subsection 4.1,269

we propose a novel HP model as the first phase which simultaneously encodes the min-270

imization of the reduced system size |C| and the communication volume. Decreasing271
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|C| is important not only because it directly contributes to reducing the commu-272

nication volume, but it also relates to decreasing the computational overhead. In273

subsection 4.2, we propose an in-block reordering method as the second phase which274

refines the improvement further by decreasing the number of nonzeros in Ŝ. We pro-275

vide the illustrations showing the effect of the proposed partitioning and reordering276

model on a sample matrix in subsection 4.3.277

4.1. Hypergraph Partitioning Model. The partitioning objective in this278

phase is minimizing the sum of communication volume overhead (3.1) and sequential279

overhead costs with proper scaling:280

PartObj = commV ol + (α−1)|C|281

= (offD nzCol segs(A) + |C|) + (α−1)|C|282

= offD nzCol segs(A) + α|C|(4.1)283284

Here α denotes the scaling factor between the effect of the reduced system size and285

the number of off-diagonal nonzero column segments on the overall overhead.286

4.1.1. Definitions and Layout. We define a column as L-cut if it connects at287

least one off-diagonal block in the lower triangular part. That is, a column ci in kth288

column block Bck is L-cut if it connects a row block Br` with `>k. Since L-cut columns289

of A are the nonzero columns of R, the number of L-cut columns (L-cut cols(A)) is290

equal to the reduced system size, |C|. Therefore, the partitioning objective (4.1) can291

be rewritten as292

(4.2) PartObj = offD nzCol segs(A) + α(L-cut cols(A)).293

Let HCN (A)=(V,N ) be the column-net hypergraph of an m×m sparse matrix A294

with nonzero diagonal entries. An ordered partition ΠK =〈V1,V2, . . . ,VK〉 ofHCN (A)295

is decoded as a partial symmetric row and column reordering of A as explained in296

section 2.2. Each net ni of HCN (A) connects vertex vi since A(i, i) 6= 0 for each297

1≤ i≤m. A net ni with vi∈Vk is called L-cut if it connects at least one vertex part298

V` such that `>k. The set of L-cut nets is denoted as NLcut. We define a new type299

of cutsize, which we call the L-cut-net metric, as300

(4.3) csLcut(ΠK) =
∑

n∈NLcut

cost(n).301

Finally, the cost of partition ΠK is defined as the sum of connectivity metric with302

unit net cost and L-cut-net metric with net cost α, i.e.,303

(4.4) costconn+Lcut(ΠK) =
∑

n∈Ncut

(λ(n)−1) + α|NLcut|.304

Here, each cut net n incurs λ(n)−1, and each L-cut net incurs α to the cutsize.305

Lemma 4.1. A column ci of A is L-cut iff net ni of HCN (A) is L-cut.306

Proof. Due to symmetric row-column ordering, ci is in Bck iff ri is in Brk, which307

corresponds to vi∈Vk. Furthermore, ci connects Br` iff ni connects V`. Therefore, ci308

in Bck connects Br` iff ni with vi∈Vk connects V`, where `>k.309

Proposition 4.2. Minimizing costconn+Lcut(ΠK) for a K-way partition ΠK of310

HCN (A) corresponds to minimizing the partitioning objective (4.2).311
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Proof. By Lemma 4.1, the number of L-cut nets in HCN (A) is equal to the312

number of L-cut columns in A. Thus α|NLcut|=α(L-cut cols(A)). Furthermore,313

it is known by [18] that
∑
n∈Ncut

(λ(n)−1)=offD nzCol segs(A).314

Each vertex is associated with a weight equal to the number of nonzeros in the re-315

spective row of the matrix, i.e., w(vi)=nnz(A(i, :)). Thus, the partitioning constraint316

of maintaining balance on part weights approximately encodes the computational load317

balance during aggregate two triangular SpMVs (lines 11 and 20) and two triangular318

solves (lines 13 and 21).319

The cut-net splitting technique has been successfully used within the RB frame-320

work to encode the minimization of the connectivity metric [18]. However to the321

best of our knowledge, there exists no tool or model for encoding the minimization322

of the L-cut-net metric in the literature. We propose to use the RB framework with323

novel net anchoring and splitting schemes to encode the minimization of the L-cut-net324

metric.325

4.1.2. Recursive Bipartitioning Model. At each RB step, an ordered bipar-326

tition Π2 = 〈VU ,VL〉 of V is decoded as ordering the vertices of VL after those of VU .327

Here VU and VL denote the upper and lower vertex parts, respectively. In RB, the328

concept of L-cut net takes a special form. In a bipartition Π2 = 〈VU ,VL〉, a net ni is329

L-cut if vi is assigned to VU and ni connects at least one vertex vj such that vj ∈VL.330

The partitioning objective at each RB step is to minimize331

(4.5) costRB(Π2) = |Ncut|+ α|NLcut|.332

For encapsulating the connectivity and L-cut net metrics simultaneously, each333

net ni in HCN (A) is replicated as two different kinds of nets, namely conn-net nci334

and lcn-net n`i . Here, conn-nets encapsulate the connectivity metric whereas lcn-335

nets encapsulate the L-cut-net metric. The motivation for net replication is the336

requirement of different net splitting and net removal procedures for encoding the337

connectivity and L-cut-net metrics at each RB step. In order to encapsulate the RB338

objective (4.5), we assign unit cost to the conn-nets and cost α to the lcn-nets. We339

refer to the hypergraph formed by these replicated nets as H.340

We extend H = (V,N ) into a hypergraph H′ = (V ′,N ′) so that minimizing the341

number of conventional cut nets in H′ encodes minimizing (4.5). We introduce new342

fixed vertices vU ∈VU and vL∈VL to form the extended vertex set V ′=V ∪ {vU , vL}.343

