
ENHANCING BLOCK CIMMINO FOR SPARSE LINEAR SYSTEMS1

WITH DENSE COLUMNS VIA SCHUR COMPLEMENT ∗2

F. SUKRU TORUN† , MURAT MANGUOGLU‡ , AND CEVDET AYKANAT§3

Abstract. The block Cimmino is a parallel hybrid row-block projection iterative method suc-4
cessfully used for solving general sparse linear systems. However, the convergence of the method5
degrades when angles between subspaces spanned by the row-blocks are far from being orthogonal.6
The density of columns as well as the numerical values of their nonzeros are more likely to contribute7
to the non-orthogonality between row blocks. We propose a novel scheme to handle such “dense”8
columns. The proposed scheme forms a reduced system by separating these columns and the re-9
spective rows from the original coefficient matrix and handling them via Schur complement. Then,10
the angles between subspaces spanned by the row-blocks of the reduced system are expected to be11
closer to orthogonal and the reduced system is solved efficiently by the block Conjugate Gradient12
accelerated block Cimmino in fewer iterations. We also propose a novel metric for selecting “dense”13
columns considering the numerical values. The proposed metric establishes an upper bound on the14
sum of inner–products between row-blocks. Then, we propose an efficient algorithm for computing15
the proposed metric for the columns. Extensive numerical experiments for a wide range of linear16
systems confirm the effectiveness of the proposed scheme by achieving fewer iterations and faster17
parallel solution time compared to the classical CG accelerated block Cimmino algorithm.18

Key words. Schur Complement, parallel block Cimmino, hybrid methods, Krylov subspace19
methods, row projection methods.20

AMS subject classifications. 65F10, 65F50, 05C50, 65Y0521

1. Introduction. In computational mathematics, the row projection methods22

are one of the most fundamental types of iterative methods for solving the system of23

linear equations of the form24

(1.1) Ax = f,25

where A is an n×n sparse unsymmetric nonsingular matrix, x and f are the unknown26

and right-hand side (rhs) vectors, respectively. Kaczmarz [33] and Cimmino [15] are27

the two main variations of the row projection method, where the solution is com-28

puted iteratively through projections. Kaczmarz solves the system using the product29

of row projections, whereas Cimmino solves the system using sum of the projections.30

Cimmino algorithm has an advantage on parallel platforms since it obtains row pro-31

jections independently in each iteration. Summation of these projections is the only32

part that requires inter-processor communication.33

The Cimmino algorithm has been studied extensively [4, 24, 43]. In the Cimmino34

algorithm, the number of iterations required for convergence can be large. The block35

version of the Cimmino algorithm, which is a hybrid method in the sense that it36

combines direct and iterative methods, is proposed [7, 13] to improve the convergence37

rate. At each iteration of the block Cimmino algorithm, the minimum 2-norm solution38

of underdetermined linear systems of equations is computed via a direct method, in39

which the coefficient matrices are the row blocks of A.40

∗Submitted to the editors October 1, 2021.
Funding: The second author was supported by the BAGEP Award of the Science Academy.

†Department of Computer Engineering, Ankara Yildirim Beyazit University, Ankara, 06020, Tur-
key (fstorun@aybu.edu.tr).

‡Department of Computer Engineering, Middle East Technical University, 06800, Ankara, Turkey
(manguoglu@ceng.metu.edu.tr).

§Department of Computer Engineering, Bilkent University, 06800, Ankara, Turkey
(aykanat@cs.bilkent.edu.tr).

1

This manuscript is for review purposes only.

mailto:fstorun@aybu.edu.tr
mailto:\protect \unhbox \voidb@x \hbox {manguoglu@ceng.metu.edu.tr}
mailto:aykanat@cs.bilkent.edu.tr

2 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

The convergence rate of the block Cimmino algorithm depends on the orthog-41

onality between subspaces spanned by the row-blocks. In [19], convergence of the42

block Cimmino algorithm is studied and some partitioning methods are proposed to43

improve the structural and numerical orthogonality among block rows. Recently, we44

proposed a new row-block partitioning method (GRIP) [46] which directly aims to45

increase numerical orthogonality among subspaces spanned by row-blocks by using a46

graph theoretical model. In GRIP, the partitioning objective of minimizing the cut-47

size encodes minimizing the sum of row-inner products between different block rows.48

We showed that the row-block partitioning obtained with GRIP significantly reduces49

the required number of iterations for the block Cimmino algorithm.50

In this work, we propose a new scheme to reduce the number of iterations for51

sparse linear systems whose coefficient matrices have some dense columns. In the block52

Cimmino, if all nonzero entries of a column fit into one row-block, then that column53

does not disturb the numerical orthogonality between subspaces spanned by the row-54

blocks. On the other hand, if a column of a matrix contains at least two nonzero entries55

which are placed in distinct two row blocks, this column can decrease the orthogonality56

between the subspaces. Therefore, in this work, we study the matrices having dense57

columns since dense columns in the matrix are more likely to have nonzeros in distinct58

row-blocks and this can decrease the orthogonality between subspaces spanned by the59

row-blocks.60

The proposed scheme is a hybrid method which is based on the Schur complement61

by separating some columns (possibly dense ones) from the solution process of the62

block Cimmino method to increase the orthogonality among subspaces spanned by63

the row-blocks. We obtain a column permutation so that those columns that hamper64

the orthogonality are placed in the (1,2)-block if the matrix is partitioned into 2x265

blocks. We apply the permutation symmetrically. The system involving (1,1)-block66

as the coefficient matrix is solved with the block Cimmino algorithm which requires67

fewer iterations since the subspaces spanned by the row-blocks of the (1,1)-block68

are expected to be closer to orthogonal to each other. As will be explained later,69

the proposed scheme requires the solution of a system with multiple right-hand side70

vectors and a small dense system which can be formed explicitly and then solved with71

a direct solver.72

The challenge of handling dense rows and/or columns in sparse linear systems has73

been extensively studied in the context of linear least squares (LLS) problems [1, 8, 11,74

23, 27, 30, 35, 40, 42, 44, 45, 48]. In these problems, dense rows and/or columns cause75

a dramatic loss of efficiency due to catastrophic fill-in in the factorization. Handling76

those dense rows/columns via block factorization which results in a Schur complement77

system is also proposed in [3, 25, 39, 41] for solving such LLS problems. We propose,78

however, a scheme for identifying “dense” columns in the context of solving non-79

symmetric linear systems, specifically for improving the convergence rate of the block80

Cimmino method and tackle these “dense” columns separately by adopting a block LU81

factorization scheme for solving the system which results in a small Schur complement82

matrix.83

To this end, we also propose two metrics for selecting columns in the proposed84

scheme. The first metric simply considers the number of nonzeros in the columns85

for selection. The second metric considers not only the number of nonzeros but also86

pairwise sum of the values of the nonzeros in the columns for selection. Although87

computing the first metric can easily be done in linear time in the number of nonze-88

ros in a column, a naive implementation of the second metric runs in square of the89

number of nonzeros in a column. We also propose an efficient algorithm that enables90

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 3

computing the second metric in linear time for each column. We show that the sec-91

ond metric outperforms the first one in terms of the required number of iterations for92

convergence.93

There are several advantages of the proposed scheme besides decreasing the num-94

ber of iterations which leads to faster parallel solution time. Since we use the block95

iterative method to accelerate the block Cimmino with multiple rhs vectors, the pro-96

posed scheme has an additional improvement in the number of iterations due to the97

faster convergence of eigenvectors associated with the smallest eigenvalues [36]. An-98

other advantage is that the proposed scheme can incur less communication overhead in99

iterations of the block Cimmino algorithm since denser columns likely to be dropped100

from the coefficient matrix. This can, in turn, translate into improved parallel time101

per iteration of the block Cimmino. The other advantage is that less factorization102

time for the block Cimmino is needed since we have smaller row-blocks to factorize103

and smaller fill-in. The experimental results performed on a shared-memory and a104

distributed-memory platforms for a wide range of linear systems validate the effec-105

tiveness of the proposed scheme to solve linear systems with “dense” columns through106

fewer iterations and faster parallel solution time.107

The rest of the paper is organized as follows. Section 2 provides the background108

on block Cimmino. In Section 3, we discuss the proposed scheme along with its solu-109

tion phases, criteria for selecting columns, effect of dense columns on the spectrum of110

the iteration matrix corresponding to block Cimmino, and parallelization and imple-111

mentation details of the proposed scheme. The extensive numerical experiments are112

expressed in Section 4. Finally, Section 5 concludes the paper.113

2. Block Cimmino Algorithm. In the classical block Cimmino algorithm, the114

original system (1.1) is partitioned into K row-blocks as follows;115

(2.1)

A1

A2

...
AK

x =

f1
f2
...
fK

 ,116

where K ≤ n. Here Ak is row-block of size mk × n and fk is a column vector of117

size mk. The solution is obtained iteratively by summing the projections on the118

subspaces spanned by AT
k , where AT

k denotes the transpose of Ak. The pseudocode119

of block Cimmino is presented in Algorithm 2.1, where A+
k = AT

k (AkAT
k)

−1 is the120

pseudo-inverse of Ak and ϕ is a relaxation parameter. In the parallel implementation,121

line 4 can be computed perfectly in parallel without incurring any communication,122

whereas at line 6, communication is needed to sum up the δk vectors. At line 4 of123

the algorithm, projection onto the range of AT
k , i.e., A

+
k Ak, is implicitly computed.124

If subspaces spanned by Ak row-blocks are completely orthogonal to each other, the125

sum of these projections gives the projection onto range of AT . In this case, the126

algorithm needs only one iteration if the projections are computed accurately.127

The iteration equations of block Cimmino can be reformulated as follows:128

(2.2)

x(j+1) = x(j) + ϕ
K∑

k=1

A+
k

(
fk −Akx

(j)
)

=

(
I − ϕ

K∑
k=1

A+
k Ak

)
x(j) + ϕ

K∑
k=1

A+
k fk

= (I − ϕH)x(j) + ϕ
K∑

k=1

A+
k fk

129

This manuscript is for review purposes only.

