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PARTITIONING AND REORDERING FOR SPIKE-BASED
DISTRIBUTED-MEMORY PARALLEL GAUSS-SEIDEL *

TUGBA TORUNT, F. SUKRU TORUN#, MURAT MANGUOGLU$, AND CEVDET
AYKANAT f

Abstract. Gauss-Seidel (GS) is a widely-used iterative method for solving sparse linear system
of equations and also known to be effective as a smoother in algebraic multigrid methods. Paralleliza-
tion of GS is a challenging task since solving the sparse lower triangular system in GS constitutes
a sequential bottleneck at each iteration. We propose a distributed-memory parallel GS (dmpGS)
by implementing a parallel sparse triangular solver (stSpike) based on the Spike algorithm. stSpike
decouples the global triangular system into smaller systems that can be solved concurrently and
requires the solution of a much smaller reduced sparse lower triangular system which constitutes a
sequential bottleneck. In order to alleviate this bottleneck and to reduce the communication over-
head of dmpGS, we propose a partitioning and reordering model consisting of two phases. The first
phase is a novel hypergraph partitioning model whose partitioning objective simultaneously encodes
minimizing the reduced system size and the communication volume. The second phase is an in-block
row reordering method for decreasing the nonzero count of the reduced system. Extensive experi-
ments on a dataset consisting of 359 sparse linear systems verify the effectiveness of the proposed
partitioning and reordering model in terms of reducing the communication and the sequential com-
putational overheads. Parallel experiments on 12 large systems using up to 320 cores demonstrate
that the proposed model significantly improves the scalability of dmpGS.

Key words. parallel Gauss-Seidel, distributed-memory, Spike algorithm, parallel sparse trian-
gular solve, linear system solution, hypergraph partitioning, sparse matrix reordering.
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1. Introduction. A wide range of applications in science and engineering re-
quire the solution of a sparse linear system of equations

(1.1) Az = f,

where A € R™*™ is a general large sparse invertible matrix; and x and f € R™ are
the unknown and right hand side vectors, respectively. Depending on the numerical
and structural properties of the coefficient matrix, various solvers have been proposed.

Direct solvers require a sequence of operations: reordering and partitioning, sym-
bolic factorization, numerical factorization, and finally obtaining the solution, typ-
ically via forward and backward sweeps. The reordering and partitioning schemes
are used both to reduce the amount of fill-in and to enhance the parallel scalability.
Symbolic factorization is used to determine the sparsity structure of the factors, and
finally the numerical factorization (such as sparse LU [23], QR [34], SVD [13] and WZ
[17]) is computed. Direct solvers are robust and, in general, are known to be very
scalable during the factorization phase [5, 43], but not so much during the triangular
solution phase [45].
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Iterative solvers, on the other hand, are known to be more scalable but not as
robust as direct solvers. Nevertheless, they are still preferred for large sparse systems
due to their lower memory requirements. Starting with an initial guess for the solution
vector, these methods improve the solution at each iteration. There are two main types
of iterative solvers: stationary and non-stationary methods. Stationary methods have
the general form 2+ = ¢(z(*)) where 2(*) is the solution vector at the k** iteration
and ¢(-) is a function which does not change during the iterations. Some examples
are Jacobi, Gauss-Seidel, Successive Over Relaxation (SOR) and Symmetric SOR
(SSOR) [34, 59]. Non-stationary methods have the form 2+ = ¢*) (2(*)) in which
the function qb(k)(-) changes at each iteration. Some examples are projection methods,
Krylov subspace methods and Chebyshev iterations [9, 35, 59].

In practice, linear systems are preconditioned to reduce the required number of
iterations of the iterative solvers and to improve their robustness. There could be a
variety of choices of preconditioners, some are problem specific and others are more
general. General classical preconditioners include, incomplete factorization based pre-
conditoners (such as incomplete LU [58, 59]), sparse approximate inverse [11], alge-
braic multigrid (AMG) [51, 57], and others. We refer the reader to [10] for a detailed
survey of preconditioners. Among these preconditioners, AMG has been widely used
recently in many applications [12, 30, 53] which is a generalization of Geometric Multi-
grid (GMG) [70]. GMG requires some knowledge of the physical problem and/or its
geometry, while there is no such requirement for AMG. AMG can be also used as a
direct solver [36, 71]. Furthermore, AMG typically uses another iterative method as
a “smoother” which is required to reduce the error at each level and the smoother
itself can also be preconditioned. More recently a preferred smoother for AMG is
Gauss-Seidel [3, 16, 67], as in BoomerAMG [36] and Trilinos-ML [32].

Gauss-Seidel (GS) is a well-known stationary iterative method which solves the
linear system (1.1) by splitting the coefficient matrix into its lower and strictly upper
triangular parts, A=L+U. Then the solution is obtained iteratively by

gD = L= f —Uz®),

At each iteration of GS, both a lower triangular system is required to be solved
and an upper triangular SpMV (sparse matrix-vector multiplication) is performed.
GS is guaranteed to converge if A is strictly or irreducibly diagonal dominant [7]
or symmetric positive definite [34]. It is known to be effective and preferred as a
smoother for a wide variety of problems [3, 72]. However, a true distributed-memory
parallelization of GS is considered to be a challenging task [3].

In the literature, parallel GS implementations are proposed either to solve the
original problem (1.1) [6, 42, 62] or to use it as a smoother in multigrid schemes
[38, 64, 73]. A commonly-used method to parallelize GS by finding independent
sub-tasks is the red-black coloring strategy [2, 31, 41], which has been extended to
multi-coloring [33, 52, 4] to attain more parallelism for complicated regular problems.
However, multi-colored GS is not feasible for some cases such as unstructured finite
element applications since the number of colors becomes too large [42]. Another
approach is to use a processor-localized GS in which each processor performs GS as a
subdomain solver, but its convergence rate is low and may diverge for a large number
of processors [3].

The main difficulty in parallelizing GS inherits from the sequential nature of tri-
angular solve included in GS [72]. Along with its importance in several applications,
solving triangular systems often constitutes a sequential bottleneck because of the
dependencies between unknowns in forward or backward substitutions. In [60], a
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parallel banded triangular solver is proposed. This algorithm is extended for solving
banded linear systems [21, 28] and further improved by implementing various alterna-
tives in each step of the factorization including the solution of the reduced system in
[55, 56, 63]. At this point, the algorithm is called Spike algorithm. For sparse linear
systems, Spike is also proposed as a solver for a banded preconditioner that is sparse
within the band [49, 61], and it is generalized for sparse linear systems [15, 47, 48].
In [69], a Spike-based parallel solver for general tridiagonal systems is implemented
for GPU architectures. A recent study [22] proposes a multi-threaded parallel solver
for sparse triangular systems by extending the Spike algorithm [60].

We propose a distributed-memory parallel GS (dmpGS) by implementing and
using a distributed-memory version of the sparse triangular Spike (stSpike) algorithm.
stSpike enables obtaining the solution of the system by solving independent sparse
triangular subsystems and a smaller reduced triangular system. Solving this reduced
system constitutes a sequential computational bottleneck in dmpGS. The size of this
reduced system is equal to the number of nonzero columns in the lower off-diagonal
blocks of the coefficient matrix. The computational cost of solving the reduced system
is proportional to its nonzero count. The communication volume of dmpGS is equal
to the number of nonzero column segments in the off-diagonal blocks plus the reduced
system size. Both of these communication and computational overheads highly depend
on the sparsity structure of the coefficient matrix.