We represent each lcn-net n`i in H as a pair of nets n̂`i and ň`i in H′. n̂`i is same as n`i344

except it is U -anchored (connects vU ). ň`i is a 2-pin L-anchored net which connects345

vL and vi. That is, for each net ni in HCN (A), H′ contains nets nci , n̂
`
i and ň`i , where346

Pins(nci ,H′) = Pins(ni,HCN (A)),347

Pins(n̂`i ,H′) = Pins(ni,HCN (A)) ∪ {vU} and348

Pins(ň`i ,H′) = {vi, vL}.349350

The nets in the extended hypergraph for a sample 3-pin net are shown in Figure 3.351

We form H′ at the beginning and apply RB steps until reaching the desired part352

count, K. The resulting K-way partition Π′K of H′ induces a K-way partition ΠK353

of HCN (A). H is an in-between hypergraph introduced for the sake of clarity of354

presentation and is not constructed during implementation. We explain the proposed355

net splitting and removal methods on H, and show the correspondence on H′. We356

consider that each bipartition Π′2 =〈V ′U ,V ′L〉 of H′ induces a bipartition Π2 =〈VU ,VL〉357
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Fig. 3: Net ni in HCN (A) is replicated as conn-net nci and lcn-net n`i to form H. Net
n`i in H is represented by a pair of nets n̂`i and ň`i in H′.

of H. Here H and H′ refer to the respective hypergraphs just before the current RB358

step. New hypergraphs HU and HL are constructed according to Π2 = 〈VU ,VL〉 as359

follows. For both conn- and lcn-nets, each internal net in VL and VU is respectively360

included in NL and NU as is. In the net splittings, a new conn- or lcn-net is added361

to the net list of HU or HL only if it has more than one pin. The single-pin nets are362

discarded since they cannot contribute to the cutsize in the following RB steps.363

For cut conn-nets, we apply the conventional cut-net splitting procedure [18] to364

encapsulate the connectivity metric. If a conn-net nci is cut, then nci is split into two365

pin-wise disjoint nets in HU and HL such that366

Pins(nci ,HU )=Pins(nci ,H) ∩ VU , and Pins(nci ,HL)=Pins(nci ,H) ∩ VL.367

For lcn-nets, we introduce a hybrid cut-net splitting/removal method in order368

to correctly encapsulate the L-cut-net metric. At each RB step, for each net pair369

(n̂`i , ň
`
i) in a bipartition Π′, we consider the state of n`i in Π where Pins(n`i ,H) =370

Pins(n̂`i ,H′)−{vU} for ease of understanding. If an lcn-net n`i is not internal, then it371

can be L-cut or “cut but not L-cut”.372

If n`i is L-cut, then we apply cut-net removal for ni. This is because when ni is373

L-cut in an RB step, it also becomes L-cut in the final K-way partition. Hence there374

is no need to track this net anymore and we do not include it in further bipartitions.375

If n`i is cut but not L-cut, then we apply net removal towards HU and net-L-376

splitting towards HL. That is, n`i is added to HL as Pins(n`i ,HL)=Pins(n`i ,H)∩VL.377

This is because n`i cannot be L-cut in further bipartitionings of HU but it has the378

potential of becoming L-cut in further bipartitionings of HL. In the extended hyper-379

graph context, this corresponds to adding lcn-net pair (n̂`i , ň
`
i) to H′L such that380

Pins(n̂`i ,H′L) = (Pins(n`i ,H′) ∩ V ′L) ∪ {vU}, and Pins(ň`i ,H′L) = {vi, vL}.381

Figure 4 shows all possible cases for a sample lcn-net. The first, second, third and382

last horizontal layers respectively show the bipartition Π′2 of H′; the corresponding383

bipartition Π2 of H; HU and HL induced by Π2; and the corresponding H′U and H′L384

induced by Π′2. If n`i is L-cut in H as in Figure 4a, both n̂`i and ň`i are cut in Π′2. If385

n`i is cut but not L-cut as in Figure 4b, or if n`i is internal to VL as in Figure 4c, then386

only n̂`i is cut. Otherwise, if n`i is internal to VU as in Figure 4d, then only ň`i is cut.387

Lemma 4.3. Consider the bipartition Π2 =〈VU ,VL〉 of H induced by a bipartition388

Π′2 =〈V ′U ,V ′L〉 of H′ in an RB step. If a net is L-cut in Π2, then it incurs 2 cut nets389

in Π′2. Conversely, if a net is not L-cut in Π2, then it incurs 1 cut net in Π′2.390

Proof. If n`i is L-cut in Π2 of H, then vi ∈VU and n`i connects a vertex vj such391

that vj ∈VL. In Π′2 of H′, n̂`i is cut since it connects vi ∈V ′U and vj ∈V ′L; and ň`i is392

also cut since it connects vi∈V ′U and vL∈V ′L.393
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(a) n`
i is L-cut (b) n`

i is cut, not L-cut (c) n`
i is internal to VL (d) n`

i is internal to VU

Fig. 4: All cases for n`i and corresponding net pair (n̂`i , ň
`
i) after bipartition 〈V ′U ,V ′L〉.