4 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

Algorithm 2.1 Block Cimmino method

1: Choose x(0)

2: while j = 0, 1, 2, . . . , until convergence do
3: for k = 1, . . . ,K do
4: δk = A+

k (fk −Akx
(j))

5: end for

6: x(j+1) = x(j) + ϕ
K∑

k=1

δk

7: end while

where (I − ϕH) is the iteration matrix for the block Cimmino algorithm and H is a130

symmetric and positive definite matrix since it is the sum of projections spanned by131

the subspaces of Ak row-blocks which are assumed to have full row rank. We note132

that the system133

(2.3) ϕHx = ϕ
∑K

k=1 A
+
k fk134

has the same solution vector x in (2.2). Therefore, Conjugate Gradient (CG) accel-135

erated block Cimmino algorithm (CG-BC) [6, 13, 20] solves (2.3) iteratively via the136

CG method. Since ϕ appears on both sides of the equation it does not affect the137

convergence of CG. Algorithm 2.2 shows CG-BC algorithm. The convergence rate of138

Algorithm 2.2 is related to the eigenvalues of the coefficient matrix H whose eigenval-139

ues are correlated with the principal angles between subspaces spanned by AT
k [6, 13].140

If these principal angles are wider, then more eigenvalues of H cluster around one.141

This leads to fewer iterations for solving (2.3).142

Algorithm 2.2 CG-BC algorithm [13, 37, 50]

1: Choose x(0)

2: r(0) =
∑K

k=1 A
+
k fk −Hx(0)

3: p(0) = r(0)

4: while j = 0, 1, 2, . . . , until convergence do
5: ψ(j) = Hp(j)

6: α(j) = (r(j)
T
r(j))/(p(j)

T
ψ(j))

7: x(j+1) = x(j) + α(j)p(j)

8: r(j+1) = r(j) − α(j)ψ(j)

9: β(j) = (r(j+1)T r(j+1))/(r(j)
T
r(j))

10: p(j+1) = r(j+1) + β(j)p(j)

11: end while

There are several row-block partitioning methods [19, 37, 46] to widen those143

principal angles for faster convergence. In [46], we proposed a novel graph theoretical144

row-block partitioning method, GRIP, and showed the effectiveness of GRIP whose145

objective corresponds to increasing principal angles between the subspaces.146

In each iteration of CG-BC, we use a direct method to compute projections (at147

lines 2 and 5 in Algorithm 2.2). There are several approaches to compute the mini-148

mum 2-norm solution of the underdetermined system whose coefficient matrix is Ak,149

some are; normal equations [29], seminormal equations [28], QR factorization [29] and150

augmented system approach [5]. Solution with normal and seminormal equations may151

encounter numerical difficulties when the problem is ill-conditioned [17] and although152

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 5

the QR factorization is numerically more stable, it is computationally costly. There-153

fore, we use the augmented system approach as in [6, 19, 20, 46], which requires the154

solution of a sparse square symmetric linear system that can be performed effectively155

by using a sparse direct solver. The augmented system approach solves the square156

symmetric linear system in the form of157

(2.4)

(
I AT

k

Ak 0

)(
δk
ςk

)
=

(
0
rk

)
,158

where δk is the minimum 2-norm solution of159

(2.5) Akδk = rk, rk = fk −Akx
(j).160

The system (2.4) is repeatedly solved at each iteration and for each row-block.161

3. The proposed scheme. In this section, we first present the formulation162

of the proposed scheme together with its solution method. Then, we suggest two163

metrics for selecting columns for the proposed scheme and study the effects of those164

metrics on the eigenvalue spectrum of H. Finally, we explain the parallelization and165

implementation details of the proposed scheme.166

3.1. Formulation. The proposed scheme adopts the Schur complement ap-167

proach by separating some columns from the solution process of the block Cimmino168

method. In the Schur complement approach, the coefficient matrix A in Equation 1.1169

is first permuted symmetrically and then partitioned into 2× 2 matrix blocks170

(3.1) PAPT =

[
A B
CT D

]
,171

where P is a permutation matrix. Here A and D are respectively nA × nA and s× s172

square matrices, whereas B and C are nA × s rectangular matrices. Since A is an173

n× n matrix, we have174

n = nA + s.175

Vectors x and f are also permuted and partitioned conformably with A. Therefore176

the linear system (PAPT)Px = Pf can be written as177

(3.2)

[
A B
CT D

] [
y
z

]
=

[
u
v

]
,178

where179

(3.3) Px =

[
y
z

]
and Pf =

[
u
v

]
.180

Here y and u are column vectors of size nA, whereas z and v are column vectors of size181

s. If A and D are not singular matrices, the block LU factorization of (1.1) becomes182

(3.4)

[
I 0

CTA−1 I

] [
A B
0 S

] [
y
z

]
=

[
u
v

]
,183

where S = D−CTA−1B is called Schur complement. We have the following equations184

from (3.4):185

(3.5)
Sz = v − CTA−1u

Ay = u−Bz.
186

This manuscript is for review purposes only.

6 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

Since the two linear systems AF = B and Ag = u have the same coefficient187

matrix, these systems can be combined into one system which can be solved at once188

(3.6) A[F g] = [B u].189

Then, we form the Schur complement190

(3.7) S = (D − CTF)191

via sparse matrix-dense matrix multiplication and sparse matrix-dense matrix sub-192

traction kernels. Then, we solve the following system of equations for z,193

(3.8) Sz = v − CT g.194

Note that S is formed explicitly since s (size of S) is assumed to be small. Therefore,195

we use a dense direct solver to solve this system. Alternatively, if s is large, one196

can solve the Schur complement system (3.8) using a preconditioned iterative scheme197

[10, 26] without forming S explicitly. In such iterative scheme, the matrix-vector mul-198

tiplications of the form q = Sw are required at each iteration. These multiplications199

can be performed without forming S by multiplying the vector w with D−CTA−1B.200

Solving the system without forming S explicitly would require the solution of a larger201

linear system with the coefficient matrix A at each iteration. Since s is a user con-202

trolled parameter and typically a small s is required, in our implementation we form203

S explicitly.204

In the last step, we obtain y as205

(3.9) y = g − Fz206

via dense matrix-vector and vector-vector operations which are BLAS level-2 and207

level-1 operations, respectively. Finally, the solution of (1.1) is obtained via permuting208

back (3.3).209

3.2. Criteria for Selecting Columns. We propose two metrics for selecting210

columns from A and forming B in the proposed scheme. To attain the best perfor-211

mance from the scheme, we need to work with the columns which affect orthogonality212

the most among subspaces spanned by the row blocks. We know that if all nonzero213

elements of a column can fit into one row-block segment, that column does not de-214

teriorate the numerical orthogonality. Therefore, the denser columns in the matrix215

are more likely to cause such adverse effects on the conditioning of H than the other216

columns. For this reason, a straightforward metric, colnnz, considers the columns217

that contain the largest number of nonzeros.218

The second metric, ppsum, takes the numerical values of nonzeros into account.219

Given a vector c ∈ IRn, the outer product matrix is defined as220

(3.10) T = ccT .221

Based on T , we introduce a function, ppsum() as222

(3.11) ppsum(c) =

n∑
i=1

n∑
j=1
j ̸=i

|Tij |,223

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 7

or equivalently224

(3.12) ppsum(c) =

n∑
i=1

n∑
j=1
j ̸=i

|ci||cj |.225

That is, ppsum(c) is equal to the sum of the pairwise products of the absolute values226

of the nonzeros in column c. The motivation of ppsum is based on the GRIP [46]227

partitioning method. In GRIP, firstly the row–inner–product graph GRIP(A) = (V, E)228

of matrix A is constructed, where each row ri in A is represented by a vertex vi ∈ V.229

For each nonzero inner–product between row pairs ⟨ri, rj⟩ > 0, an edge (vi, vj) ∈230

E is added with cost |⟨ri, rj⟩|. Assuming the rows of the coefficient matrix A are231

normalized to have unit length, cost of edge (vi, vj) corresponds to cos(θ) = |⟨ri, rj⟩|.232

Then, GRIP(A) is partitioned into K disjoint vertex parts {V1,V2, . . . ,VK} by233

maintaining balance over parts and minimizing the cutsize. Here, the cutsize refers234

to the sum of costs of cut-edges which are the edges that connect different parts.235

In matrix theoretical view, K vertex parts induce K row-blocks with almost equal236

number of rows, where minimizing the cutsize corresponds to minimizing the sum of237

inner products between Ai row blocks. In other words, GRIP aims to increase the238

orthogonality between subspaces spanned by the row blocks, this in turn leads to239

fewer number of iterations in the Block Cimmino. In the best case of zero cutsize, we240

have fully orthogonal row-blocks that enable block Cimmino to converge only in one241

iteration if the projections are computed in exact arithmetic.242

Let C denote the set of columns in A. Considering the sum of all ppsum values,243

and by changing the order of summation, we have244

∑
c∈C

ppsum(c) =
∑
c∈C

n∑
i=1

n∑
j=1
j ̸=i

|aicajc|(3.13)245

=

n∑
i=1

n∑
j=1
j ̸=i

∑
c∈C

|aicajc|.(3.14)246

247

Then by using the triangle inequality and the definition of inner product, we obtain248

n∑
i=1

n∑
j=1
j ̸=i

|⟨ri, rj⟩| =
n∑

i=1

n∑
j=1
j ̸=i

(∣∣∣∑
c∈C

aicajc

∣∣∣) ≤
∑
c∈C

ppsum(c).(3.15)249

250

Hence, the sum of ppsum values of all columns is an upper bound on the inner251

products of all rows. Moreover, the cutsize of GRIP, by definition, is at most the252

summation of all row inner-products. Thus, summation of ppsum values is an upper253

bound on the cutsize of GRIP. Therefore, separating the columns with the largest254

ppsum values before the construction of GRIP is expected to decrease the cutsize after255

the partitioning.256

A naive implementation of ppsum(c) takes O(n2) time. However, this running257

time can easily be reduced to O(nnz2(c)) time by exploiting the sparsity of column c.258

Here nnz(c) denotes the number of nonzeros in column c. In this work, we propose an259

efficient algorithm for computing ppsum(c) in linear time in the number of nonzeros260

of column c, i.e., in θ(nnz(c)) time. The proposed algorithm is based on factoring261

This manuscript is for review purposes only.