We note that solving the reduced system is embarrassingly parallel if the coeffi-
cient matrix is banded and diagonally dominant [50, 54]. In case the coefficient matrix
is not diagonally dominant, another way to alleviate the cost of solving the reduced
system is to further parallelize the solution of the reduced system which has been done
iteratively [55], or recursively [15, 56]. Instead, we propose to minimize the size and
the nonzero count of the reduced system, together with the communication volume,
and show that the resulting reduced system is so small that further parallelization of
the solution of the reduced system is often no longer needed. For attaining these min-
imization objectives, we propose a partitioning and reordering model that exploits the
sparsity of the coefficient matrix. The proposed model consists of two phases. The
first phase is a row-wise partitioning of the coefficient matrix, whereas the second
phase is a row reordering within the row blocks induced by the partition obtained in
the first phase.

For the first phase, we propose a novel hypergraph model that extends and en-
hances the conventional column-net model for simultaneously decreasing the reduced
system size and the communication volume. We introduce vertex fixing, net anchor-
ing and net splitting schemes within the recursive bipartitioning framework to encode
the minimization of the number of nonzero column segments in the lower triangular
part of the resulting partition.

For the second phase, we propose an intelligent in-block row reordering method
with the aim of decreasing the computational costs of both forming the coefficient
matrix of the reduced system once and solving the reduced system at each iteration.

The rest of the paper is organized as follows. Section 2 provides the background
information on hypergraph and sparse matrix partitioning, and stSpike. In section 3,
we discuss the dmpGS algorithm along with its communication and computational
costs. The proposed partitioning and reordering model for dmpGS is introduced in
section 4. We provide the experimental results in section 5 and conclude in section 6.

2. Background.

This manuscript is for review purposes only.
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2.1. Hypergraph Partitioning. A hypergraph H=(V, ') consists of a set of
vertices V ={v; }1<i<n and a set of nets N'={n,;}1<j<m. BEach net n; € N connects
a subset of vertices in V, which is referred to as the pins of n;, and denoted by
Pins(n;, H). Each vertex v; is assigned a weight w(v;) and each net n; is assigned a
cost cost(n;). II={V1,Vs,...,Vi} denotes a K-way partition of H, where parts are
mutually disjoint and exhaustive. The weight of a part is the sum of the weights of
vertices in that part. For a given partition, if a net connects at least one vertex in
a part, it is said to connect that part. Connectivity A(n;) of net n; is the number
of parts connected by n;. If a net n; connects multiple parts (i.e. A(n;)>1), it is
called cut; and otherwise internal (i.e. A(n;)=1). The set of cut nets is denoted by
Newt. The cutsize of I1 is defined in various ways. Two most commonly used cutsize
definitions are the cut-net and the connectivity metrics [18], which are respectively
defined as

(2.1) CSeutn (I1) = Z cost(n), and  ¢Seonn(II) = Z (A(n)—1)cost(n).

n€ENcut nENcut

Hypergraph partitioning (HP) is the problem of finding a K-way partition which
minimizes the cutsize and satisfies the balance criterion Wi,q42 < Wavg(l—i—e). Here,
€ is the given maximum allowable imbalance ratio; and Wy,,, and W, respectively
denote the maximum and average part weights. HP with fixed vertices ensures to
assign some preassigned vertices which are called fized vertices to the respective parts.

The recursive bipartitioning (RB) is a widely used paradigm to obtain a K-way
HP. It first partitions the hypergraph into two and then each part is further biparti-
tioned recursively until reaching the desired number of parts K. In order to encode
the cut-net and connectivity metrics, cut-net removal and cut-net splitting methods
are utilized in the RB-based HP, respectively [18].

2.2. Sparse Matrix Partitioning with HP. Several HP models and methods
have been proposed and successfully utilized for obtaining matrix partitioning [8, 14,
19, 20, 25, 39, 65, 68]. Among these, the most relevant one is the column-net model
[18] that represents a given sparse matrix A as a hypergraph Hon(A) in which nets
and vertices respectively represent columns and rows. In this model, vertex v; is
added to the pin list of net n; for each nonzero A(7,j) in A. Throughout the paper,
r; and ¢; respectively denote row ¢ and column j.

A K-way ordered partition II=(Vy, Vs, ..., Vk) of the column-net model Hen (A)
is decoded as a partial reordering of the rows of A in such a way that the rows
corresponding to vertices in Vj are ordered before the rows corresponding to the
vertices in V, for k< ¢. This is a partial reordering since the rows corresponding to the
vertices in the same part can be ordered arbitrarily. Let B;, denote the k™ row block
which contains the rows corresponding to the vertices in V. We consider a symmetric
row-column reordering that yields a 2D grid structure of A. The submatrix consisting
of the rows of By and columns of £*" column block Bf is referred as block-(k, ¢) of
A. A column is said to connect a row block By, if it contains at least one nonzero in
Bj.. A column is called cut if it connects more than one row block. For a matrix with
nonzero diagonal entries, each column connects a diagonal block and becomes a cut
column if it connects at least one off-diagonal block.

In the column-net model with unit net cost, the partitioning objective using the
connectivity and cut-net metrics (2.1) respectively encode the minimization of the
number of nonzero column segments in off-diagonal blocks and the number of cut
columns. The former partitioning objective is successfully utilized in encoding the
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PARTITIONING AND REORDERING FOR PARALLEL GS 5

minimization of the row parallel SpMV operations [18].

2.3. Sparse Triangular Spike (stSpike) Algorithm. We describe stSpike for
lower triangular systems since the algorithm for the upper triangular case is similar.
Given a lower triangular linear system of equations

(2.2) Ly =b,

a DS factorization of sparse lower triangular matrix L is computed as L= D.S, where
D is the lower block diagonal of L and S is the Spike matrix. These blocks are
assumed to be obtained by matrix partitioning. Multiplying both sides of (2.2) from
the left by D!, we obtain a modified system

(2:3) Sy=g,

where g=D7'b and S = D~ 'L. By splitting L = D+ R, we obtain S =1+G where
G=D7'R, and R is the block off-diagonal part of L. The sparse triangular system
DG = R with multiple right hand side vectors can be solved for the block rows of G
independently with perfect parallelism.

The nonzero column segments of R constitute dense column segments (called
spikes) in the off-diagonal blocks of S. The block diagonal of S is identity. Ad-
ditional nonzeros (fill-in) are introduced within the off-diagonal blocks of S only in
the locations below the top nonzero (having the smallest row index) for each nonzero
column segment of R. The submatrix consisting of rows and columns C of S, namely
S=5(C,C), constitutes an independent reduced system where C is the set of nonzero
columns of R, i.e., cut columns of L. Then the reduced system is of the form

(2.4) Sy=y,

where g =g¢(C) and y=y(C), which can be solved independent from the rest of the
unknowns in y. After solving the reduced system, the only remaining computation
for retrieving the solution of the original system is

(2.5) y=g— D Y(RY),

which can be obtained in perfect parallelism where R=R(:,C) (in MATLAB notation).
We only partially compute S just to form S , since forming S explicitly is expensive
and requires a large amount of memory. Partial computation of S constitutes the
factorization phase, whereas computation of g, solving (2.4) and (2.5) constitutes the
solution phase of stSpike. R

An example L matrix and the corresponding S and S matrices are shown in
Figure 1. The reduced system indices C ={1,3,4,6,7,9,11} are colored in red and
circled. The nonzeros that constitute the reduced system are bold and colored in red.
The background colors of the original nonzeros and possible fill-in are green and blue,
respectively. Depending on the sparsity structure of the corresponding column and
block diagonal, spikes may not fill the entire column segment. For example, nonzero
L(4,1) in block-(2,1) of L leads to the spike consisting of three nonzeros in the first
column of block-(2,1) of S.