If n`i is not L-cut and vi ∈ VL in Π2, then n̂`i is cut in Π′2 because it connects394

vU ∈V ′U and vi∈V ′L; but ň`i is not cut since both vi and vL are in V ′L.395

If n`i is not L-cut and vi ∈VU in Π2, then n`i should be internal to VU , because396

otherwise any pin in VL would make n`i to be L-cut. In Π′2, net n̂`i is internal to V ′U397

since both vi and vU are in V ′U ; but ň`i is cut since it connects vi∈V ′U and vL∈V ′L.398

Proposition 4.4. Minimizing the conventional cut-net metric for the bipartition399

Π′2 of H′ encodes minimizing costRB(Π2) defined in (4.5).400

Proof. By Lemma 4.3, each L-cut net in Π2 incurs 2 cut nets in Π′2, whereas401

all remaining nets in Π2 incur 1 cut net in Π′2. Since the cost of lcn-nets is α,402

the cutsize incurred by lcn-nets in Π′2 is α(|NLcut|+ |N |). Since conn-nets are of403

unit cost, they incur |Ncut| to the cutsize of Π′2. Hence the total cutsize of Π′2 is404

|Ncut|+α|NLcut|+α|N |. Since α|N | is constant, minimizing the cutsize of Π′2 is405

equivalent to minimizing |Ncut|+α|NLcut|, which is costRB(Π2).406

Figure 5 shows an example 2-level RB in terms of lcn-nets in H and the corre-407

sponding 4-way matrix partitioning. The L-cut nets n`1, n`2 and n`6 and the corre-408

sponding L-cut columns c1, c2, and c6 of A are colored in red background. n`2 is L-cut409

in the first level RB and discarded in the future bipartitions. This is because column410

c2 is already counted as L-cut due to nonzero A(6, 2) and should not be counted as411

L-cut again due to nonzero A(4, 2) in further bipartitions.412

Note that the L-cut net definition can be considered to be similar to the left-cut413

net defined in [1] for encapsulating the profile minimization, but the net splitting and414
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Fig. 5: Sample 2-level RB showing lcn-nets and corresponding matrix partitioning.

removal strategies are quite different for encapsulating the objective of our problem.415

Theorem 4.5. Recursively bipartitioning H′ by minimizing the cutsize according416

to the cut-net metric and applying the proposed net splitting and removal strategies417

until reaching K parts encode minimizing the partitioning objective (4.2).418

Proof. By Proposition 4.4, recursively bipartitioning H′ by minimizing the con-419

ventional cut-net metric encodes minimizing costRB(Π2) at each RB step. We show420

that this encodes minimizing costconn+Lcut(ΠK). Proposed net splitting and removal421

strategies ensure that an L-cut net in ΠK is also L-cut in Π2 in exactly one RB step.422

Since an L-cut net contributes α to both costRB(Π2) and costconn+Lcut(ΠK), minimiz-423

ing α|NLcut| in each bipartition Π2 encodes minimizing α|NLcut| in ΠK . Furthermore,424

minimizing the number of cut nets |Ncut| at each RB step and applying the cut-net425

splitting procedure encodes minimizing the connectivity metric
∑
n∈Ncut

(λ(n)−1) [18].426

Therefore, minimizing the cutsize for each bipartition Π′2 of H′ encodes minimizing427

costconn+Lcut(ΠK); hence by Proposition 4.2, this corresponds to the partitioning428

objective (4.2).429

4.2. Reordering within Row Blocks. Consider the K-way block structure430

(e.g. Figure 2) of A induced by the partial symmetric row-column permutation ob-431

tained by the HP model (section 4.1). We perform row reordering within the kth432

row block of A by considering nonzeros of the kth row block Rk of R. The resulting433

row reordering within the kth row block of A is symmetrically applied to the columns434

of the kth column block of A. Rk is an mk×zk matrix where zk =
∑k−1
i=1 mi. For435

simplicity, we assume a local indexing for the rows of Rk so that Rk consists of rows436

ri with 1≤ i≤mk.437

Recall that in stSpike, fill-in may arise below the top nonzero of each spike in Rk.438

The top nonzero of a spike cj in Rk is the nonzero with the minimum row index, i.e.,439

top(cj , Rk)=min{i : Rk(i, j) 6=0, 1≤ i≤mk}. We define the height of a spike cj in Rk440

as the number of reduced system row indices between top(cj , Rk) and mk inclusively,441

i.e.,442

(4.6) height(cj , Rk) = |{i : top(cj , Rk)≤ i≤mk, i∈Ck}|,443

since only the rows with indices in Ck may contribute to the nonzero count of Ŝ. The444

height of a spike in Rk constitutes an upper bound on the nonzero count (including the445

fill-in) of the corresponding column in Ŝ. In Figure 1b, the heights of the spikes are446

as follows: height(c1, R2)=3, height(c3, R2)=2; height(c1, R3)=1, height(c4, R3)=2,447

height(c6, R3)=1, and height(c7, R3)=2. The height of a non-spike column is assumed448
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to be zero. The objective of in-block reordering is to minimize the total height449

(4.7)

K−1∑
k=2

zk∑
j=1

height(cj , Rk),450

which constitutes an upper bound on the nonzero count in off-diagonal blocks of Ŝ.451

The last block RK does not contribute nonzeros to Ŝ since CK is empty. Reordering452

within different blocks are completely independent and can be done concurrently.453