8 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

the ci term out of the second summation in the double summation expression given262

in (3.12). That is,263

(3.16) ppsum(c) =

n∑
i=1

|ci|

 n∑
j=1

|cj | − |ci|

 .264

In this way, the summation
∑n

j=1 |cj | inside the parenthesis can be computed only265

once and used for each different ci. Algorithm 3.1 shows the steps of the algorithm.266

The first inner for loop (lines 3–5) computes the sum of the absolute value of nonzeros267

in the current column in colSum which corresponds to the summation term inside the268

parenthesis of (3.16). The second inner for loop (lines 6–8) computes ppsum value for269

the current column by using colSum. The running time of outer for loop is θ(nnz)270

(lines 1–9). At line 10, the selection operation can be efficiently done in O(n+s log n)271

time by using binary heap implementation of priority queue. Here, O(n) time comes272

from the Build-Heap operation and O(s log n) comes from s successive Extract-Max273

operation performed on the heap.274

Algorithm 3.1 Selecting Columns with ppsum

1: for each column c ∈ A do
2: colSum = 0
3: for each nonzero aic in column c do
4: colSum = colSum+ |aic|
5: end for
6: for each nonzero aic in column c do
7: ppsum[c] = ppsum[c] + |aic| × (colSum− |aic|)
8: end for
9: end for

10: Select s columns with the largest ppsum values

3.3. Effect of dense columns on the eigenvalue spectrum of H. We il-275

lustrate the effect of dense columns on the orthogonality between subspaces spanned276

by row blocks via studying the eigenvalue spectrum of H (in Equation (2.3)) for a277

toy problem, rajat04. rajat04 is a sparse unsymmetric nonsingular matrix (arising278

in circuit simulation) of size 1,041×1,041 with 8,725 nonzeros from the SuiteSparse279

Sparse Matrix Collection [16]. In this matrix, the average number of nonzeros in the280

columns is 8.3 and the densest column has 642 (62% of n) nonzeros. The number281

of nonzeros in the next four densest columns are 438, 258, 85 and 81. Figure 3.1282

shows nonzero patterns of the matrix and the matrices after being symmetrically per-283

muted with Pc for colnnz and with Pp for ppsum. Figure 3.1 shows the columns284

selected according to the colnnz and ppsum metrics as highlighted in colors. For285

this matrix, colnnz and ppsum select the column indices of {4, 17, 169, 182, 898} and286

{4, 166, 169, 182, 898}, respectively. Even though Figures 3.1a and 3.1c visually do287

not look much different, one change in the selected columns (column 17 instead of288

column 166) incurs an improvement on the eigenvalue distribution for ppsum. As289

seen in Figures 3.1b and 3.1d, the selected columns are swapped with the rightmost290

columns of the matrix and the respective rows are symmetrically swapped with the291

rows at the very bottom of the matrix.292

Figure 3.2 shows the spectra of the H matrices for the original matrix A, and for293

the A matrices after five rightmost columns/bottom rows separated (as in Equation294

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 9

0 200 400 600 800 1000

0

200

400

600

800

1000

(a) Columns selected by colnnz

0 200 400 600 800 1000

0

200

400

600

800

1000

(b) PcAPT
c

0 200 400 600 800 1000

0

200

400

600

800

1000

(c) Columns selected by ppsum

0 200 400 600 800 1000

0

200

400

600

800

1000

(d) PpAPT
p

Fig. 3.1. Sparsity patterns of original and permuted rajat04 matrices. The columns selected
according to colnnz and ppsum metrics are highlighted in colors.

(3.1)) with colnnz and ppsum. All matrices are partitioned into eight row blocks295

uniformly. Comparison of Figures 3.2a and 3.2b shows that symmetrical dropping of296

five columns/rows according to colnnz shifts the largest and some small eigenvalues297

of H towards one and results in better clustering around one on the spectrum of H.298

On the other hand, with the colnnz method the smallest eigenvalue (1.6×10−9) still299

appears at the end of the spectrum. Comparison of Figures 3.2b and 3.2c shows that300

ppsum achieves much better eigenvalue clustering around one than colnnz. With301

ppsum, the smallest eigenvalue (9.9×10−9) is now much closer to one and the largest302

eigenvalue (2.45) is improved further.303

Moreover, we study the condition numbers of H matrices for each spectrum in304

Figure 3.2. For the original matrix the condition number of H is 3.3×109. colnnz305

and ppsum methods reduce the condition number of H to 1.8×109 and 2.4×108,306

respectively. In other words, colnnz and ppsum reduce the condition number 1.83307

and 13.75 times, respectively. As seen in Figure 3.2c, ppsum attains an H matrix308

with a smaller condition number and better eigenvalue clustering around one which309

is expected to lead to a better convergence. For solving the resulting linear systems310

via block Cimmino, ppsum and colnnz require 62 and 75 iterations, respectively,311

while the original problem requires 171 iterations for the convergence. For ppsum312

and colnnz, we first extract matrices by separating some predefined columns and the313

respective rows. Then, on the resulting system, we apply the block Cimmino (CG-314

BC) algorithm, not the proposed scheme since block CG of the proposed scheme can315

further decrease the number of iterations for convergence due to a better detection of316

clusters of eigenvalues when the number of columns increases.317

This manuscript is for review purposes only.

10 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

(a) Original matrix, cond(H) = 3.3×109

(b) After 5 columns/rows separated with colnnz, cond(H) = 1.8×109

(c) After 5 columns/rows separated with ppsum, cond(H) = 2.4×108

Fig. 3.2. Eigenvalue spectra of H matrix (with the smallest and largest eigenvalues)

3.4. Parallelization and Implementation Details. Algorithm 3.2 shows the318

steps of the proposed parallel algorithm for solving a linear system with single rhs319

vector. In the algorithm, lines 1–9 constitute the preprocessing stage which is per-320

formed by processor p1. In this stage, p1 first reads the input matrix and then applies321

a column permutation Q to the linear system (1.1)322

(3.17) AQTQx = f323

using the hsl mc64 [21] subroutine in HSL Mathematical Software Library [31] in324

order to maximize the product of the diagonal entries of A. This ensures that the325

diagonal blocks of AQT have zero-free main diagonals and hence more likely to be326

nonsingular. At line 3, p1 performs diagonal scaling D−1 to the linear system (3.17)327

by rows, that is328

(3.18) D−1(AQT)(Qx) = D−1f,329

so that 2-norm of each row of the scaled system is equal to one.330

At line 4, p1 selects s columns in the coefficient matrix of (3.18) by either using331

ppsum or colnnz metric and then permute the system symmetrically332

(3.19) P(D−1AQT)PTPQx = PD−1f333

to move selected columns to the rightmost and the respective rows to the very bot-334

tom of the matrix. At line 5, p1 extracts sub-matrices A,B,CT and D of Â =335

P(D−1AQT)PT , where the selected columns form B, the respective rows form C and336

the intersection of B and C forms D. We note that the row scaling performed at337

line 3 is done in order to enable the GRIP method to obtain a better row partitioning338

in A. At line 6, p1 partitions A into K row blocks using the GRIP method [46]. At339

line 7, p1 applies the same partitioning on B and u of f̂ = PD−1f conformally with340

the row-block partition of A. Therefore, the ith row of A and B sub-matrices as well341

as the ith entry of the u sub-vector are assigned to the same processor. At line 8,342

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 11

Algorithm 3.2 The proposed scheme for processor pk
Input: A, f
Output: y, z
1: if k = 1 then
2: Apply hsl mc64 for column permutation QT (Eq. 3.17)
3: Perform 2-norm row scaling D−1 (Eq. 3.18)
4: Select s columns and apply symmetric permutation P (Eq. 3.19)
5: Extract submatrices A,B,C,D and subvectors u, v (Eq. 3.1)
6: Obtain K-way partition Π(A)={A1, . . . , AK} on rows of A via GRIP ([46])
7: Partition B and u conformably with Π(A) as {B1, . . . , BK} and {u1, . . . , uK}
8: Send Ak, Bk, and uk to pk for k = 2, . . . ,K
9: end if

10: Construct and factorize the augmented system (Eq. 2.5)
11: Solve A [F g] = [B u] using parallel BCG-BC (Algorithm 3.3)

12: if k = 1 then
13: Solve Sz = v − CT g using a dense direct solver (Eqn. 3.8)
14: y = g − Fz
15: end if

p1 sends Ak, Bk and uk to pk for k = 2, . . . ,K. After this step, each processor pk343

including p1 owns Ak, Bk and uk for k = 1, . . . ,K.344

Figure 3.3 displays a sample 4-way uniform row-block partitioning where blocks345

Ak, Bk, and uk are assigned to processor pk. In the figure, for the sake of better346

visualization, A- and B-matrix blocks of rows and u-vector blocks of entries that are347

assigned to the same processor are shown ordered consecutively. In the proposed348

scheme, we choose relatively small s values (justification is discussed later) which349

gives rise to small CT and D sub-matrices. Therefore, the CT and D matrices are not350

partitioned and only p1 performs the associated computations which take relatively351

small amount of time with respect to the other parts of the scheme.352

=

Fig. 3.3. Row-block partitioning of the global system for 4 processors

At lines 10–11, we obtain the unknown matrix [F g] of the system A[F g] = [B u]353

by solving H[F g] =
∑K

k=1A
+
k [B u], where H =

∑K
k=1A

+
kAk. At line 10, each proces-354

sor pk forms the coefficient matrix of the symmetric and indefinite augmented system355

and factorizes it into sparse Bunch-Kaufman-Parlett factors using MUMPS [2] multi-356

This manuscript is for review purposes only.