3. Distributed-Memory Parallel GS (dmpGS) Algorithm. The pseudo-
code of dmpGS is given in Algorithm 3.1 for processor Py in a K-processor system.
Matrix A is assumed to be partitioned into K row blocks, where m; denotes the
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1 23456 7 891011121314 D235 6@ 8 (10G)1213 14
1]x ®[1
2[x x 2| 1
3| x x ® 1
4% X @|% 1
5 XX X 5[ xi 1
6 X ® 1
7 X X X @|*  * 1 [OIOIOICIVIONN)
8 X X 8 X 1 ®[1
9 XIX X ® * X 1 ®|__1
10 X X X 10 * X % 1 @] % 1
11| % X X [ x * 1 ® i
12 X X X 12 X 3 1 @[* * 1
13 X X X X 13 *1X X 1 ©® * X1
14 XiX X X 14 * * X 1 (X * 1
(a) Matrix L (b) Matrix S (c) Matrix S

Fig. 1: Sparsity structure of L and resulting S and S matrices derived from stSpike.

number of rows in the k** row block. In the algorithm, Ry, Dj and U, respectively
denote the k*® row block of the strictly block lower triangular, lower triangular part of
the block diagonal, and strictly upper triangular parts of A as shown in Figure 2. The
number of columns in Ry, Dy and U are respectively Zi.:ll m;, mg and Zfik m;.
S, 9k, Tk, i, wi and z, denote the local subvectors of size my that are computed by
Py These subvectors are partitioned conformably with row-wise partitioning of A
as shown in Figure 2. S, T and g respectively denote the |C|x |C| coefficient matrix,
|C| x 1 unknown and |C|x 1 right hand side vectors of the reduced system in stSpike.
Ci, denotes the subset of C corresponding to the row indices in Ry.

In Algorithm 3.1, lines 2-7 denote the factorization phase of stSpike which com-
putes S. This phase is done only once after which we proceed with the GS iterations in
lines 8-22. Each dmpGS iteration involves two SpMVs at lines 11 and 20, two vector
subtraction operations at lines 12 and 22, an independent sparse triangular solve at
line 13, a reduced system solution at line 17, which enables independent sparse trian-
gular solves at line 21. The upper and lower triangular SpMV operations are incurred
by the GS and stSpike algorithms, respectively. These two SpMV operations incur
communication of z-vector entries depending on the sparsity structures of the upper
triangular U and lower triangular L matrices, respectively. Conformable partitioning
of the vectors avoids communication during vector subtraction operations.

At lines 9-10, communication operations are performed for local SpMV (line
11). After Py receives all necessary non-local z-vector entries, it forms its augmented
vector Z. Each processor sends the selected entries of its g vector to P; (line 14) to
form the right hand side vector g (line 16) for the sequential solution of the reduced
system to obtain Z (line 17). Here & corresponds to those unknowns in « which are at
the interface of the partitioning of L and obtaining them decouples the global lower
triangular system into independent much smaller systems. P; sends only those z-
vector entries that are required by other processors (line 18) so that each processor

m 1{ D) U, 1 fl P

”72{ Ry D5 U2 x [ = | P

" { Ry |Dy Us s fs| B

nu{ R Dih w4 AN
A z f

Fig. 2: Four-way row-wise partition of matrix A and vectors z and f
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Algorithm 3.1 Distributed-Memory Parallel Gauss Seidel (dmpGS) for processor Py,

Input: Submatrices Ry, Dy, Uk, and right-hand side subvector fi
Output: Subvector xj

1: Choose an initial guess for zy,

2: if 2<k<K -1 then

3 Gy + D,:le > local partial sparse triangular solve with multiple RHS
4 Form and send @k to processor P;

5. if k=1 then R

6 Receive Gy from Py for 2</< K —1 to form G

7
8
9

S+—G+1
: while not converged do
Send required local xj, entries to respective processors in {Py,..., Py}
10 Receive non-local xy entries from processors in {Py41,. .., Pk} to form &y,
11: hy < Uy > local SpMV
12: hy fk — hy,
13: gr D;lhk > local sparse triangular solve

14: if 2<k<K-—1 then Send {gx(¢)}iecc, to processor Py
15: if £ =1 then

16: Receive {g¢(i) }ice, from Py for 2</<K — 1 to form g

17: T« §*1§ > solve reduced system
18: Send Z entries to requiring processors

19: if k # 1 then Receive required Z-entries to form Ty,

20: 2z — Ripxy > local SpMV
21: Wy Dk_lzk > local sparse triangular solve
22: T < g — Wk

Py, forms its T vector (line 19) to perform local SpMV (line 20).

The communication overhead in each iteration of dmpGS is as follows. The
communication volume incurred by h=Uz (line 11) and z= Rz (line 20) are equal
to the number of nonzero column segments in the off-diagonal blocks of U and L,
respectively. Thus the communication volume required by these two SpMVs is equal to
the total number of off-diagonal nonzero column segments in A (offD_nzCol_seg(A)).
The volume of communication incurred at line 16 is equal to the size of the reduced
system, |C|. Therefore, the total communication volume of dmpGS is

(3.1) comnVol = offD_nzCol_seg(A) + |C].

Note that the different row blocks (Ry) seem to vary in the number of columns
because of the triangular structure of the problem. On the other hand, the compu-
tational load imbalance is alleviated by the proposed partitioning model which also
gathers most of the nonzeros to the diagonal blocks.

4. The Proposed Partitioning and Reordering Model. We propose a two-
phase model for reducing the communication overhead of dmpGS while maintaining
computational balance as well as reducing the sequential computational overhead in-
curred by solving the reduced system at each iteration. This computational overhead
is proportional to the number of nonzeros in the off-diagonals of S. In subsection 4.1,
we propose a novel HP model as the first phase which simultaneously encodes the min-
imization of the reduced system size |C| and the communication volume. Decreasing
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IC| is important not only because it directly contributes to reducing the commu-
nication volume, but it also relates to decreasing the computational overhead. In
subsection 4.2, we propose an in-block reordering method as the second phase which
refines the improvement further by decreasing the number of nonzeros in S. We pro-
vide the illustrations showing the effect of the proposed partitioning and reordering
model on a sample matrix in subsection 4.3.

4.1. Hypergraph Partitioning Model. The partitioning objective in this
phase is minimizing the sum of communication volume overhead (3.1) and sequential
overhead costs with proper scaling:

PartObj = commVol + (a—1)|C|
= (offD_nzCol_segs(A4) + |C|) + (a—1)|C|
(4.1) = offD_nzCol_segs(A) + «|C]

Here o denotes the scaling factor between the effect of the reduced system size and
the number of off-diagonal nonzero column segments on the overall overhead.

4.1.1. Definitions and Layout. We define a column as L-cut if it connects at
least one off-diagonal block in the lower triangular part. That is, a column ¢; in kP
column block Bf, is L-cut if it connects a row block B with £> k. Since L-cut columns
of A are the nonzero columns of R, the number of L-cut columns (L-cut_cols(A)) is
equal to the reduced system size, |C|. Therefore, the partitioning objective (4.1) can
be rewritten as

(4.2) PartObj = offD_nzCol_segs(A) + a(L-cut_cols(A)).

Let Hon (A)=(V,N) be the column-net hypergraph of an mxm sparse matrix A
with nonzero diagonal entries. An ordered partition I =(V1, Vs, ..., Vi) of Hon (A)
is decoded as a partial symmetric row and column reordering of A as explained in
section 2.2. Each net n; of Hon(A) connects vertex v; since A(i,7) # 0 for each
1<i<m. A net n; with v; €V}, is called L-cut if it connects at least one vertex part
V, such that £>k. The set of L-cut nets is denoted as Ny..;. We define a new type
of cutsize, which we call the L-cut-net metric, as

(4.3) cSreut(g) = Z cost(n).

nENLcut

Finally, the cost of partition IIx is defined as the sum of connectivity metric with
unit net cost and L-cut-net metric with net cost a, i.e.,

(4.4) costeonntLeut g ) = Z (A(n)—1) + &) Npcut -
neENcut
Here, each cut net n incurs A(n)—1, and each L-cut net incurs « to the cutsize.
LEMMA 4.1. A column ¢; of A is L-cut iff net n; of Hon(A) is L-cut.