One straightforward approach is placing the rows whose indices are not among454

Ck to the bottom of Rk to avoid the nonzeros of the rows that are not in Ck to455

contribute to (4.7). Let Rk =Rk(Ck, :) be the |Ck|×zk submatrix of Rk consisting of456

the rows with indices in Ck. Then the problem is reduced to reordering only those457

rows of Rk since the rest of the rows at the bottom of Rk do not have an impact on458

(4.7). The reordering objective for each Rk is to minimize
∑zk
j=1 height(cj , Rk), with459

a simplified height definition, height(cj , Rk) = |Ck|+1−top(cj , Rk). Then the total460

height minimization problem is formulated in general as: Given any sparse matrix461

H∈R`×n, find a row reordering P that minimizes
∑n
j=1(`+1−top(cj , PH)).462

Theorem 4.6. The total height minimization problem (THMP) is NP-hard.463

Proof. We reduce the profile minimization problem (PMP) [1, 46], which is known464

to be NP-hard [26, 44], to THMP as follows. Given a symmetric matrix V ∈Rn×n with465

nonzero diagonal entries, the objective of PMP is finding a symmetric row/column466

reordering P that minimizes
∑n
j=1(j−top(cj , PV PT )). This minimization objective467

is equivalent to maximizing
∑n
j=1top(cj , PV P

T ), since
∑n
j=1 j is constant. Any468

instance PV PT of PMP can be mapped to an instance PV of THMP by simply469

removing the column reordering as (PV PT )P = PV . Note that the minimization470

objective of THMP, which is
∑n
j=1(n+1−top(cj , PV )), is equivalent to maximizing471 ∑n

j=1top(cj , PV ), since
∑n
j=1(n+1) is constant. Thus, PV PT is a solution of PMP472

iff PV is a solution of THMP since the column reordering itself has no effect on473 ∑n
j=1top(cj , PV P

T )=
∑n
j=1top(cj , PV ). If there had been a polynomial-time solu-474

tion to THMP, then one could solve PMP in polynomial time by just applying the475

row reordering obtained by THMP on the columns as well. Therefore, PMP can be476

reduced to THMP in polynomial time; and since PMP is NP-hard, then so is THMP.477

Algorithm 4.1 presents the pseudocode of the proposed heuristic for reordering478

the rows of Rk. The efficient implementation of this algorithm requires accessing479

the nonzeros of both rows and columns of Rk, so it is stored both in CSR and CSC480

formats. Cols(ri) denotes the set of columns in row ri, whereas Rows(cj) denotes481

the set of rows in column cj . Degree of a row or column is defined as the number of482

nonzeros in that row or column, i.e., deg(ri)= |Cols(ri)| and deg(cj)= |Rows(cj)|. In483

lines 3-5, we define the load of each row ri as the sum of degrees of columns cj such484

that Rk(i, j) 6=0.485

The greedy choice utilized in the proposed heuristic is to order the rows with486

smaller degrees to upper positions of Rk since placing denser rows to upper positions487

incurs more height in (4.7). We further improve our greedy approach by using dynamic488

row degrees during the row selection process. When a row is selected, the degree489

of each unselected row is decremented by the number of its nonzeros having the490

same column index with the nonzeros in the selected row. Since the nonzeros in a491

selected row already determine the heights of the respective columns, we do not need492

to consider the rest of the nonzeros of these columns in future row selections. When493
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Algorithm 4.1 Proposed in-block reordering for Rk where 2≤k≤K−1

Input: Rk ∈ Rmk×zk and set of reduced-system row indices Ck of Rk.
Output: the permutation vector perm of Rk.

1: Place the rows ri with i /∈Ck to the last mk−|Ck| indices in any order
2: Consider submatrix Rk=Rk(Ck, :) of Rk consisting of rows ri with i∈Ck
3: for each row ri of Rk do
4: load(ri)← 0
5: for each column cj ∈ Cols(ri) do load(ri)← load(ri)+deg(cj)

6: for d← 0 to max row deg do S(d)← {ri : deg(ri) = d}
7: indx← 0
8: while indx < |Ck| do
9: d∗ ← min{d : S(d) 6= ∅}

10: ri∗ ← argmaxri∈S(d∗) load(ri) B Select ri∗ ∈S(d∗) with maximum load
11: indx← indx+1
12: perm(indx)← ri∗

13: S(d∗)← S(d∗)− {ri∗}
14: for each column cj ∈ Cols(ri∗) do
15: Rows(cj)← Rows(cj)− {ri∗}
16: Cols(ri∗)← Cols(ri∗)− {cj}
17: for each row ri′ ∈ Rows(cj) do
18: Cols(ri′)← Cols(ri′)− {cj}
19: load(ri′)← load(ri′)−deg(cj)
20: S(deg(ri′))← S(deg(ri′))− {ri′}
21: deg(ri′)← deg(ri′)−1
22: S(deg(ri′))← S(deg(ri′)) ∪ {ri′}

selecting a row among rows with the same degree, load values of the rows are used as494

a tie-breaking strategy. A row with a higher load is preferred to be selected since it495

will lead to a larger amount of decrease on the degrees of unselected rows.496

In Algorithm 4.1, S(d) denotes the set of rows with degree d. Due to dynamic row497

degrees, at each iteration we find the minimum degree d∗ (line 9). Then we choose the498