12 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

Algorithm 3.3 BCG-BC algorithm [6, 37, 50]

Input: Ak, Bk, uk
Output: X // X = [F g]
1: Choose X(0)

2: R(0) =
∑K

k=1A
+
k [Bk uk]−HX(0)

3: [γ(0), R̄(0)] = stab 1(R(0)TR(0)) // Stabilization
4: P (0) = R(0)

5: for j = 0, 1, 2, . . . , until convergence do

6: [β(j), P̄ (j),Ψ(j)] = stab 2(P (j), HP (j)) // Stabilization

7: λ(j) = β(j)−T

8: X(j+1) = X(j) + P̄ (j)λ(j)(Π0
i=jγi)

9: R(j+1) = R̄(j) −Ψ(j)λj // Ψ(j) = HP̄ (j)

10: [γ(j+1), R̄(j+1)] = stab 1(R(j+1)TR(j+1)) // Stabilization

11: α(j) = β(j)γ(j+1)T

12: P (j+1) = R̄(j+1) + P̄ (j)α(j)

13: end for

14: function [γ,R̄] = stab 1(RTR))
15: γ = chol(RTR) // Cholesky Decomposition
16: R̄ = Rγ−1

17: end function

18: function [β, P̄ ,Ψ] = stab 2(P,HP)
19: β = chol(PTHP) // Cholesky Decomposition
20: P̄ = Pβ−1

21: Ψ = HPβ−1

22: end function

frontal parallel sparse direct solver. At line 11, rather than using simultaneous CG-BC357

iterations with multiple rhs vectors, we opt for the block version of the CG acceler-358

ated block Cimmino since block CG takes advantage of a better detection of clusters359

of eigenvalues [7, 36]. We use the stabilized version of the block CG accelerated block360

Cimmino (BCG-BC) [7, 37] implementation available in the open-source software361

package ABCD Solver [51]. The pseudocode of BCG-BC is shown in Algorithm 3.3.362

Since the stabilized block CG enforces R̄(j+1) to have orthogonal columns by utilizing363

Cholesky decomposition (lines 6 and 10 in Algorithm 3.3), it does not have some of364

the convergence issues that non-stabilized block CG has, such as; a breakdown can365

occur due to division by zero [14], R(j+1)TR(j+1) matrices can become ill-conditioned366

or close to zero when one of the unknown vectors converges much faster than the367

others [37, 50].368

If the systems at lines 15 and 19 in Algorithm 3.3 are ill-conditioned then the369

Cholesky decomposition may fail. If this happens, the ABCD solver employs a more370

stable alternative, the modified Gram-Schmidt process [12]. Rarely, even the modified371

Gram-Schmidt process can fail if the matrix is extremely ill-conditioned which is more372

likely to happen when s is large since large s values have the potential of increasing373

the likelihood of linear dependence between rhs vectors as also observed in [7, 37, 50].374

Therefore, we choose relatively small s values in the light of those studies and our375

observations. Alternatively, a breakdown–free block CG [32] is also available.376

In Algorithm 3.2, at line 13, p1 constructs S = (D − CTF) in (3.7) via sparse377

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 13

Table 4.1
Matrix properties

matrix name kind n nnz DC Density % #parts

dc1 circuit simulation prb. sequence 116,835 766,396 98 8
trans4 circuit simulation prb. sequence 116,835 749,800 98 8
ASIC 100k circuit simulation problem 99,340 940,621 93 8
mult dcop 02 subsequent circuit simulation prb. 25,187 193,276 90 8
rajat30 circuit simulation problem 643,994 6,175,244 71 33
shermanACb 2D/3D problem 18,510 145,149 56 8
TSOPF RS b39 c30 power network problem 60,098 1,079,986 50 8
coupled circuit simulation problem 11,341 97,193 21 8
nxp1 circuit simulation problem 414,604 2,655,880 13 21
circuit 4 circuit simulation problem 80,209 307,604 11 8
para-4 semiconductor device problem 153,226 2,930,882 4 8
appu directed weighted random graph 14,000 1,853,104 2 8
ohne2 semiconductor device problem 181,343 6,869,939 2 10
av41092 2D/3D problem 41,092 1,683,902 2 8
ns3Da computational fluid dynamics prb. 20,414 1,679,599 1 8
ted A thermal problem 10,605 424,587 1 8
hcircuit circuit simulation problem 105,676 513,072 1 8
barrier2-10 subsequent semiconductor dev. prb. 115,625 2,158,759 1 8
torso1 2D/3D problem 116,158 8,516,500 1 8
std1 Jac3 db chemical process simulation prb. 21,982 531,826 1 8

n: number of rows/columns, nnz: number of nonzeros, DC Density.: ratio of the number of nonzero
in the densest column over n, #parts: number of row-blocks.

matrix kernels and then computes z by solving the much smaller system in (3.8) via378

the double precision general dense linear system solver dgesv subroutine in Linear379

Algebra PACKage (LAPACK). At line 14, y is computed via dgemv Basic Linear380

Algebra Subprograms (BLAS) Level 2 subroutine since in our case B is selected among381

the most dense columns and solving the linear system at line 11 is likely to introduce382

further nonzeros thus leading to a rather dense F .383

4. Numerical Experiments. We conduct extensive numerical experiments to384

validate the performance of the proposed scheme. As a baseline method for the com-385

parison, we use the classical Conjugate Gradient accelerated block Cimmino (CG-BC)386

algorithm since we assume there is only one rhs vector (1.1). For a fair comparison,387

for the baseline method, we also use hsl mc64 to permute the coefficient matrices388

to maximize the product of the diagonal entries and GRIP partitioning method to389

determine row-blocks.390

4.1. Dataset. We use real n×n unsymmetric matrices with n>10,000 and hav-391

ing at least one dense column that has more nonzeros than 1% of n from SuiteSparse392

Matrix Collection [16]. In the collection, there are 76 matrices which satisfy this393

condition, however, some of them have similar nonzero patterns. We observe that394

these similar matrices belong to the same problem groups and they often give similar395

results which may create a bias in the performance analysis. For instance, out of396

76 matrices, there are 14, 11, and 8 matrices in the TSOPF RS, rajat, and barrier397

problem groups, respectively. For this type of matrices, we use the largest matrix in398

the same problem group if the associated linear system converges in 10,000 iterations399

by using at least one of the methods. Otherwise, we use the next largest matrix in400

the same group and so on. Table 4.1 shows the properties of 20 matrices which satisfy401

these criteria. In the table, the matrices are given in decreasing sorted order by the402

ratio of the number of nonzeros in their densest column to n.403

This manuscript is for review purposes only.

14 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

In the experiments, we partition the system into a number of row-blocks according404

to the size of A. As seen in Table 4.1, we partition systems with n < 160, 000 into 8405

row blocks and larger systems into a number of row blocks where each block contains406

approximately 20,000 rows.407

4.2. Experimental Framework. In the experiments, we use a shared-memory408

system and a distributed-memory system. We conduct extensive experiments with409

large number of matrices on the shared-memory system and limited experiments with410

a smaller number of matrices on the distributed-memory system due to limited core411

hours.412

The shared-memory machine has four NUMA sockets each of which has an AMD413

Opteron 6376 processor running at 2.3GHz with 32GB memory. Since each processor414

has 16 cores, there are 64 cores in total. We use MPI implementation of OpenMPI415

v1.10.2 and gcc v4.7.2 compiler. We utilize BLAS and LAPACK implementations of416