Proof. Due to symmetric row-column ordering, ¢; is in Bf, iff r; is in Bj,, which
corresponds to v; € Vj,. Furthermore, ¢; connects B; iff n; connects V,. Therefore, c¢;
in Bj connects By iff n; with v; €V}, connects Vy, where > k. 0

PROPOSITION 4.2. Minimizing costeonn+rLeut (i) for a K-way partition Ik of
Hen(A) corresponds to minimizing the partitioning objective (4.2).

This manuscript is for review purposes only.
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Proof. By Lemma 4.1, the number of L-cut nets in Hoy(A) is equal to the
number of L-cut columns in A. Thus | NLeyt| = a(L-cut_cols(A)). Furthermore,
it is known by [18] that >~ _\, (A(n)—1)=offD nzCol segs(A). O

cut

Each vertex is associated with a weight equal to the number of nonzeros in the re-
spective row of the matrix, i.e., w(v;) =nnz(A(4,:)). Thus, the partitioning constraint
of maintaining balance on part weights approximately encodes the computational load
balance during aggregate two triangular SpMVs (lines 11 and 20) and two triangular
solves (lines 13 and 21).

The cut-net splitting technique has been successfully used within the RB frame-
work to encode the minimization of the connectivity metric [18]. However to the
best of our knowledge, there exists no tool or model for encoding the minimization
of the L-cut-net metric in the literature. We propose to use the RB framework with
novel net anchoring and splitting schemes to encode the minimization of the L-cut-net
metric.

4.1.2. Recursive Bipartitioning Model. At each RB step, an ordered bipar-
tition Il = (Vy, Vr) of V is decoded as ordering the vertices of Vy, after those of V.
Here Vy and Vy, denote the upper and lower vertex parts, respectively. In RB, the
concept of L-cut net takes a special form. In a bipartition Ils = (Vy, V), a net n; is
L-cut if v; is assigned to Vy and n; connects at least one vertex v; such that v; € Vr.
The partitioning objective at each RB step is to minimize

(45) COStRB(HQ) = |Ncut| + a|NLcut|~

For encapsulating the connectivity and L-cut net metrics simultaneously, each
net n; in Hon(A) is replicated as two different kinds of nets, namely conn-net n$
and len-net nf. Here, conn-nets encapsulate the connectivity metric whereas len-
nets encapsulate the L-cut-net metric. The motivation for net replication is the
requirement of different net splitting and net removal procedures for encoding the
connectivity and L-cut-net metrics at each RB step. In order to encapsulate the RB
objective (4.5), we assign unit cost to the conn-nets and cost « to the lcn-nets. We
refer to the hypergraph formed by these replicated nets as H.

We extend H = (V,N) into a hypergraph H' = (V',N’) so that minimizing the
number of conventional cut nets in H’ encodes minimizing (4.5). We introduce new
fixed vertices vy € Vy and vg, €V, to form the extended vertex set V' =V U {vy, v }.
We represent each len-net n¢ in H as a pair of nets 2} and ¢ in H'. 7} is same as n!
except it is U-anchored (connects vyy). 7f is a 2-pin L-anchored net which connects
vy, and v;. That is, for each net n; in Hon(A), H' contains nets ng, nf and 7¢, where

Pins(n$,H') = Pins(n;, Hen (A)),
Pins(it,H') = Pins(n;, Hon(A)) U {vy} and
Pins(ﬁf,?—[’) = {v;, v}

The nets in the extended hypergraph for a sample 3-pin net are shown in Figure 3.
We form H' at the beginning and apply RB steps until reaching the desired part
count, K. The resulting K-way partition II% of H' induces a K-way partition ITx
of Hon(A). H is an in-between hypergraph introduced for the sake of clarity of
presentation and is not constructed during implementation. We explain the proposed
net splitting and removal methods on #, and show the correspondence on H’. We
consider that each bipartition IT5 = (V};, V}) of H' induces a bipartition Il = (Vy, V1)
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Fig. 3: Net n; in Hon(A) is replicated as conn-net n¢ and len-net nf to form H. Net
nf in H is represented by a pair of nets 72¢ and 7f in H'.

of H. Here H and H’ refer to the respective hypergraphs just before the current RB
step. New hypergraphs Hy and Hj, are constructed according to Iy = (Vy,Vr) as
follows. For both conn- and len-nets, each internal net in Vy, and Vy is respectively
included in A7, and Ny as is. In the net splittings, a new conn- or len-net is added
to the net list of Hy or Hy only if it has more than one pin. The single-pin nets are
discarded since they cannot contribute to the cutsize in the following RB steps.

For cut conn-nets, we apply the conventional cut-net splitting procedure [18] to
encapsulate the connectivity metric. If a conn-net n$ is cut, then n{ is split into two
pin-wise disjoint nets in Hy and Hy, such that

Pins(n, Hy)=Pins(ng,H) N Vy, and Pins(n{, Hr)=Pins(ni,H) N VL.

For lcn-nets, we introduce a hybrid cut-net splitting/removal method in order
to correctly encapsulate the L-cut-net metric. At each RB step, for each net pair
(7%, 7m%) in a bipartition II', we consider the state of nf{ in II where Pins(nf, H) =
Pins(nf,H')—{vy} for ease of understanding. If an len-net n! is not internal, then it
can be L-cut or “cut but not L-cut”.

If n¢ is L-cut, then we apply cut-net removal for n;. This is because when n; is
L-cut in an RB step, it also becomes L-cut in the final K-way partition. Hence there
is no need to track this net anymore and we do not include it in further bipartitions.

If nf is cut but not L-cut, then we apply net removal towards Hy and net-L-
splitting towards Hp,. That is, n{ is added to Hy, as Pins(nf, Hr)= Pins(nf, H)NVy.
This is because nf cannot be L-cut in further bipartitionings of Hy but it has the
potential of becoming L-cut in further bipartitionings of H . In the extended hyper-
graph context, this corresponds to adding lcn-net pair (ﬁf , fzf) to H’; such that

Pins(nf, Hy) = (Pins(nf,H') N V,)U{vy}, and Pins(af, 1)) = {vi, vz}

Figure 4 shows all possible cases for a sample lcn-net. The first, second, third and
last horizontal layers respectively show the bipartition II} of H’; the corresponding
bipartition Il of H; Hy and Hy induced by Ily; and the corresponding Hy; and H/,
induced by II4. If nf is L-cut in H as in Figure 4a, both 7f and 7{ are cut in II5. If
n{ is cut but not L-cut as in Figure 4b, or if n{ is internal to Vy, as in Figure 4c, then
only 7} is cut. Otherwise, if n¢ is internal to Vi as in Figure 4d, then only 7¢ is cut.

LEMMA 4.3. Consider the bipartition lo=Vy, V1) of H induced by a bipartition

b=V}, V) of H' in an RB step. If a net is L-cut in Iy, then it incurs 2 cut nets
in IT,. Conversely, if a net is not L-cut in Iy, then it incurs 1 cut net in I15.

