
Visualizing Transition Diagrams of Action Language Programs

Özcan Koç, Ferda N. Alpaslan, Nihan K. Çiçekli
Department of Computer Engineering

Middle East Technical University,
06531 Ankara, TURKEY

Phone: +90–312–210–2080
Fax: +90–312–210–1259

okoc@udel.edu, alpaslan@ceng.metu.edu.tr, nihan@cs.ucf.edu

Abstract

The subject of action languages is one of the promi-
nent research topics in current Artificial Intelli-
gence (AI) research. One of the problems in teach-
ing and learning action languages as well as writ-
ing causal theory expressions is the difficulty of
visualizing transition diagrams in mind. A tool,
called Tdv, which extends Ccalc [GL98b] and
uses GraphViz[KN91] software, is developed to vi-
sualize transition diagrams of C programs.

Keywords : Action Languages, causal theories,
transition diagrams, visualization.

1 Introduction

The subject of action languages is one of the promi-
nent research topics in current Artificial Intelli-
gence (AI) research. An action language allows its
users to study the change and properties of actions
by means of fluents and causal relations among
them. A fluent is a judgement about the status
of objects in the world—i.e. a logical world model.
Causal relationships among fluents are expressed
using logical propositions. For example,

Shoot(gun) causes ¬Alive if loaded(gun)
describes the effect of Shoot action on Alive fluent.
Action languages and related research are discussed
in many recent papers [GL98a], [BG97]. C is an
action language developed by Enrico Giunchiglia
and Vladimir Lifschitz[GL98b] and uses the idea of
causal theories. C is a language having two kinds
of laws. Static laws are of the form

caused F if G
and dynamic laws are of the form

caused F if G after H
where F and G are propositional combinations of
fluent names and H is a propositional combination
of fluent and action names. The dynamic laws are
used to show the direct effects of the actions. The C
language also has some additional expressions that
can be written in the form of static and dynamic
laws. These are itemized below:

U causes F if G
inertial F
always F

nonexecutable U if F
default F if G

U may cause F if G
where F and G are propositional combinations of
fluent names and U is a propositional combination
of fluent and action names. Examples of simple
planning problems that are solved using C can be
found in [McC99]. A C program defines a transition
system which consists of sets of fluents and relation-
ships among these fluent sets. Although C offers a
complete system in formalizing action language do-
mains, it lacks a tool to obtain a visual appearance
of the resulting transition systems. Drawing a tran-
sition diagram is the best way of representing the
whole state space of the problem domain. Doing
it manually is time consuming and open to errors.
Moreover, an automated tool would be helpful for
the learners and teachers of action languages.

The Causal Calculator (Ccalc) [McC99] is a
system, written in Prolog, for query answering and
satisfiability in the context of planning. It is de-



veloped for the language of causal theories [MT97].
The input to Ccalc is given in C which is trans-
lated to causal theory by using rewrite rules. The
causal theory is grounded to obtain a ground causal
theory. The ground causal theory is translated
to propositional logic by means of literal comple-
tion. Then, the propositional logic formulas are
put into the conjunctive normal form (CNF). To
find a model of the system, Ccalc uses a so–called
satisfiability solver (SAT). These are propositional
provers based on Davis–Putnam method and ex-
pect their input in CNF. The models found by
SATs are then used for planning. The idea behind
this approach can be found in [KS92].

We have developed a software, called
Tdv(Transition Diagram Visualizer), to draw
transition diagrams defined by programs written
in action language C. Tdv extends the Ccalc
package and uses GraphViz[KN91] package for
drawing.

The rest of this paper is organized as follows:
Section 2 explains transition diagrams, Section 3
discusses implementation details, Section 4 com-
pares the performance of algorithms, Section 5
presents the visual customizations and Section 6
contains the conclusion.

2 Transition Diagrams

Programs written in action languages consist of
causal clauses which constitue a causal theory. Ev-
ery causal theory defines a transition system. A
transition system is a set of transitions of the form
<s,A, s′>, where s is initial state A is a set of states
and s′, is resulting state

At each state, every fluent has a value of true
or false. Hence, a state s is a set of all literals,
i.e. positive or negative fluents. A is a, possibly
empty, set of concurrent actions that a causal the-
ory allows to execute concurrently. If we assume
that there are n fluents and m actions, there are
2n×m×2n possible transitions for non–concurrent
case and 2n × 2m × 2n possible transitions for the
concurrent case. Among these, some are causally
explained1. A transition diagram refers to a set of

1A transition < s, A, s′ > is causally explained if its
resulting state s′ is the only interpretation of σfl, i.e
fluent symbols, that satisfies all formulas caused in this
transition[GL98b].