row ri∗ in S(d∗) with the maximum load (line 10). After ri∗ is selected, all remaining499

nonzeros in each column cj with Rk(i∗, j) 6= 0 are deleted as in lines 15-18. For each500

unselected row ri′ with Rk(i′, j) 6= 0, we dynamically update the load and degree of501

ri′ , and the respective degree sets (lines 19-22).502

Recall that forming Ŝ in dmpGS requires the computation of nonzeros up to the503

largest reduced system row index and any entry beyond that is not required to be504

computed for each row block. Hence the total height (4.7) also gives the computational505

cost of forming Ŝ since we place Rk at the top of Rk for each 1<k<K.506

4.3. Illustration. Figure 6 illustrates the effect of applying the proposed par-507

titioning and reordering model for K=8 on a sample matrix (msc23052) from the508

SuiteSparse Matrix Collection [24]. The nonzero structure of the original matrix, the509

structure obtained after applying the proposed HP model and the final structure after510

the proposed in-block reordering are shown in order. Below each ordering of A, the511

resulting Spike matrix (S) is shown, including the nonzeros of the reduced system (Ŝ)512

which are highlighted with red circles. As seen in the figure, the proposed partitioning513

and reordering model significantly reduces the nonzero count of the reduced system.514
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Fig. 6: Nonzero structure of msc23052: (a) before ordering, (b) after HP for K = 8,
(c) after HP and in-block reordering; (d),(e),(f) the respective Spike (S) matrices (the

reduced system (Ŝ) nonzeros are circled in red color).

For example, the number of nonzeros in Ŝ−I in Figures 6d, 6e, and 6f are 277,113,515

3,593, and 811, respectively. Note that these numbers may seem to be much larger516

than the ones appearing in the figures because of the overlapping red circles.517

Notice that the proposed HP model gathers most of the nonzeros to the diagonal518

blocks so that the off-diagonal blocks become very sparse. Then, the proposed in-block519

reordering method gathers the reduced-system nonzeros to the upper left corner of the520

respective off-diagonal block (Figure 6f). This is because we agglomerate the reduced521

system row indices to the top within each block, and we apply the resulting row522

reordering to the columns symmetrically. Within each off-diagonal block, gathering523

the rows with reduced-system indices to the top corresponds to agglomerating the524

columns with these indices, which are actually all the columns having nonzeros, to525

the left. An exception is the first column block since no row reordering is performed526

for the first row block.527

5. Experiments. We use the HSL software package MC64 [29] for scaling and528

permuting the coefficient matrices to avoid a singular L. We select the MC64 option529

that maximizes the product of the diagonal entries and then scales to make the ab-530

solute value of diagonal entries one and the off-diagonal entries less than or equal to531

one. For symmetric matrices, in order not to destroy the symmetry, we apply the532

symmetric MC64 if the main diagonal is already zero-free. Otherwise, we apply the533

nonsymmetric MC64 to obtain a zero-free main diagonal. For unsymmetric matrices,534

we just apply the nonsymmetric MC64.535
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Table 1: Number of instances among different matrix kinds in the dataset

Kind ID Kind Name Sym Unsym Total
1 structural 48 4 52
2 circuit simulation 2 46 48
3 economic 1 33 34
4 semiconductor device 0 33 33
5 computational fluid dynamics 6 27 33
6 2D/3D 19 9 28
7 power network 14 13 27
8 optimization 20 3 23
9 model reduction 13 3 16

10 chemical process simulation 0 15 15
11 theoretical/quantum chemistry 14 0 14
12 electromagnetics 6 4 10
13 thermal 5 4 9
14 materials 2 4 6
15 weighted graph 1 5 6
16 acoustics, oceanography, counter-ex., analytics 4 1 5

All 155 204 359

The experiments are conducted on an extensive dataset obtained from the SuiteS-536

parse Matrix Collection [24]. For sufficiently coarse-grained parallel processing, we537

select real square matrices that have more than 20,000 rows and between 100,000538

and 20,000,000 nonzeros. There are 199 symmetric and 208 unsymmetric matrices in539

SuiteSparse satisfying these properties at the time of experimentation. 44 symmetric540

and 4 unsymmetric matrices are eliminated because they are singular. The remaining541

are 155 symmetric and 204 unsymmetric, a total of 359 sparse matrices on which we542

conduct experiments. Table 1 shows the number of instances for each matrix kind.543

Kinds are sorted in decreasing order of instance count. The kinds having less than544

5 instances in our dataset (acoustics, chemical oceanography, counter-example and545

data analytics) are grouped as one kind.546

5.1. Partitioning Quality. We tested the performance of the proposed parti-547

tioning algorithm described in subsection 4.1 against the partitioning quality of the548

conventional column-net HP with connectivity metric (cnHP) and graph partitioning549

(GP) models. For both cnHP and GP, vertex weights are set as the number of nonze-550

ros in the respective rows whereas nets and edges are assigned unit cost. In cnHP,551

the objective is to minimize the number of nonzero off-diagonal column segments. In552

GP, the objective is to minimize the number of nonzeros in the off-diagonal blocks.553

For unsymmetric matrices, GP is applied on |A|+ |AT |. The well-known partitioning554

tools METIS [40] and PaToH [19] are used for GP and cnHP models, respectively.555

In the proposed model, we use PaToH as the HP tool in each bipartitioning step.556