Intel Math Kernel Library (MKL) v2019. Experiments are performed with 32 cores417

due to memory bandwidth limitations of the platform.418

Each node of the distributed-memory system has two NUMA sockets each of419

which has a 14-core Intel Xeon E5-2680 processor running at 2.4Ghz with 64GB420

memory. Nodes are interconnected with a high-bandwidth low-latency switch net-421

work (56 Gbit/s Infiniband). We use MPI implementation of OpenMPI v1.10.0 and422

gcc v4.8.5 compiler. We utilize BLAS and LAPACK implementations of Intel MKL423

v2019.4. We use 8 distributed nodes and 16 cores of each node for performance analy-424

sis to study the details of the communication statistics and parallel running time of425

the steps of the proposed scheme.426

In both parallel CG-BC and BCG-BC, mapping of row-blocks to processors is427

performed in the same way as in the ABCD solver [51]. If there are equal number428

of row-blocks and processors, then each row-block is assigned to a processor. If there429

are fewer row-blocks than processors, multiple processors may work on the same row-430

block. The decision of how many processors are assigned to a row-block is done431

according to the FLOP count of the analysis phase of MUMPS. If the computation432

on a row-block requires relatively more FLOPs than the others, more processors could433

be assigned to that row-block. If there are more row-blocks than processors, the row-434

blocks are distributed among processors while maintaining the load balance among435

the processors in terms of the sizes of the row-blocks.436

We use the same stopping criterion in [19, 51] for the algorithms i.e., backward437

error ∥Ax(j)−f∥∞
∥A∥∞∥x(j)∥1+∥f∥∞

<10−12. We set the maximum number of iterations as 10,000.438

We use the right-hand side vector that is provided with the matrix from the original439

problem in the SuiteSparse Matrix Collection. For some matrices, right–hand–side440

vectors are not provided. For those matrices, we use randomly generated right–hand–441

side vectors.442

4.3. Experiments on the shared-memory system. Figure 4.1 compares two443

column selection metrics by using performance profiles [18] on the 20-matrix dataset444

using the number of BCG-BC iterations for the convergence as the comparison metric.445

In each figure, two performance profile curves compare two column selection metrics446

relative to the best performing one for each data instance. A point (x, y) on a447

performance profile curve denotes that the respective column selection metric requires448

at most x times more iterations than the best performing metric in y percent of the449

instances.450

Figures 4.1a, 4.1b, 4.1c and 4.1d respectively display the performance profiles of451

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 15

1 1.2 1.4 1.6 1.8 2

Relative number of BCG-BC iterations

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 te
st

 in
st

an
ce

s

ppsum
colnnz

(a) s = 1

1 1.2 1.4 1.6 1.8 2

Relative number of BCG-BC iterations

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 te
st

 in
st

an
ce

s

ppsum
colnnz

(b) s = 5

1 1.2 1.4 1.6 1.8 2

Relative number of BCG-BC iterations

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 te
st

 in
st

an
ce

s

ppsum
colnnz

(c) s = 15

1 1.2 1.4 1.6 1.8 2

Relative number of BCG-BC iterations

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 te
st

 in
st

an
ce

s

ppsum
colnnz

(d) s = 1, 2, 3, 4, 5, 10, 15, 20

Fig. 4.1. Performance profiles of the comparison of colnnz and ppsum for the required BCG-
BC iterations relative to the best.

s=1, s=5, s =15, and for all s values (s=1, 2, 3, 4, 5, 10, 15, 20) up to two times the452

iteration count of the best. As seen in Figure 4.1a, ppsum attains the best convergence453

rate in 80% (16 out of 20) of the test instances for s=1. In all of the test instances,454

ppsum leads to convergence within 1.1x iterations of the best metric for s= 1. For455

s= 5 (Figure 4.1b), ppsum attains the best convergence rate in 85% (17 out of 20)456

of the test instances. However, for s=15, the success rate of both methods decrease457

slightly due to numerical instability during the BCG-BC for ohne2 and torso1 test458

instances. Figure 4.1d shows the overall performance comparison for all s values. As459

seen in Figure 4.1d, ppsum achieves the best convergence rate in approximately 70%460

of all test instances. Therefore, we decide to use ppsum metric for selecting columns461

in the rest of the experiments.462

Table 4.2 compares the proposed scheme against the baseline CG-BC algorithm463

in terms of the number of iterations required for convergence and the parallel solution464

time for different s values. In the proposed scheme, the number of iterations refers465

to the number of BCG-BC iterations and the timings include all of the solution steps466

(lines 12-15 as well as line 11 in Algorithm 3.2). The GRIP method, which is used467

in both proposed and baseline CG-BC algorithms, achieves row-block partitioning468

via using the well-known multilevel graph partitioning tool METIS [34]. As METIS469

involves randomized algorithms during the coarsening phase, for each matrix, five470

row-block partitions are obtained by using different seeds. The geometric means of471

the resulting iteration counts and running time are reported in Table 4.2. For each472

matrix, the best parallel solution time is shown in bold.473

As seen in Table 4.2, the proposed algorithm achieves fewer iterations with in-474

creasing s in almost all matrices. There are two reasons for this. First, with the475

increasing s, the eigenvalues of H are expected to be clustered better around one due476

to the removal of selected columns. We note that those columns have the potential477

This manuscript is for review purposes only.

16 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

Table 4.2
The number of iterations and parallel solution time in seconds.

Baseline Proposed scheme for different s

Matrix CG-BC s=1 s=2 s=3 s=4 s=5 s=10 s=15 s=20

dc1
itr. 113 53 36 35 30 26 26 26 23
time 72.5 20.3 15.4 16.5 15.7 14.1 21.2 24.1 28.8

trans4
itr. 16 11 6 6 6 4 4 4 4
time 10.3 4.1 2.8 2.9 3.3 2.5 3.6 4.5 5.7

ASIC 100k
itr. 52 19 19 18 19 18 17 16 16
time 27.5 11.5 13.2 13.3 14.4 14.9 18.8 22.4 26.1

mult dcop 02
itr. 11 5 5 5 5 5 5 5 4
time 1.4 0.9 0.9 1.0 1.1 1.1 1.3 1.5 2.0

rajat30
itr. 40 17 16 9 9 9 9 8 8
time 125.4 54.6 26.3 13.6 15.2 17.9 29.3 33.3 52.4

shermanACb
itr. 1913 123 80 70 63 61 19 17 16
time 101.3 8.5 5.5 5.2 5.1 4.9 2.1 2.6 2.8

TSOPF RS b39 c30
itr. 521 275 208 123 110 86 44 24 16
time 12.8 10.1 10.3 8.4 9.3 8.9 8.6 6.7 6.0

coupled
itr. 114 91 76 61 55 52 41 32 28
time 2.3 2.2 2.0 1.7 1.7 1.6 1.8 1.9 2.2

nxp1
itr. 8450 4172 2775 1939 1543 1288 688

stab. stab.
time 5201.9 2338.7 1975.6 1602.3 1441.6 1421.8 1421.1

circuit 4
itr.

NC NC NC
8075 2988 1983 51 28 19

time 1665.1 700.5 519.9 16.6 11.4 10.9

para-4
itr. 2236 845 449 342 51 38 33 31 32
time 372.4 189.1 131.2 124.0 22.8 20.2 28.8 30.6 42.1

appu
itr. 422 405 404 396 394 388 378 369 363
time 43.7 55.0 66.3 65.6 77.6 82.9 106.8 113.6 149.1

ohne2
itr. 5114 1965 1181 740 578 505 269

stab. stab.
time 1212.4 707.2 573.6 435.8 429.7 422.5 369.8

av41092
itr. 553 332 249 202 180 151 101 80

stab.
time 20.2 16.3 15.7 15.0 15.9 15.7 18.0 19.9

ns3Da
itr. 161 143 133 121 113 105 84 74 68
time 3.0 3.5 3.9 4.7 5.2 5.6 7.5 9.0 11.2

ted A
itr. 7374 828 460 303 265 212 101 55 41
time 38.2 5.5 3.7 3.0 3.1 2.8 2.5 2.0 2.3

hcircuit
itr. 241 1 1 1 1 1 1 1 1
time 24.4 0.3 0.3 0.4 0.4 0.6 0.7 1.0 1.3

barrier2-10
itr. 3831 276 264 199 164 135 77 56 47
time 490.7 49.5 57.5 54.3 53.3 50.6 48.3 40.5 47.3

torso1
itr.

NC
5886 3732 2822 2106 1706 945

stab. stab.
time 1133.7 969.4 902.1 818.0 791.6 741.7

std1 Jac3 db
itr.

NC
1 1 1 1 1 1 1 1

time 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.3

Avg. impr.:
iter. - 3.4x 4.5x 5.6x 6.8x 7.8x 10.7x 12.1x 13.8x
time - 2.8x 3.2x 3.5x 3.8x 3.7x 3.4x 3.1x 2.8x

itr.: number of CG-BC and BCG-BC iterations, time: parallel solution time, Avg. impr.: Average
(geometric mean) speedup obtained by the proposed algorithm against CG-BC in terms of parallel
solution time (excluding the matrices where either method failed to converge), NC: does not
converge in 10,000 iterations, stab.: BCG-BC fails due to numerical instability.

of deteriorating the orthogonality among subspaces. This results in a matrix with a478

better condition number thus leading to fewer iterations for the BCG-BC algorithm.479

Second, the block CG method used in the proposed scheme identifies multiple eigen-480

values [7, 36, 37] and thus improves the detection of clusters of eigenvalues which481

leads to fewer iterations. However, there is also a trade-off between increasing s and482

parallel solution time since increasing s also increases computational cost per iteration483

while it decreases the number of iterations. In Table 4.2, the reduction in the number484

of iterations reflects to a decrease in the total parallel solution time for 18 out of 20485

test problems. Only in appu and ns3Da, the reduction in the number of BCG-BC486

iterations does not lead to faster parallel solution time.487

The last two rows of Table 4.2 respectively show the average speedup obtained by488

the proposed algorithm (for different s values) against CG-BC in terms of the number489