Proof. 1f nf is L-cut in Iy of H, then v; € Vy and nf connects a vertex v; such
that v; € Vy. In 11y of H', Af is cut since it connects v; €V}, and v; €V} ; and 7 is

also cut since it connects v; €V}, and vy € V.
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(a) nf is L-cut (b) nf is cut, not L-cut (c) nf is internal to Vy, (d) nf is internal to Vir

Fig. 4: All cases for n} and corresponding net pair (2¢, 7¢) after bipartition (V};, V}).

If nf is not L-cut and v; € Vp, in I3, then ﬁf is cut in IIj because it connects

vy €V}, and v; € V7 ; but ¢ is not cut since both v; and vy, are in V; .

If nf is not L-cut and v; € Vy in Ily, then nf should be internal to Vy, because
otherwise any pin in Vy, would make n{ to be L-cut. In Iy, net 7! is internal to V};
since both v; and vy are in V[;; but 7¢ is cut since it connects v; €V, and vy, €V}. O

PROPOSITION 4.4. Minimizing the conventional cut-net metric for the bipartition
IT, of H' encodes minimizing costrp(Ilz) defined in (4.5).

Proof. By Lemma 4.3, each L-cut net in Iy incurs 2 cut nets in IT}, whereas
all remaining nets in Iy incur 1 cut net in IT,. Since the cost of len-nets is «,
the cutsize incurred by len-nets in I is a(|[Npcue| +|AN]). Since conn-nets are of
unit cost, they incur |Nyu| to the cutsize of IT,. Hence the total cutsize of II} is
Newt| + @ NLcut| + a|N|.  Since a|N| is constant, minimizing the cutsize of I} is
equivalent to minimizing |Neyi|+a|Ncut|, which is costgp(I12). 1]

Figure 5 shows an example 2-level RB in terms of len-nets in H and the corre-
sponding 4-way matrix partitioning. The L-cut nets nf, n§ and n§ and the corre-
sponding L-cut columns c1, ¢o, and cg of A are colored in red background. nf is L-cut
in the first level RB and discarded in the future bipartitions. This is because column
¢y is already counted as L-cut due to nonzero A(6,2) and should not be counted as
L-cut again due to nonzero A(4,2) in further bipartitions.

Note that the L-cut net definition can be considered to be similar to the left-cut
net defined in [1] for encapsulating the profile minimization, but the net splitting and
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removal strategies are quite different for encapsulating the objective of our problem.

THEOREM 4.5. Recursively bipartitioning H' by minimizing the cutsize according
to the cut-net metric and applying the proposed net splitting and removal strategies
until reaching K parts encode minimizing the partitioning objective (4.2).

Proof. By Proposition 4.4, recursively bipartitioning A’ by minimizing the con-
ventional cut-net metric encodes minimizing costpp(Ilz) at each RB step. We show
that this encodes minimizing costeonn+Leut (k). Proposed net splitting and removal
strategies ensure that an L-cut net in Ilx is also L-cut in II5 in exactly one RB step.
Since an L-cut net contributes a to both cost g (Il2) and costeonn+ Lewt k), minimiz-
ing a|NLeue| in each bipartition I encodes minimizing a|Ncy| in Ilx. Furthermore,
minimizing the number of cut nets |N.,:| at each RB step and applying the cut-net
splitting procedure encodes minimizing the connectivity metric > ., (A(n)-1) [18].
Therefore, minimizing the cutsize for each bipartition IT;, of H' encodes minimizing
coSteonn+Leut (1 ); hence by Proposition 4.2, this corresponds to the partitioning
objective (4.2). O

4.2. Reordering within Row Blocks. Consider the K-way block structure
(e.g. Figure 2) of A induced by the partial symmetric row-column permutation ob-
tained by the HP model (section 4.1). We perform row reordering within the k"
row block of A by considering nonzeros of the k' row block Ry of R. The resulting
row reordering within the &*" row block of A is symmetrically applied to the columns
of the k' column block of A. Ry is an my X z; matrix where 2z, = Zf;ll m;. For
simplicity, we assume a local indexing for the rows of Ry so that Ry consists of rows
r; with 1 <7<my,.

Recall that in stSpike, fill-in may arise below the top nonzero of each spike in Ry.
The top nonzero of a spike c¢; in Ry, is the nonzero with the minimum row index, i.e.,
top(cj, Ry)=min{i : Ry(i,7)#0, 1<i<my}. We define the height of a spike ¢; in Ry,
as the number of reduced system row indices between top(c;, Rx) and my inclusively,
ie.,

(4.6) height(c;, Rk) = [{i : top(c;, Rr) <i<mi, i€Ci}|,

since only the rows with indices in Cx may contribute to the nonzero count of S. The
height of a spike in Ry, constitutes an upper bound on the nonzero count (including the
fill-in) of the corresponding column in S. In Figure 1b, the heights of the spikes are
as follows: height(cy1, Ry)=3, height(cs, R2)=2; height(ci, R3)=1, height(cs, R3)=2,
height(cg, R3)=1, and height(c7, R3)=2. The height of a non-spike column is assumed
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to be zero. The objective of in-block reordering is to minimize the total height

K—1 z

(4.7) > > height(c;, Ry),

k=2 j=1

which constitutes an upper bound on the nonzero count in off-diagonal blocks of S.
The last block Ry does not contribute nonzeros to S since Cx is empty. Reordering
within different blocks are completely independent and can be done concurrently.

One straightforward approach is placing the rows whose indices are not among
C;, to the bottom of Ry to avoid the nonzeros of the rows that are not in Cj; to
contribute to (4.7). Let Ry = Ry(Ck,:) be the |Cx|x z;, submatrix of Ry consisting of
the rows with indices in C;. Then the problem is reduced to reordering only those
rows of Ry, since the rest of the rows at the bottom of R, do not have an impact on
(4.7). The reordering objective for each Ry is to minimize Z;’;l height(c;j, Ry), with
a simplified height definition, height(c;, Ri) = |Ci|+1—top(cj, Ry). Then the total
height minimization problem is formulated in general as: Given any sparse matrix
H R find a row reordering P that minimizes Z;;l(é—kl—top(cj, PH)).

THEOREM 4.6. The total height minimization problem (THMP) is NP-hard.

Proof. We reduce the profile minimization problem (PMP) [1, 46], which is known
to be NP-hard [26, 44], to THMP as follows. Given a symmetric matrix V € R"*" with
nonzero diagonal entries, the objective of PMP is finding a symmetric row/column
reordering P that minimizes Z?Zl(j—top(cj,PVPT)). This minimization objective
is equivalent to maximizing Z?thop(cj,PVPT), since Z?:1 j is constant. Any
instance PV PT of PMP can be mapped to an instance PV of THMP by simply
removing the column reordering as (PVPT)P = PV. Note that the minimization
objective of THMP, which is Z;Lzl(n—i-l—top(cj,PV)), is equivalent to maximizing
> iytop(cj, PV), since 377 (n+1) is constant. Thus, PV P is a solution of PMP
iff PV is a solution of THMP since the column reordering itself has no effect on
Soi_ytop(cj, PVPT)=3""_ top(cj, PV). If there had been a polynomial-time solu-
tion to THMP, then one could solve PMP in polynomial time by just applying the
row reordering obtained by THMP on the columns as well. Therefore, PMP can be
reduced to THMP in polynomial time; and since PMP is NP-hard, then so is THMP.O

Algorithm 4.1 presents the pseudocode of the proposed heuristic for reordering
the rows of Ri. The efficient implementation of this algorithm requires accessing
the nonzeros of both rows and columns of Ry, so it is stored both in CSR and CSC
formats. Cols(r;) denotes the set of columns in row r;, whereas Rows(c;) denotes
the set of rows in column ¢;. Degree of a row or column is defined as the number of
nonzeros in that row or column, i.e., deg(r;) =|Cols(r;)| and deg(c;) =|Rows(c;)|. In
lines 3-5, we define the load of each row 7; as the sum of degrees of columns ¢; such
that Ry (i,4) #0.