Experiments are conducted with different scaling factors α=1, 2, 5 and 10 for lcn-net557

cost assignment. We set the maximum allowable imbalance ratio in each bipartition-558

ing as ε= 0.05. As both METIS and PaToH involve randomized algorithms in the559

coarsening phase, five partitioning runs are performed for each instance with different560

seeds and the averages are reported. We conduct experiments for K=8, 16, 32, 64, 128561

and 256 parts (processors).562

Table 2 shows the results of the comparison experiments in terms of the communi-563

cation volume and the reduced system size metrics for dmpGS utilizing the partitions564

generated by GP, cnHP and the proposed model. For each test instance, these metrics565

are normalized with respect to the number of rows and the average for all matrices566

are given for each K. Here and hereafter, all averages are given as geometric means.567

As seen in Table 2, cnHP achieves considerably low communication volume and568

reduced system size than GP as expected. The average improvement of cnHP over569
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Table 2: Averages of total communication volume and the reduced system size in
dmpGS, both normalized with respect to the number of rows.

proposed HP model (Sec. 4.1)

K GP cnHP α = 1 α = 2 α = 5 α = 10
C

o
m

m
.

v
o
l. 8 0.158 0.132 0.140 0.139 0.139 0.145

16 0.253 0.217 0.223 0.224 0.224 0.232
32 0.380 0.329 0.332 0.332 0.337 0.347
64 0.547 0.477 0.479 0.479 0.491 0.505

128 0.767 0.681 0.679 0.680 0.697 0.719
256 1.062 0.955 0.948 0.953 0.977 1.012

R
e
d
.

sy
s.

si
z
e 8 0.048 0.041 0.033 0.032 0.029 0.029

16 0.075 0.066 0.051 0.049 0.045 0.045
32 0.109 0.094 0.074 0.070 0.065 0.064
64 0.149 0.129 0.102 0.097 0.090 0.088

128 0.197 0.174 0.136 0.129 0.119 0.116
256 0.252 0.227 0.177 0.168 0.154 0.149

GP is approximately 10% for both metrics on K = 256. In fact, cnHP is equivalent570

to the proposed HP model for α = 0. As seen in the table, there is a trade-off571

between the reduced system size and the communication volume for varying values of572

α for the proposed HP model. Yet the rate of increase in the communication volume573

is observed to be larger than the rate of decrease in the reduced system size with574

increasing α. For example for K = 64, compared to the cnHP model, the proposed575

model slightly increases the communication volume by 0.4%, 0.5%, 2.9% and 5.9%576

whereas it significantly decreases the reduced system size by 21.5%, 25.2%, 30.7% and577

32.0% for α= 1, 2, 5 and 10, respectively. Here, α= 2 seems to be a balanced choice578

since it significantly decreases the reduced system size while it slightly increases the579

communication volume. This is reflected in the parallel scalability of the proposed580

algorithm as will be shown in subsection 5.3, thus we set α=2 in the upcoming results.581

In Figure 7, we provide the performance profiles comparing GP, cnHP and the582

proposed model in terms of the reduced system size. We present the performance583

profiles only for K = 16, 64 and 256 due to lack of space. A performance profile [27]584

shows the comparison of different models relative to the best performing one for each585

data instance. On a profile, a point (x, y) means that the respective model is within x586

factor of the best result for a fraction y of the instances. For example, the point (1.20,587

0.60) on the curve of cnHP means that cnHP yields 20% more reduced system size588

than the smallest reduced system size achieved for 60% of the dataset. Therefore, the589

model closest to the top left corner is interpreted as the model with best performance.590

As seen in Figure 7, the proposed model outperforms the baseline algorithms in591

terms of the reduced system size in the majority of the test instances. As K increases,592

the performance gap between GP and cnHP decreases, whereas the performance gap593
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Fig. 7: Performance profiles comparing GP, cnHP and the proposed HP model.
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Table 3: Total height and nonzero count averages in the off-diagonal blocks of Ŝ.

kind
ID

K = 8 K = 16 K = 32 K = 64 K = 128 K = 256

height nnz height nnz height nnz height nnz height nnz height nnz
1 1,470.1 518.5 554.1 233.6 263.6 143.1 115.9 67.6 65.9 41.1 37.2 25.4
2 71.9 125.2 63.1 100.6 30.5 61.6 15.8 35.0 8.8 18.7 5.5 11.6
3 1,219.2 331.4 321.2 271.5 296.8 197.2 167.8 152.7 88.2 82.9 46.1 47.8
4 27.7 3.8 16.8 5.3 9.9 5.7 8.8 6.2 6.5 4.5 4.6 3.1
5 260.0 10.0 142.6 9.1 90.3 7.6 63.5 6.3 37.6 4.7 24.5 4.0
6 600.0 123.2 298.3 101.5 148.6 61.3 73.5 37.0 38.7 22.3 22.0 13.6
7 131.8 10.1 67.3 7.4 36.7 5.7 22.8 4.7 14.0 3.8 8.5 3.2
8 513.5 97.3 260.4 59.4 92.2 30.9 48.9 18.5 23.8 11.3 17.0 8.2
9 1,547.9 1,101.3 1,010.9 1,221.2 556.7 641.8 248.6 315.4 102.0 141.6 50.7 70.0