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 17

of iterations and parallel solution time for each s. The average speedup values obtained490

by the proposed algorithm for a given s are computed as the average of the ratios of491

the number of iterations and parallel solution time attained by the proposed algorithm492

over CG-BC. In computing average speedup values, we prefer using geometric mean493

rather than arithmetic mean to smooth out the very large speedup values. A notable494

example is hcircuit for which large speedup values are obtained since the proposed495

scheme requires only one BCG-BC iteration for all s, whereas the CG-BC requires496

241 iterations, respectively. The geometric mean values of the number of iterations497

displayed in the table vary between 3.4 and 13.8, the arithmetic mean values vary498

between 17.9 and 53.8. Similarly, the geometric mean values of parallel solution time499

vary between 2.8 and 3.8, and the arithmetic mean values vary between 7.4 and 8.9.500

As seen in the table, the average performance improvement of the proposed algorithm501

against CG-BC in terms of the number of iterations increases with increasing s up to502

13.8 times fewer iterations. On the other hand, the average speedup of the proposed503

algorithm against CG-BC in terms of parallel solution time initially increases with504

increasing s peaking at 3.8x for s = 4, then it gradually decreases.505

As also seen in Table 4.2, in 18 out of 20 test matrices the proposed scheme506

obtains a faster parallel solution time for s= 1, 2, 3, 4, 5, 10. For s= 15 and 20, the507

proposed scheme obtains a better solution time in 13 out of 20 test matrices. This508

relative performance degradation of the proposed scheme is mainly due to numerical509

instability during BCG-BC for large block-sizes. Here and hereafter, block-size refers510

to the number of rhs vector. In [7, 50], no stability issues are reported for smaller511

than 32 rhs vectors for their dataset. However, because of our selection criterion the512

matrices we have included in our dataset such as nxp1, ohne2, torso1, and av41092513

are more challenging. Hence, they cause stability issues even when the number of rhs514

vectors smaller than 32.515

Results of some extensive experiments using BCG-BC with increasing block-sizes516

for various problems are given in [50]. It is stated there, for some problems, using517

larger block-size leads to an improvement in the total solution time, but for some518

problems such as torso3, there is no improvement in the total solution time. Even519

though torso3 is not included in our dataset due to our selection criterion, we have520

performed additional experiments using this matrix to verify the effectiveness of the521

proposed scheme. These experiments indicate that the proposed scheme achieves522

improvements in parallel solution time with increasing s. This is due to the main523

contribution of the proposed scheme which aims at attaining better eigenvalue cluster524

in H by handling some columns and respective rows separately via forming the Schur525

complement system.526

4.4. Experiments on the distributed-memory system. In this section, we527

show the performance of the proposed scheme in parallel factorization and parallel528

solution stages. We then show the robustness of the proposed scheme through ex-529

periments conducted on the distributed-memory system. For having sufficiently large530

granularity on the target distributed-memory system, we consider the largest matri-531

ces from Table 4.1 with n > 100,000. Among the ten large matrices satisfying this532

criterion we selected five matrices having more number of nonzeros than 10% of n in533

their densest column. The matrices that satisfy these two criteria are dc1, trans4,534

ASIC 100k, rajat30 and nxp1. To see the effect of the communication costs clearly535

we set the number of row blocks to 128 for 128 MPI processes so that each row-block536

is assigned to a distinct processor.537

This manuscript is for review purposes only.

18 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

4.4.1. Parallel factorization. We compare the proposed scheme against the538

baseline algorithm in terms of factorization time of the augmented systems in (2.4).539

Table 4.3 shows the maximum factorization time among 128 processors in seconds540

using MUMPS. Here, we run 128 embarrassingly parallel MUMPS instances each541

running sequentially. In general, the proposed scheme achieves less time in parallel542

factorization. This experimental finding is expected since handling the “dense” col-543

umns and respective rows separately via forming the Schur complement system in544

the proposed scheme is likely to incur less fill-in as well as better load balance. For545

instance, in rajat30, the proposed scheme decreases the number of nonzeros in the546

factors (including the fill-in) of the augmented systems of the most heavily loaded547

processor from 1,145,772 to 460,683. This contributes to the decrease in the fac-548

torization time from 4.93 seconds of the baseline algorithm to 0.29 seconds of the549

proposed scheme for s = 20. On average, the proposed scheme achieves 6.7 times550

faster factorization time than the baseline algorithm for s = 20.551

Table 4.3
Parallel factorization time in seconds

Matrix Baseline
Proposed scheme for different s

1 2 3 4 5 10 15 20
dc1 0.62 0.56 0.26 0.26 0.26 0.27 0.26 0.27 0.27
trans4 1.02 0.21 0.25 0.22 0.23 0.24 0.23 0.27 0.26
ASIC 100k 0.54 0.58 0.54 0.59 0.57 0.61 0.59 0.58 0.52
rajat30 4.93 3.21 0.66 0.40 0.31 0.36 0.34 0.35 0.29
nxp1 0.64 0.50 0.24 0.27 0.26 0.07 0.06 0.07 0.07

Avg. Impr. - 1.9x 3.6x 4.5x 5.2x 6.0x 6.4x 6.2x 6.7x

4.4.2. Parallel solution. We compare the proposed scheme against the base-552

line algorithm in terms of iterative solution stage using BCG-BC against CG-BC in553

the baseline algorithm. Table 4.4 illustrates this comparison in terms of the number554

of iterations required for convergence, per-iteration and total parallel solution times555

as well as per-iteration communication statistics. The per-iteration time is the aver-556

age time per-iteration including communication and computation, which is obtained557

through dividing the total parallel solution time of BCG-BC by the number of itera-558

tions for convergence in BCG-BC. For communication statistics, we use two metrics559

for measuring the communication requirements of each iteration; the average number560

of messages and the average message volume sent by a processor. The former and561

latter metrics respectively refer to the latency and bandwidth overheads. The mes-562

sage volume is given in terms of the number of floating point words (divided by 1,000)563

transmitted between processors.564

Since the proposed scheme removes “dense” columns, it has the potential of de-565

creasing the latency overhead through reducing the number of messages. It also has566

the potential of decreasing bandwidth overhead per rhs vector. However, since the567

number of rhs vectors in BCG-BC is s+1, the message volume increases by a factor of568

s+1. Thus, although the proposed scheme has the potential of decreasing bandwidth569

overhead for small s, it might increase the bandwidth overhead for large s.570

As seen in Table 4.4, the proposed scheme significantly reduces the number of571

messages in all matrices except ASIC 100k for which there is no improvement. This572

performance gap between the proposed and baseline methods increases in general573

with increasing s in the other four matrices. The proposed scheme achieves smaller574

message volume for small s values in dc1 (for s ≤ 2) and trans4 (for s ≤ 2) and575

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 19

Table 4.4
Per-iteration communication statistics and parallel running time details of CG-BC and BCG-

BC on the distributed-memory system.

M
a
tr
ix Baseline Proposed Scheme for varying s

Metric CG-BC s=1 s=2 s=3 s=4 s=5 s=10 s=15 s=20

d
c1

Avg msg cnt 127 63 59 61 62 61 61 59 60
Avg vol (x103) 4.15 2.56 3.81 5.04 6.27 7.51 13.62 19.31 25.13

Per-iter time 0.13 0.09 0.10 0.11 0.12 0.13 0.18 0.23 0.31
of iters 118 66 51 44 41 39 40 38 37
Total time 15.82 6.32 5.53 5.45 5.40 5.54 8.22 10.10 13.40

tr
a
n
s4

Avg msg cnt 127 58 60 59 58 57 57 59 56
Avg vol (x103) 4.08 2.46 3.73 4.95 6.02 7.29 13.15 18.75 24.12

Per-iter time 0.12 0.08 0.09 0.10 0.10 0.11 0.15 0.20 0.26
of iters 27 18 11 8 6 4 4 5 6
Total time 3.21 1.64 1.23 1.01 0.90 0.74 1.07 1.68 2.41

A
S
IC

1
0
0
k Avg msg cnt 127 127 127 127 127 127 127 127 127

Avg vol (x103) 6.27 12.47 18.67 24.89 31.14 37.28 67.77 97.87 127.82

Per-iter time 0.14 0.16 0.19 0.21 0.22 0.23 0.29 0.37 0.41
of iters 87 28 26 26 26 25 24 24 23
Total time 11.79 4.62 5.12 5.82 5.99 6.04 7.50 9.75 10.46

ra
ja
t3
0

Avg msg cnt 115 114 91 30 29 27 23 23 23
Avg vol (x103) 28.86 27.27 14.02 12.27 16.05 17.32 35.73 48.03 63.08

Per-iter time 0.66 0.79 0.39 0.33 0.38 0.52 0.95 1.31 1.74
of iters 53 28 20 12 12 10 8 8 8
Total time 35.24 22.77 8.98 4.89 5.72 6.59 10.08 13.42 18.38

n
x
p
1

Avg msg cnt 30 23 23 23 23 24 23 23 23
Avg vol (x103) 2.35 2.86 4.30 5.73 7.30 8.69 15.72 23.25 29.43

Per-iter time 0.08 0.09 0.10 0.11 0.13 0.15 0.27 0.80 0.90
of iters

NC NC
9439 6921 5553 4369 2440

stab. stab.
Total time 907.33 770.58 742.11 675.33 681.46

Avg msg cnt/vol: average number of messages/volume sent by a processor, Per-iter/Total time:
parallel per-iteration/total solution time in seconds, # of iters: number of iterations, NC: does not
converge in 10,000 iterations, stab.: BCG-BC fails due to numerical instability.

rajat30 (for s ≤ 5). For small s values (s ≤ 5), the per-iteration parallel running576

time of the proposed scheme remains comparable with those of CG-BC. Therefore,577

the significant amount of decrease achieved by the proposed scheme in terms of the578

number of iterations required for convergence leads to significantly faster parallel579

solution time.580

We also provide a matrix-specific analysis on the correlation between per-iteration581

communication statistics and per-iteration running time. We first consider dc1 ma-582

trix. For s ≤ 4, the proposed scheme yields faster parallel per-iteration time than583

CG-BC although the proposed scheme involves more computational work due to mul-584

tiple rhs vectors. This improvement in the parallel per-iteration time mainly comes585

from the decrease in communication overhead. For s=1 and 2, the proposed scheme586

achieves faster per-iteration time because of less overhead incurred in both latency587

and bandwidth metrics compared to CG-BC. For s=3 and 4, although the message588

volume is higher than that of CG-BC, the proposed scheme achieves faster time per589

iteration because of less latency overhead incurred due to the average message count590

values of 61 and 62 for s = 3 and s = 4, respectively, instead of 127 in CG-BC. For591

larger s values (s =5, 10, 15, 20), since the increased average message volume and do-592

ing more work in an iteration dominate the improvement from the latency overhead,593

the parallel per-iteration time in the proposed scheme becomes slower than that of594

CG-BC. A similar correlation can also be observed for trans4 and rajat30 which595

This manuscript is for review purposes only.