The greedy choice utilized in the proposed heuristic is to order the rows with
smaller degrees to upper positions of R}, since placing denser rows to upper positions
incurs more height in (4.7). We further improve our greedy approach by using dynamic
row degrees during the row selection process. When a row is selected, the degree
of each unselected row is decremented by the number of its nonzeros having the
same column index with the nonzeros in the selected row. Since the nonzeros in a
selected row already determine the heights of the respective columns, we do not need
to consider the rest of the nonzeros of these columns in future row selections. When
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Algorithm 4.1 Proposed in-block reordering for Ry where 2<k<K-—1

Input: Rj € R™#*% and set of reduced-system row indices Cy, of Ry.
Output: the permutation vector perm of Rj.

1: Place the rows r; with i¢Cj, to the last my—|C| indices in any order
2: Consider submatrix Ry = Ry (Cy,:) of Ry, consisting of rows r; with i€Cy,
3. for each row r; of R;, do

4: load(r;) <0

5: for each column ¢; € Cols(r;) do load(r;) < load(r;)+deg(c;)

6: for d + 0 to max_row_deg do S§(d) « {r; : deg(r;) = d}

7. indx < 0

8: while indz < |C| do

9: d* + min{d : §(d) # @}

10: T 4= argmax,, ¢ g(q+ load(r;) > Select r;» € S(d*) with maximum load
11: indx +— indr+1

12: perm(indx) < 1

13: S(d*) « S(d*) — {ri}

14: for each column ¢; € Cols(r;+) do

15: Rows(c;) < Rows(c;) — {ri=}

16: Cols(ri+) — Cols(ri+) — {c;}

17: for each row r;y € Rows(c;) do

18: Cols(ry) < Cols(ry) — {c;}

19: load(ry) < load(r;)—deg(c;)
20: S(deg(ri)) < S(deg(rir)) — {ri}
21: deg(ry) < deg(ri)—1
22: S(deg(rir)) + S(deg(rir)) U{r:}

selecting a row among rows with the same degree, load values of the rows are used as
a tie-breaking strategy. A row with a higher load is preferred to be selected since it
will lead to a larger amount of decrease on the degrees of unselected rows.

In Algorithm 4.1, S(d) denotes the set of rows with degree d. Due to dynamic row
degrees, at each iteration we find the minimum degree d* (line 9). Then we choose the
row 7= in S(d*) with the maximum load (line 10). After r;- is selected, all remaining
nonzeros in each column ¢; with Ry (i*,5) #0 are deleted as in lines 15-18. For each
unselected row r;; with Ry (7, j) #0, we dynamically update the load and degree of
ry, and the respective degree sets (lines 19-22).

Recall that forming S in dmpGS requires the computation of nonzeros up to the
largest reduced system row index and any entry beyond that is not required to be
computed for each row block. Hence the total height (4.7) also gives the computational
cost of forming S since we place R;, at the top of Ry, for each 1<k < K.

4.3. Illustration. Figure 6 illustrates the effect of applying the proposed par-
titioning and reordering model for K=8 on a sample matrix (msc23052) from the
SuiteSparse Matrix Collection [24]. The nonzero structure of the original matrix, the
structure obtained after applying the proposed HP model and the final structure after
the proposed in-block reordering are shown in order. Below each ordering of A, the
resulting Spike matrix (.9) is shown, including the nonzeros of the reduced system (.5)
which are highlighted with red circles. As seen in the figure, the proposed partitioning
and reordering model significantly reduces the nonzero count of the reduced system.
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Fig. 6: Nonzero structure of msc23052: (a) before ordering, (b) after HP for K = 8,
(c) after HP and in-block reordering; (d),(e),(f) the respective Spike (S) matrices (the
reduced system (.S) nonzeros are circled in red color).

For example, the number of nonzeros in S—Iin Figures 6d, 6e, and 6f are 277,113,
3,593, and 811, respectively. Note that these numbers may seem to be much larger
than the ones appearing in the figures because of the overlapping red circles.

Notice that the proposed HP model gathers most of the nonzeros to the diagonal
blocks so that the off-diagonal blocks become very sparse. Then, the proposed in-block
reordering method gathers the reduced-system nonzeros to the upper left corner of the
respective off-diagonal block (Figure 6f). This is because we agglomerate the reduced
system row indices to the top within each block, and we apply the resulting row
reordering to the columns symmetrically. Within each off-diagonal block, gathering
the rows with reduced-system indices to the top corresponds to agglomerating the
columns with these indices, which are actually all the columns having nonzeros, to
the left. An exception is the first column block since no row reordering is performed
for the first row block.

5. Experiments. We use the HSL software package MC64 [29] for scaling and
permuting the coefficient matrices to avoid a singular L. We select the MC64 option
that maximizes the product of the diagonal entries and then scales to make the ab-
solute value of diagonal entries one and the off-diagonal entries less than or equal to
one. For symmetric matrices, in order not to destroy the symmetry, we apply the
symmetric MC64 if the main diagonal is already zero-free. Otherwise, we apply the
nonsymmetric MC64 to obtain a zero-free main diagonal. For unsymmetric matrices,
we just apply the nonsymmetric MC64.
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Table 1: Number of instances among different matrix kinds in the dataset

Kind ID Kind Name Sym Unsym Total
1 structural 48 4 52
2 circuit simulation 2 46 48
3 economic 1 33 34
4  semiconductor device 0 33 33
5 computational fluid dynamics 6 27 33
6 2D/3D 19 9 28
7  power network 14 13 27
8  optimization 20 3 23
9  model reduction 13 3 16

10  chemical process simulation 0 15 15
11 theoretical/quantum chemistry 14 0 14
12 electromagnetics 6 4 10
13 thermal 5 4 9
14 materials 2 4 6
15  weighted graph 1 5 6
16 acoustics, oceanography, counter-ex., analytics 4 1 5

All 155 204 359

The experiments are conducted on an extensive dataset obtained from the SuiteS-
parse Matrix Collection [24]. For sufficiently coarse-grained parallel processing, we
select real square matrices that have more than 20,000 rows and between 100,000
and 20,000,000 nonzeros. There are 199 symmetric and 208 unsymmetric matrices in
SuiteSparse satisfying these properties at the time of experimentation. 44 symmetric
and 4 unsymmetric matrices are eliminated because they are singular. The remaining
are 155 symmetric and 204 unsymmetric, a total of 359 sparse matrices on which we
conduct experiments. Table 1 shows the number of instances for each matrix kind.
Kinds are sorted in decreasing order of instance count. The kinds having less than
5 instances in our dataset (acoustics, chemical oceanography, counter-example and
data analytics) are grouped as one kind.

5.1. Partitioning Quality. We tested the performance of the proposed parti-
tioning algorithm described in subsection 4.1 against the partitioning quality of the
conventional column-net HP with connectivity metric (cnHP) and graph partitioning
(GP) models. For both ecnHP and GP, vertex weights are set as the number of nonze-
ros in the respective rows whereas nets and edges are assigned unit cost. In cnHP,
the objective is to minimize the number of nonzero off-diagonal column segments. In
GP, the objective is to minimize the number of nonzeros in the off-diagonal blocks.
For unsymmetric matrices, GP is applied on |A| +|AT|. The well-known partitioning
tools METIS [40] and PaToH [19] are used for GP and ¢cnHP models, respectively.

In the proposed model, we use PaToH as the HP tool in each bipartitioning step.
Experiments are conducted with different scaling factors a=1,2,5 and 10 for len-net
cost assignment. We set the maximum allowable imbalance ratio in each bipartition-
ing as € =0.05. As both METIS and PaToH involve randomized algorithms in the
coarsening phase, five partitioning runs are performed for each instance with different
seeds and the averages are reported. We conduct experiments for K =8,16, 32, 64,128
and 256 parts (processors).