10 29.0 4.8 32.9 10.9 15.0 5.6 12.8 5.2 8.6 3.6 6.0 2.7
11 375.3 619.3 213.3 213.3 112.8 136.6 68.8 89.0 43.2 54.1 25.6 32.0
12 241.2 170.7 121.4 109.1 59.9 66.8 31.8 41.2 18.1 25.2 10.6 14.7
13 18.2 2.7 17.7 3.1 12.7 2.7 13.4 2.6 10.1 2.6 8.2 2.8
14 217.7 231.1 116.5 149.6 59.2 94.0 33.0 54.4 19.1 30.6 12.2 17.7
15 610.4 228.9 277.9 164.6 122.0 91.6 61.8 50.9 31.5 28.3 18.0 16.4
16 15.8 62.2 8.5 31.5 6.0 18.9 4.4 11.9 3.4 7.8 2.7 5.3

All 238.1 57.2 127.1 43.0 65.0 27.8 39.0 18.7 22.7 12.1 14.3 8.3

*The values are the ratios of the results attained by the baseline over the proposed in-block reordering.

between the proposed model and both of the baseline models increases significantly.594

The proposed model yields the best performance for 69%, 71%, 75%, 82%, 85% and595

86% of the dataset for K=8, 16, 32, 64, 128 and 256, respectively.596

The proposed HP model yields very sparse off-diagonal blocks. The number of597

nonzeros in any lower off-diagonal block Rk is at most 0.51%, 0.44%, 0.35%, 0.26%,598

0.19%, and 0.13% of the total nonzero count of A for K=8, 16, 32, 64, 128, and 256599

parts on the average, respectively. As the HP model maintains balance on the nonzero600

counts of the whole row blocks, these low nonzero counts in off-diagonal blocks do not601

disturb the computational load balance among processors considerably.602

5.2. In-Block Reordering Quality. To our knowledge, no in-block reorder-603

ing method has been proposed or tested for stSpike in the literature. Therefore, we604

compare the improvement gained by applying the proposed in-block ordering method605

against a baseline algorithm which does not apply an in-block reordering. In this com-606

parison, both the proposed and the baseline reordering methods utilize the partitions607

obtained by the HP model (Section 4.1). Two quality metrics used in this comparison608

are total height and nonzero count in the off-diagonal blocks of Ŝ.609

Table 3 shows the ratios of these quality metrics of the in-block reorderings gen-610

erated by the baseline to those of the proposed method. For each K value, the results611

are given as averages grouped by different matrix kinds, and the last row shows the612

average of all instances in the dataset.613

As seen in Table 3, the proposed reordering method achieves significant improve-614

ment in terms of both quality metrics against the baseline reordering. For example615

for K=64, on overall average, the proposed method achieves 39× and 18.7× improve-616

ment against the baseline ordering in terms of height and nonzero counts, respectively.617

The improvement rate attained in height does not always directly reflect to the im-618

provement rate in the nonzero counts since height is an upper bound for fill-in and619

the fill-in also depends on the sparsity of the diagonal blocks.620

Although the improvement of the proposed reordering against the baseline order-621

ing tends to degrade with increasing K, this is expected since there are fewer rows622

per block and there is less room for improvement. For example on overall average,623

the proposed in-block reordering method achieves 57.2×, 43.0×, 27.8×, 18.7×, 12.1×624

and 8.3× decrease in the nonzero count for K=8, 16, 32, 64, 128 and 256, respectively.625

The proposed partitioning and reordering model yields very small reduced systems626
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Table 4: The properties of matrices to run dmpGS.

Matrix
Kind

ID
Sym Size Nnz

Relative
Residual*

mtGS*
time (s)

msdoor 1 X 415,863 19,173,163 1.9× 10−4 23.1

af shell1 1 X 504,855 17,562,051 8.2× 10−4 23.4

af 1 k101 1 X 503,625 17,550,675 1.1× 10−4 23.4

CoupCons3D 1 416,800 17,277,420 4.0× 10−9 21.8

Freescale1 2 3,428,755 17,052,626 3.0× 10−4 72.7

circuit5M dc 2 3,523,317 14,865,409 1.9× 10−12 72.7

CurlCurl 3 9 X 1,219,574 13,544,618 2.8× 10−4 35.4

memchip 2 2,707,524 13,343,948 5.4× 10−5 57.5

BenElechi1 6 X 245,874 13,150,496 6.5× 10−5 15.2

pwtk 1 X 217,918 11,524,432 1.5× 10−4 13.6

bmw3 2 1 X 227,362 11,288,630 1.9× 10−4 13.6

bmwcra 1 1 X 148,770 10,641,602 6.0× 10−4 11.9

*Relative residual and runtime results of mtGS on 40 cores for 500 iterations.

whose nonzero counts are significantly low relative to the original system. The average627

ratios of the nonzero count of the reduced system over the nonzero count of the original628

coefficient matrix, i.e. nnz(Ŝ)/nnz(A), are 0.05%, 0.12%, 0.26%, 0.49%, 0.87%, and629

1.48% for K=8, 16, 32, 64, 128, and 256 parts, respectively. These low nonzero630

counts of the reduced systems verify the effectiveness of the proposed partitioning631

and reordering model in terms of alleviating the sequential computational overhead632

of dmpGS.633

5.3. Parallel Scalability. Parallel experiments are performed on the Sariyer634

cluster of UHEM [66] using up to 320 cores over 8 distributed nodes, each containing635

40 cores (two Intel Xeon Gold 6148 CPUs) and 192GB memory. The nodes are636

connected by an InfiniBand EDR 100 Gbps network.637

We implement an MPI+OpenMP hybrid parallel dmpGS to demonstrate the ef-638

fectiveness of using stSpike and the proposed model. Throughout this section, the639

proposed model refers to the proposed partitioning and in-block reordering model640