20 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

leads the proposed scheme to achieve faster per-iteration time for small s (s ≤ 5 for596

trans4 and 2 ≤ s ≤ 5 for rajat30).597

In both nxp1 and ASIC 100k, the proposed scheme cannot reduce the per-iteration598

time. In nxp1, this is because of the increased bandwidth overhead with increasing599

s despite the decrease in the latency overhead. In ASIC 100k, increased bandwidth600

and latency overheads fails to improve per-iteration time. We should mention that601

the proposed scheme decreases the total solution time in all matrices including these602

two matrices since it achieves the significant decrease in the number of iterations.603

We present Figure 4.2 to illustrate the performance of the proposed scheme in604

terms of the number of iterations required for convergence and parallel solution time605

normalized with respect to those of CG-BC. In the figure, we do not present a bar chart606

for nxp1 because the baseline algorithm cannot converge in the maximum number of607

iterations allowed. As seen in the figure, the relative performance of the proposed608

scheme in terms of convergence rate increases with increasing s in general. However,609

the relative performance of the proposed scheme in terms of the parallel solution time610

starts to deteriorate at s = 4, s = 5, s = 1, and s = 3, for dc1, trans4, ASIC 100k,611

and rajat30, respectively. This is because of the increase in the per-iteration parallel612

running time of the proposed scheme with increasing s.613

CG-BC s=1 s=2 s=3 s=4 s=5 s=10 s=15 s=20
0

0.2

0.4

0.6

0.8

1

1.2

dc1

CG-BC s=1 s=2 s=3 s=4 s=5 s=10 s=15 s=20
0

0.2

0.4

0.6

0.8

1

1.2

trans4

CG-BC s=1 s=2 s=3 s=4 s=5 s=10 s=15 s=20
0

0.2

0.4

0.6

0.8

1

1.2

ASIC_100k

CG-BC s=1 s=2 s=3 s=4 s=5 s=10 s=15 s=20
0

0.2

0.4

0.6

0.8

1

1.2

rajat30

Fig. 4.2. Number of iterations required for convergence and parallel solution time of the pro-
posed scheme normalized with respect to those of CG-BC.

4.4.3. Robustness. Another advantage of the block Cimmino method is its614

robustness compared to classical preconditioned iterative methods [13]. In [13], CG-615

BC is compared with sequential preconditioned iterative solvers. As seen in Table 4.2,616

the proposed scheme inherits the robustness of CG-BC. On the other hand, as also617

shown in the table, s value affects the robustness of the proposed scheme. Yet,618

for the given test problems with s = 3, 4, 5, and 10, the proposed scheme does not619

fail. We propose a “default” s value of 4 which gives slightly better parallel runtime620

performance than others on average.621

In Table 4.5, we report the results of the experiments performed for comparing622

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 21

the robustness of the proposed scheme against PETSc’s [9] parallel implementation623

of GMRES [38] and Bi-CGStab [47] methods with state-of-the-art preconditioners624

using 128 MPI processes on the distributed-memory system. Three parallel precon-625

ditioners are adopted with each method; two are block Jacobi preconditioners of626

PETSc with different levels of fill-in, the other is parallel algebraic multigrid method627

(BoomerAMG) [49] of the hypre library [22]. The BoomerAMG preconditioner is628

called from PETSc. We employ the default PETSc parameters for GMRES and Bi-629

CGStab as well as default parameters for the preconditioners. Some of those default630

parameters are; restart value for GMRES is 30 and the maximum number of iterations631

is 10,000.632

Table 4.5
Experiments with parallel preconditioned iterative solvers

Proposed GMRES(30) Bi-CGStab

Matrix s = 4 BJ-ILU(0) BJ-ILU(1) BoomerAMG BJ-ILU(0) BJ-ILU(1) BoomerAMG

dc1
itr. 41 268 156

F1 F1 F1 F2time 5.40 0.49 0.55

trans4
itr. 6 119 124 4 202 101 3
time 0.90 0.38 0.52 3.54 0.53 0.60 4.69

ASIC 100k
itr. 26

F3 F3 F1 F3 F3 F2time 5.99

rajat30
itr. 12

F3 F3 F1 F3 F3 F2time 5.72

nxp1
itr. 5553

F3 F3 NC F3 F3 F2time 742.11

BJ-ILU(x): Block Jacobi preconditioner each block handled via ILU(x), NC: does not converge in
10,000 iterations, F1: breakdown, F2: divergence, F3: unstable preconditioner, itr.: number of
iterations for convergence, time: parallel solution time in seconds.

In CG-BC, the normwise backward error of less than 10−12 is used as the stop-633

ping criterion. In PETSc, iterations are stopped on the basis of relative convergence634

tolerance (rtol) value. For a fair comparison, we use matrix specific rtol values in635

PETSc to obtain a comparable normwise backward errors. Thus, we set rtol to 10−7,636

10−6, 10−1, 10−1 and 10−2 for systems with dc1, trans4, ASIC 100k, rajat30, and637

nxp1 matrices, respectively.638

With the block Jacobi preconditioner the number of blocks is set to be equal639

to the number of MPI processes and each block is handled by the incomplete LU640

factorization (ILU). We use the default level of fill-in (ILU(0)) and as well as allowing641

more fill-in by using ILU(1) which will be respectively referred to as BJ-ILU(0) and642

BJ-ILU(1) in Table 4.5. In the experiments, sub pc factor nonzeros along diagonal643

parameter is enabled to reorder the blocks before factorization to remove zeros from644

diagonal if possible.645

Table 4.5 shows the results of parallel PETSc experiments with two iterative646

solvers, each with three preconditioners. In addition to PETSc results, the table647

includes the results of the proposed scheme with default s value of 4. In the table,648

different modes of failures are indicated by NC, F1, F2, and F3 which respectively649

denote nonconvergence due to reaching maximum number of iterations, breakdown650

of the method, divergence due to residual norm increased by a factor of 105, and651

unstable preconditioner.652

As seen in Table 4.5, out of five cases, GMRES(30) with BJ-ILU(0) and BJ-653

ILU(1) preconditioners converge in two cases and GMRES(30) with BoomerAMG654

preconditioner converges in only one case, whereas Bi-CGStab with BJ-ILU(0), BJ-655

This manuscript is for review purposes only.

22 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

ILU(1) and BoomerAMG preconditioners converge in only one case. On the other656

hand, the proposed method converges in all five cases thus reconfirming its robustness.657

5. Conclusion. In this study, we propose a novel scheme which enhances the658

block Cimmino algorithm via handling “dense” columns separately by forming the659

Schur complement system. Extensive experiments on a wide range of matrices lead660

to the following findings. For selecting “dense” columns, the proposed metric that661

considers the values of the nonzeros in the columns outperforms the metric that662

considers only the number of nonzeros in terms of the required number of iterations663

for the convergence. On average, the proposed scheme achieves 13.8 times fewer664

iterations and 3.8 times faster parallel solution time compared to the classical CG665

accelerated block Cimmino algorithm on the test matrices. Furthermore, the proposed666

scheme also reduces the communication requirements of the parallel block Cimmino667

which leads to faster per-iteration time in the parallel block Cimmino. Performance668

of the proposed scheme may degrade if the number of selected columns is not chosen669

carefully. This is because increasing the number of selected columns increases per-670

iteration computational cost as well as communication volume.671

Acknowledgments. Computing resources used in this work were provided by672

the National Center for High Performance Computing of Turkey (UHeM) under grant673

number 1008172020.674

REFERENCES675

[1] M. Adlers and Å. Björck, Matrix stretching for sparse least squares problems, Numerical676
linear algebra with applications, 7 (2000), pp. 51–65.677

[2] P. R. Amestoy, I. Duff, J. Koster, and J.-Y. L’Excellent, A fully asynchronous multi-678
frontal solver using distributed dynamic scheduling, SIAM Journal on Matrix Analysis and679
Applications, 23 (2001), pp. 15–41.680

[3] K. D. Andersen, A modified Schur-complement method for handling dense columns in681
interior-point methods for linear programming, ACM Transactions on Mathematical Soft-682
ware (TOMS), 22 (1996), pp. 348–356.683

[4] R. Ansorge, Connections between the Cimmino-method and the Kaczmarz-method for the684
solution of singular and regular systems of equations, Computing, 33 (1984), pp. 367–375.685