Table 2 shows the results of the comparison experiments in terms of the communi-
cation volume and the reduced system size metrics for dmpGS utilizing the partitions
generated by GP, cnHP and the proposed model. For each test instance, these metrics
are normalized with respect to the number of rows and the average for all matrices
are given for each K. Here and hereafter, all averages are given as geometric means.

As seen in Table 2, cnHP achieves considerably low communication volume and
reduced system size than GP as expected. The average improvement of cnHP over
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Table 2: Averages of total communication volume and the reduced system size in
dmpGS, both normalized with respect to the number of rows.

proposed HP model (Sec. 4.1)

K GP cnHP a=1 a=2 a=>5 a =10

8 0.158 0.132 0.140 0.139 0.139 0.145
16 0.253 0.217 0.223 0.224 0.224 0.232
32 0.380 0.329 0.332 0.332 0.337 0.347
64  0.547 0.477 0.479 0.479 0.491 0.505

Red. sys. size| Comm. vol
o)
=)
=)
=
[oe]

COLO2¢
=)
=
—
[e=]
=)
&
w
=)
o
Y
[)
=)
o
[\
25
=)
o
[\
2S)

256  0.252 0.227 0.177 0.168 0.154 0.149

GP is approximately 10% for both metrics on K =256. In fact, cnHP is equivalent
to the proposed HP model for @« = 0. As seen in the table, there is a trade-off
between the reduced system size and the communication volume for varying values of
« for the proposed HP model. Yet the rate of increase in the communication volume
is observed to be larger than the rate of decrease in the reduced system size with
increasing «. For example for K =64, compared to the cnHP model, the proposed
model slightly increases the communication volume by 0.4%, 0.5%, 2.9% and 5.9%
whereas it significantly decreases the reduced system size by 21.5%, 25.2%, 30.7% and
32.0% for a«=1,2,5 and 10, respectively. Here, a =2 seems to be a balanced choice
since it significantly decreases the reduced system size while it slightly increases the
communication volume. This is reflected in the parallel scalability of the proposed
algorithm as will be shown in subsection 5.3, thus we set « =2 in the upcoming results.

In Figure 7, we provide the performance profiles comparing GP, cnHP and the
proposed model in terms of the reduced system size. We present the performance
profiles only for K =16,64 and 256 due to lack of space. A performance profile [27]
shows the comparison of different models relative to the best performing one for each
data instance. On a profile, a point (x,y) means that the respective model is within x
factor of the best result for a fraction y of the instances. For example, the point (1.20,
0.60) on the curve of cnHP means that enHP yields 20% more reduced system size
than the smallest reduced system size achieved for 60% of the dataset. Therefore, the
model closest to the top left corner is interpreted as the model with best performance.

As seen in Figure 7, the proposed model outperforms the baseline algorithms in
terms of the reduced system size in the majority of the test instances. As K increases,
the performance gap between GP and cnHP decreases, whereas the performance gap

K =16 K =64 K =256
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Fig. 7: Performance profiles comparing GP, cnHP and the proposed HP model.
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Table 3: Total height and nonzero count averages in the off-diagonal blocks of S.

Kind K=38 K=16 K =32 K =164 K =128 K = 256
1D height nnz height nnz  height nnz  height nnz  height nnz  height nnz
1 1,470.1 518.5 554.1 233.6 263.6  143.1 115.9 67.6 65.9 41.1 372 254
2 71.9 125.2 63.1 100.6 30.5 61.6 15.8 35.0 8.8 18.7 55 11.6
3 1,219.2 331.4 321.2 271.5 296.8 197.2 167.8  152.7 88.2 82.9 46.1 478
4 27.7 3.8 16.8 5.3 9.9 5.7 8.8 6.2 6.5 4.5 4.6 3.1
5 260.0 10.0 142.6 9.1 90.3 7.6 63.5 6.3 37.6 4.7 24.5 4.0
6 600.0 123.2 298.3 101.5 148.6 61.3 73.5 37.0 38.7 22.3 22.0 13.6
7 131.8 10.1 67.3 7.4 36.7 5.7 22.8 4.7 14.0 3.8 8.5 3.2
8 513.5 97.3 260.4 59.4 92.2 30.9 48.9 18.5 23.8 11.3 17.0 8.2
9 1,5479 1,101.3 11,0109 1,221.2 556.7 641.8 248.6 3154 102.0 141.6 50.7  70.0
10 29.0 4.8 32.9 10.9 15.0 5.6 12.8 5.2 8.6 3.6 6.0 2.7

11 375.3 619.3 213.3 213.3 112.8 136.6 68.8 89.0 43.2 54.1 256 320
12 241.2 170.7 121.4 109.1 59.9 66.8 31.8 41.2 18.1 25.2 10.6  14.7
13 18.2 2.7 17.7 3.1 12.7 2.7 13.4 2.6 10.1 2.6 8.2 2.8
14 217.7 231.1 116.5 149.6 59.2 94.0 33.0 54.4 19.1 30.6 12.2 17.7
15 610.4 228.9 277.9 164.6 122.0 91.6 61.8 50.9 31.5 28.3 18.0 16.4
16 15.8 62.2 8.5 31.5 6.0 18.9 4.4 11.9 3.4 7.8 2.7 5.3

All 238.1 57.2 127.1 43.0 65.0 27.8 39.0 18.7 22.7 12.1 14.3 8.3

*The values are the ratios of the results attained by the baseline over the proposed in-block reordering.

between the proposed model and both of the baseline models increases significantly.
The proposed model yields the best performance for 69%, 71%, 75%, 82%, 85% and
86% of the dataset for K =8,16, 32,64, 128 and 256, respectively.

The proposed HP model yields very sparse off-diagonal blocks. The number of
nonzeros in any lower off-diagonal block Ry is at most 0.51%, 0.44%, 0.35%, 0.26%,
0.19%, and 0.13% of the total nonzero count of A for K=8, 16, 32, 64, 128, and 256
parts on the average, respectively. As the HP model maintains balance on the nonzero
counts of the whole row blocks, these low nonzero counts in off-diagonal blocks do not
disturb the computational load balance among processors considerably.

5.2. In-Block Reordering Quality. To our knowledge, no in-block reorder-
ing method has been proposed or tested for stSpike in the literature. Therefore, we
compare the improvement gained by applying the proposed in-block ordering method
against a baseline algorithm which does not apply an in-block reordering. In this com-
parison, both the proposed and the baseline reordering methods utilize the partitions
obtained by the HP model (Section 4.1). Two quality metrics used in this comparison
are total height and nonzero count in the off-diagonal blocks of S.

Table 3 shows the ratios of these quality metrics of the in-block reorderings gen-
erated by the baseline to those of the proposed method. For each K value, the results
are given as averages grouped by different matrix kinds, and the last row shows the
average of all instances in the dataset.

As seen in Table 3, the proposed reordering method achieves significant improve-
ment in terms of both quality metrics against the baseline reordering. For example
for K =64, on overall average, the proposed method achieves 39x and 18.7x improve-
ment against the baseline ordering in terms of height and nonzero counts, respectively.
The improvement rate attained in height does not always directly reflect to the im-
provement rate in the nonzero counts since height is an upper bound for fill-in and
the fill-in also depends on the sparsity of the diagonal blocks.

Although the improvement of the proposed reordering against the baseline order-
ing tends to degrade with increasing K, this is expected since there are fewer rows
per block and there is less room for improvement. For example on overall average,
the proposed in-block reordering method achieves 57.2x, 43.0x, 27.8x, 18.7x, 12.1x
and 8.3x decrease in the nonzero count for K =38,16, 32,64, 128 and 256, respectively.