(Section 4) applied to dmpGS. The number of MPI processes is the same as the641

number of parts (K) in a partition. For dmpGS, we experimented with different con-642

figurations of number of processes and threads. We found that the best configuration643

is 8 processes per node and 5 threads per process. Therefore, we conduct parallel644

experiments for dmpGS using 1, 2, 4 and 8 nodes corresponding to 40, 80, 160 and645

320 cores and K=8, 16, 32 and 64 parts (processes), respectively.646

To the best of our knowledge, there is no publicly available true distributed-647

memory parallel GS implementation. For comparing the performance of dmpGS, we648

also implemented a multi-threaded GS (mtGS) by using the multithreaded sparse649

triangular system solver (mkl sparse d trsm) and sparse matrix vector multiplicator650

(mkl sparse d mv) of Intel MKL [37]. As a baseline, we obtain the results of mtGS651

on 40 threads/cores (1 node) by using the GP reordering since it is shown in [22] that652

the triangular solution with MKL benefits most from GP.653

We tested the parallel scalability of dmpGS for a subset of the dataset since654

we have limited core hours on the HPC platform. From the dataset, we considered655

the matrices with at least 100,000 rows and 10,000,000 nonzeros, for which GS con-656

verges with a relative residual of less than 10−3 in 500 iterations with initial guess657

x=[0, . . . , 0]T and right-hand side vector f=[1/m, 2/m, . . . , 1]T . Then we select only658

those instances with different sparsity structures from each matrix group. There were659

exactly 12 such matrices in our dataset satisfying these criteria. The properties of660

those matrices are shown in Table 4, sorted in decreasing order of nonzero counts.661

The sixth and the last column respectively show the relative residual and runtime of662
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Table 5: Average speedup obtained by dmpGS over mtGS on 40 cores.

K
number of

GP cnHP
proposed model

nodes cores α = 1 α = 2 α = 5 α = 10

8 1 40 9.87 8.71 14.85 14.71 14.77 14.51
16 2 80 14.65 13.58 29.07 28.51 28.47 28.25
32 4 160 17.41 16.11 47.28 47.86 47.24 45.89
64 8 320 15.79 17.60 54.96 55.54 50.21 50.65

*The best speedup value obtained for each K is shown in bold.

mtGS after 500 iterations.663

Table 5 shows the average speedup values obtained by dmpGS with GP, cnHP and664

the proposed model over mtGS. We run dmpGS with the proposed model for α=1, 2, 5665

and 10 to observe the effect of scaling factor (α) on the parallel performance. As seen666

in the table, the proposed model achieves significantly higher speedup for dmpGS over667

the baseline models for all α. The speedup performance gap between the proposed668

and baseline models increase with increasing K, thus confirming the effectiveness of669

the proposed model.670

We also provide Figure 8 which depicts the performance profiles for comparing671

the dmpGS runtime using the proposed model for varying α and K values. We choose672

α=2 for better scalability of dmpGS since it yields the best performance for larger part673

counts (K=32 and 64) as seen in both Table 5 and Figure 8. As seen in Table 5, the674

proposed model with α=2 yields average of 1.5×, 1.9×, 2.7× and 3.2× higher speedup675

relative to the best of the baseline models for K=8, 16, 32 and 64, respectively.676

Figure 9 shows the results of the strong scaling experiments as speedup curves of677

dmpGS with GP, cnHP and the proposed model. The proposed model significantly678

enhances the scalability of dmpGS so that dmpGS scales up to 320 cores on all in-679

stances. As seen in the figure, the proposed model outperforms GP and cnHP models680

for all of the test instances, significantly so in 9 out of 12. In Figure 9 for memchip,681

dmpGS using the proposed model achieves up to 122.2 speedup on 320 cores over682

mtGS on 40 cores.683

6. Conclusion. We proposed and implemented an stSpike-based distributed-684

memory parallel GS (dmpGS) algorithm. For improving the scalability of dmpGS,685

we propose a hypergraph partitioning (HP) based partitioning model and an in-block686

row reordering method. Extensive experiments show that the proposed HP model687

significantly decreases the reduced system size with respect to the baseline models688

while attaining comparable communication volume. The proposed in-block reordering689

method leads to a substantial decrease in the computational cost of both forming and690

solving the reduced system. Parallel experiments up to 320 cores demonstrate that691

using the proposed reordering model significantly improves the scalability of dmpGS.692
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Fig. 8: Performance profiles in terms of the dmpGS runtime using the proposed model.
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Fig. 9: Speedup curves of dmpGS with GP, cnHP and the proposed model (for
K=8, 16, 32 and 64) relative to mtGS on 1 node (40 cores).

As a future work, we will consider the parallel solution of the reduced system693

to further alleviate the sequential bottleneck. We will also consider an in-block row694

reordering which takes the nonzeros of the diagonal blocks into account for further695

reducing the nonzero count in the reduced system. Finally, the future work will696

include extending the dmpGS algorithm for multiple right-hand-side vectors as it697

is very common in modern applications. Using multiple right-hand-side vectors is698

expected to further enhance the performance of dmpGS since it enables using higher699

level BLAS subroutines compared to the single right-hand-side case. Moreover, the700

parallel solution time per right-hand-side vector will further decrease since the parallel701

factorization is done only once.702
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