[5] M. Arioli, I. Duff, and P. P. de Rijk, On the augmented system approach to sparse least-686
squares problems, Numerische Mathematik, 55 (1989), pp. 667–684.687

[6] M. Arioli, I. Duff, J. Noailles, and D. Ruiz, A block projection method for sparse matrices,688
SIAM Journal on Scientific and Statistical Computing, 13 (1992), pp. 47–70.689

[7] M. Arioli, I. Duff, D. Ruiz, and M. Sadkane, Block Lanczos techniques for accelerating the690
block Cimmino method, SIAM Journal on Scientific Computing, 16 (1995), pp. 1478–1511.691

[8] H. Avron, E. Ng, and S. Toledo, Using perturbed QR factorizations to solve linear least-692
squares problems, SIAM Journal on Matrix Analysis and Applications, 31 (2009), pp. 674–693
693.694

[9] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of parallel-695
ism in object oriented numerical software libraries, in Modern Software Tools in Scientific696
Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhäuser Press, 1997,697
pp. 163–202.698

[10] M. Benzi, Preconditioning techniques for large linear systems: a survey, Journal of computa-699
tional Physics, 182 (2002), pp. 418–477.700

[11] Å. Björck, Numerical methods for least squares problems, SIAM, 1996.701
[12] A. Björck, Solving linear least squares problems by Gram-Schmidt orthogonalization, BIT702

Numerical Mathematics, 7 (1967), pp. 1–21.703
[13] R. Bramley and A. Sameh, Row projection methods for large nonsymmetric linear systems,704

SIAM Journal on Scientific and Statistical Computing, 13 (1992), pp. 168–193.705
[14] C. G. Broyden, A breakdown of the block CG method, Optimization Methods and Software,706

7 (1996), pp. 41–55.707
[15] G. Cimmino and C. N. delle Ricerche, Calcolo approssimato per le soluzioni dei sistemi di708

equazioni lineari, Istituto per le applicazioni del calcolo, 1938.709

This manuscript is for review purposes only.

ENHANCING BLOCK CIMMINO VIA SCHUR COMPLEMENT 23

[16] T. A. Davis and Y. Hu, The University of Florida Sparse Matrix Collection, ACM Trans.710
Math. Softw., 38 (2011), pp. 1:1–1:25.711

[17] J. W. Demmel and N. J. Higham, Improved error bounds for underdetermined system solvers,712
SIAM Journal on Matrix Analysis and Applications, 14 (1993), pp. 1–14.713

[18] E. D. Dolan and J. J. Moré, Benchmarking optimization software with performance profiles,714
Mathematical programming, 91 (2002), pp. 201–213.715

[19] L. Drummond, I. Duff, R. Guivarch, D. Ruiz, and M. Zenadi, Partitioning strategies for716
the block Cimmino algorithm, Journal of Engineering Mathematics, 93 (2015), pp. 21–39.717

[20] I. Duff, R. Guivarch, D. Ruiz, and M. Zenadi, The augmented block Cimmino distributed718
method, SIAM Journal on Scientific Computing, 37 (2015), pp. A1248–A1269.719

[21] I. S. Duff and J. Koster, On algorithms for permuting large entries to the diagonal of a sparse720
matrix, SIAM Journal on Matrix Analysis and Applications, 22 (2001), pp. 973–996.721

[22] R. D. Falgout and U. M. Yang, hypre: A library of high performance preconditioners, in722
International Conference on computational science, Springer, 2002, pp. 632–641.723

[23] A. George and M. T. Heath, Solution of sparse linear least squares problems using Givens724
rotations, Linear Algebra and its applications, 34 (1980), pp. 69–83.725

[24] P. Gilbert, Iterative methods for the three-dimensional reconstruction of an object from pro-726
jections, Journal of theoretical biology, 36 (1972), pp. 105–117.727

[25] P. E. Gill, W. Murray, D. B. Ponceleon, and M. A. Saunders, Solving reduced KKT728
systems in barrier methods for linear and quadratic programming, tech. report, SOL 91-7,729
Department of Operations Research, Stanford University, Stanford, CA, 1991.730

[26] L. Giraud, A. Haidar, and Y. Saad, Sparse approximations of the Schur complement for731
parallel algebraic hybrid solvers in 3D, Numerical Mathematics, 3 (2010), pp. 276–294.732

[27] D. Goldfarb and K. Scheinberg, A product-form Cholesky factorization method for handling733
dense columns in interior point methods for linear programming, Mathematical Program-734
ming, 99 (2004), pp. 1–34.735

[28] G. H. Golub and M. A. Saunders, Linear least squares and quadratic programming, tech.736
report, Stanford University, Stanford, CA, USA, 1969.737

[29] G. H. Golub and C. F. Van Loan, Matrix computations, John Hopkins University Press,738
1983, p. 530.739

[30] J. Gondzio, Splitting dense columns of constraint matrix in interior point methods for large740
scale linear programming, Optimization, 24 (1992), pp. 285–297.741

[31] HSL, A collection of Fortran codes for large scale scientific computation, See742
http://www.hsl.rl.ac.uk, (2007).743

[32] H. Ji and Y. Li, A breakdown-free block conjugate gradient method, BIT Numerical Mathe-744
matics, 57 (2017), pp. 379–403.745

[33] S. Kaczmarz, Angenäherte auflösung von systemen linearer gleichungen, Bulletin International746
de l’Academie Polonaise des Sciences et des Lettres, 35 (1937), pp. 355–357.747

[34] G. Karypis and V. Kumar, Metis: Unstructured Graph Partitioning and Sparse Matrix Or-748
dering System, Version 5.1. http://www.cs.umn.edu/∼metis, 2013.749

[35] C. Mészáros, Detecting “dense” columns in interior point methods for linear programs, Com-750
putational Optimization and Applications, 36 (2007), pp. 309–320.751

[36] D. P. O’Leary, The block conjugate gradient algorithm and related methods, Linear algebra752
and its applications, 29 (1980), pp. 293–322.753

[37] D. Ruiz, Solution of large sparse unsymmetric linear systems with a block iterative method in754
a multiprocessor environment, CERFACS TH/PA/9, 6 (1992).755

[38] Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving756
nonsymmetric linear systems, SIAM Journal on scientific and statistical computing, 7757
(1986), pp. 856–869.758

[39] M. A. Saunders, Cholesky-based methods for sparse least squares: The benefits of regular-759
ization, in Adams L, Nazareth JL (eds) Linear and nonlinear conjugate gradient-related760
methods, SIAM Philadelphia, PA, 1996, pp. 92–100.761

[40] J. Scott and M. Tuma, Solving mixed sparse-dense linear least-squares problems by precon-762
ditioned iterative methods, SIAM Journal on Scientific Computing, 39 (2017), pp. A2422–763
A2437.764

[41] J. Scott and M. Tuma, A Schur complement approach to preconditioning sparse linear least-765
squares problems with some dense rows, Numerical Algorithms, 79 (2018), pp. 1147–1168.766

[42] J. A. Scott and M. Tuma, Sparse stretching for solving sparse-dense linear least-squares767
problems, SIAM Journal on Scientific Computing, 41 (2019), pp. A1604–A1625.768

[43] F. Sloboda, A projection method of the Cimmino type for linear algebraic systems, Parallel769
computing, 17 (1991), pp. 435–442.770

[44] C. Sun, Dealing with dense rows in the solution of sparse linear least squares problems, tech. re-771

This manuscript is for review purposes only.

http://www.cs.umn.edu/~metis

24 F. SUKRU TORUN, MURAT MANGUOGLU, CEVDET AYKANAT

port, Advanced Computing Research Institute, Cornell Theory Center, Cornell University,772
1995.773

[45] C. Sun, Parallel solution of sparse linear least squares problems on distributed-memory multi-774
processors, Parallel computing, 23 (1997), pp. 2075–2093.775

[46] F. S. Torun, M. Manguoglu, and C. Aykanat, A novel partitioning method for accelerating776
the block Cimmino algorithm, SIAM Journal on Scientific Computing, 40 (2018), pp. C827–777
C850.778

[47] H. A. van der Vorst, Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for779
the Solution of Nonsymmetric Linear Systems, SIAM Journal on Scientific and Statistical780
Computing, 13 (1992), pp. 631–644.781

[48] R. J. Vanderbei, Splitting dense columns in sparse linear systems, Linear Algebra and its782
Applications, 152 (1991), pp. 107–117.783

[49] U. M. Yang et al., BoomerAMG: A parallel algebraic multigrid solver and preconditioner,784
Applied Numerical Mathematics, 41 (2002), pp. 155–177.785

[50] M. Zenadi, Méthodes hybrides pour la résolution de grands systèmes linéaires creux sur786

calculateurs parallèles, PhD thesis, École Doctorale Mathématiques, Informatique et787
Télécommunications (Toulouse); 142547247, 2013.788

[51] M. Zenadi, D. Ruiz, and R. Guivarch, The Augmented Block Cimmino Distributed Solver.789
http://abcd.enseeiht.fr/, 2021. ABCD Solver v1.0.790

This manuscript is for review purposes only.

http://abcd.enseeiht.fr/

	Introduction
	Block Cimmino Algorithm
	The proposed scheme
	Formulation
	Criteria for Selecting Columns
	Effect of dense columns on the eigenvalue spectrum of H
	Parallelization and Implementation Details

	Numerical Experiments
	Dataset
	Experimental Framework
	Experiments on the shared-memory system
	Experiments on the distributed-memory system
	Parallel factorization
	Parallel solution
	Robustness

	Conclusion
	References