The proposed partitioning and reordering model yields very small reduced systems
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Table 4: The properties of matrices to run dmpGS.

. Kind . Relative mtGS*
Matrix ip Sym Size Nnz Residual*  time (s)
msdoor 1 v 415,863 19,173,163 1.9 x 10—+ 23.1
af_shelll 1 v 504,855 17,562,051 8.2 x 10~* 23.4
af_1_k101 1 v 503,625 17,550,675 1.1 x 1074 23.4
CoupCons3D 1 416,800 17,277,420 4.0 x 107° 21.8
Freescalel 2 3,428,755 17,052,626 3.0 x 104 72.7
circuitsM_dc 2 3,523,317 14,865,409 1.9 x 10?2 72.7
CurlCurl_3 9 v 1,219,574 13,544,618 2.8 x 107* 35.4
memchip 2 2,707,524 13,343,948 5.4 x 107° 57.5
BenElechil 6 v 245,874 13,150,496 6.5 x 107° 15.2
pwtk 1 v 217,918 11,524,432 1.5 x 107* 13.6
bmw3_2 1 v 227,362 11,288,630 1.9 x 10™* 13.6
bmwecra_1 1 v 148,770 10,641,602 6.0 x 10~ 11.9

*Relative residual and runtime results of mtGS on 40 cores for 500 iterations.

whose nonzero counts are significantly low relative to the original system. The average
ratios of the nonzero count of the reduced system over the nonzero count of the original
coefficient matrix, i.e. nnz(S)/nnz(A4), are 0.05%, 0.12%, 0.26%, 0.49%, 0.87%, and
1.48% for K=8, 16, 32, 64, 128, and 256 parts, respectively. These low nonzero
counts of the reduced systems verify the effectiveness of the proposed partitioning
and reordering model in terms of alleviating the sequential computational overhead
of dmpGS.

5.3. Parallel Scalability. Parallel experiments are performed on the Sariyer
cluster of UHEM [66] using up to 320 cores over 8 distributed nodes, each containing
40 cores (two Intel Xeon Gold 6148 CPUs) and 192GB memory. The nodes are
connected by an InfiniBand EDR 100 Gbps network.

We implement an MPI+OpenMP hybrid parallel dmpGS to demonstrate the ef-
fectiveness of using stSpike and the proposed model. Throughout this section, the
proposed model refers to the proposed partitioning and in-block reordering model
(Section 4) applied to dmpGS. The number of MPI processes is the same as the
number of parts (K) in a partition. For dmpGS, we experimented with different con-
figurations of number of processes and threads. We found that the best configuration
is 8 processes per node and 5 threads per process. Therefore, we conduct parallel
experiments for dmpGS using 1, 2, 4 and 8 nodes corresponding to 40, 80, 160 and
320 cores and K =8, 16,32 and 64 parts (processes), respectively.

To the best of our knowledge, there is no publicly available true distributed-
memory parallel GS implementation. For comparing the performance of dmpGS, we
also implemented a multi-threaded GS (m¢GS) by using the multithreaded sparse
triangular system solver (mkl sparse_d_trsm) and sparse matrix vector multiplicator
(mkl_sparse_d_mv) of Intel MKL [37]. As a baseline, we obtain the results of mtGS
on 40 threads/cores (1 node) by using the GP reordering since it is shown in [22] that
the triangular solution with MKL benefits most from GP.

We tested the parallel scalability of dmpGS for a subset of the dataset since
we have limited core hours on the HPC platform. From the dataset, we considered
the matrices with at least 100,000 rows and 10,000,000 nonzeros, for which GS con-
verges with a relative residual of less than 1072 in 500 iterations with initial guess
z=[0,...,0]7 and right-hand side vector f=[1/m,2/m,...,1]T. Then we select only
those instances with different sparsity structures from each matrix group. There were
exactly 12 such matrices in our dataset satisfying these criteria. The properties of
those matrices are shown in Table 4, sorted in decreasing order of nonzero counts.
The sixth and the last column respectively show the relative residual and runtime of
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Table 5: Average speedup obtained by dmpGS over mtGS on 40 cores.

number of proposed model

P HP

nodes cores G on a=1 o =2 a=>5 a =10
8 1 40 9.87 8.71 14.85 14.71 14.77 14.51

16 2 80 14.65 13.58  29.07 28.51 28.47 28.25

32 4 160 17.41 16.11 47.28  47.86 47.24 45.89

64 8 320 15.79 17.60 54.96 55.54 50.21 50.65

*The best speedup value obtained for each K is shown in bold.

mtGS after 500 iterations.

Table 5 shows the average speedup values obtained by dmpGS with GP, cnHP and
the proposed model over mtGS. We run dmpGS with the proposed model for a=1,2,5
and 10 to observe the effect of scaling factor («) on the parallel performance. As seen
in the table, the proposed model achieves significantly higher speedup for dmpGS over
the baseline models for all a. The speedup performance gap between the proposed
and baseline models increase with increasing K, thus confirming the effectiveness of
the proposed model.

We also provide Figure 8 which depicts the performance profiles for comparing
the dmpGS runtime using the proposed model for varying o and K values. We choose
a=2 for better scalability of dmpGS since it yields the best performance for larger part
counts (K =32 and 64) as seen in both Table 5 and Figure 8. As seen in Table 5, the
proposed model with a=2 yields average of 1.5x, 1.9, 2.7x and 3.2x higher speedup
relative to the best of the baseline models for K =8, 16,32 and 64, respectively.

Figure 9 shows the results of the strong scaling experiments as speedup curves of
dmpGS with GP, cnHP and the proposed model. The proposed model significantly
enhances the scalability of dmpGS so that dmpGS scales up to 320 cores on all in-
stances. As seen in the figure, the proposed model outperforms GP and cnHP models
for all of the test instances, significantly so in 9 out of 12. In Figure 9 for memchip,
dmpGS using the proposed model achieves up to 122.2 speedup on 320 cores over
mtGS on 40 cores.

6. Conclusion. We proposed and implemented an stSpike-based distributed-
memory parallel GS (dmpGS) algorithm. For improving the scalability of dmpGS,
we propose a hypergraph partitioning (HP) based partitioning model and an in-block
row reordering method. Extensive experiments show that the proposed HP model
significantly decreases the reduced system size with respect to the baseline models
while attaining comparable communication volume. The proposed in-block reordering
method leads to a substantial decrease in the computational cost of both forming and
solving the reduced system. Parallel experiments up to 320 cores demonstrate that
using the proposed reordering model significantly improves the scalability of dmpGS.

K =8 (40 Cores) K =16 (80 Cores)

K = 32 (160 Cores) K =64 (320 Cores)
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Fig. 8: Performance profiles in terms of the dmpGS runtime using the proposed model.
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Fig. 9: Speedup curves of dmpGS with GP, ecnHP and the proposed model (for
K =8,16,32 and 64) relative to mtGS on 1 node (40 cores).

As a future work, we will consider the parallel solution of the reduced system
to further alleviate the sequential bottleneck. We will also consider an in-block row
reordering which takes the nonzeros of the diagonal blocks into account for further
reducing the nonzero count in the reduced system. Finally, the future work will
include extending the dmpGS algorithm for multiple right-hand-side vectors as it
is very common in modern applications. Using multiple right-hand-side vectors is
expected to further enhance the performance of dmpGS since it enables using higher
level BLAS subroutines compared to the single right-hand-side case. Moreover, the
parallel solution time per right-hand-side vector will further decrease since the parallel
factorization is done only once.
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