:- include ’C.t’.

:- sorts latch.

:- variables L :: latch.

:- constants

l1, l2 :: latch;

up(latch) :: defaultFalseFluent;

open :: inertialFluent;

toggle(latch) :: action.

caused open if up(l1) && up(l2).

caused -open if -up(l1) ++ -up(l2).

toggle(L) causes up(L) if -up(L).

toggle(L) causes -up(L) if up(L).

Figure 1: C code for suitcase domain

causally explained transitions.
We can represent transition diagrams by means

of labeled directed graphs. In such a representa-
tion, nodes correspond to states and edges repre-
sent transitions. Figure 2 presents the transition
diagram of Lin’s suitcase domain [Fan95] whose
code is presented in Figure 1 as an example. In the
suitcase domain, there is a spring–loaded suitcase
with two latches. The suitcase is open whenever
both latches are up. According to Figure 2, the do-
main has 3 fluents—open, up(l1) and up(l2)—and
2 actions—toggle(l1) and toggle(l2). Since this is a
concurrent example2, there are 23 × 22 × 23 = 256
possible transitions. Among these 14 of them are
causally explained. In C, states may change (or
remain same) without executing any action. Tran-
sitions labeled with 0 represent such null actions.
Note that up(l1) and up(l2) fluents are defined as
defaultFalseFluent. If we modify this defini-
tion as up(latch) :: inertialFluent; then,
we would obtain a transition diagram as illustrated
in Figure 3. In this case, transition diagram has
again 14 causally explained transitions with certain
differences, i.e. some of the transitions are differ-
ent. These two figures emphasize the importance
of formalization.

Although the Figures 2 and 3 are strongly con-
nected directed graph, transition diagrams may
be unconnected. A directed graph is said to be
strongly connected if and only if there is a path—
in the sense of graph theory—between every two
vertices in the graph. Figure 4 illusrates a transi-

2C assumes that any program is concurrent unless it con-
tains a noconcurrency—or equivalently nonexecutable A

&& A1 if A@< A1—statement.



Figure 2: Transition diagram of suitcase example

Figure 3: Transition diagram of suitcase example
(with inertial fluents)

Figure 4: A transition diagram which is not
strongly connected.

Figure 5: Tdv architecture

tion diagram which is not strongly connected. This
graph is not strongly connected, because it is not
possible to reach {¬P ¬Q}, or any other node, from
{P Q}.

3 Visualization of Transition
Diagrams

In order to visualize the transition diagram of
a C program, Td software extends the Ccalc
software as illustrated in Figure 5. Ccalc passes
the information about the nodes and transitions
among the nodes to Tdv. After extracting the
node and transition information, the result is
written to a file in a format readable by AT&T’s
GraphViz software and the file is sent to dot3

as input. dot produces the transition diagram.
Ccalc neither produces nodes or transitions, nor
uses this information. Hence, this information is
obtained by posing planning problems to Ccalc
as outlined in algorithm, named algorithm 1,
below:

Algorithm

1. Ask Ccalc to find a plan of length 1 with
initial condition true and goal true. Ccalc

3dot is a part of GraphViz package.



produces a plan with an initial state s0, a final
state s1 and a set of actions A0.

2. While there are more transitions, construct a
new planning problem with

• current state is s,

• goal state s′ is different from previously
found goals,
i.e. s′ 6= s1 ∧ s′ 6= s2 ∧ . . . s′ 6= sn where
si are goals found so far,

• set of actions A is different than previ-
ously found action sets, i.e. A 6= A1∧A 6=
A2 ∧ . . . A 6= An where Ai are actions
found so far.

After finding the new transition < s, A, s′ >,
add s′ to the set of non–processed nodes if we
see this node for the first time.

3. When there are no more transitions, mark cur-
rent state s as processed, take another non–
processed node as new s, and go to step 2.

4. Repeat step 3 until all nodes are processed.

5. Output the resulting nodes and transitions to
a file.

As we discussed before, a state may change, or
remain same, without performing any action. In
such a case, how to specify that at least one action
should be used in order to get a different transition
is a problem needs special handling. This is formu-
lated by the following statement:

0: \/V_A1: o(V_A1,0)
This statement specifies that at least one action
should occur, and it solves the problem. Although
the algorithm outlined above is correct, transition
diagrams produced by the algorithm may be incom-
plete. As we discussed in the previous section, tran-
sition diagrams may be unconnected. The above al-
gorithm, however, finds only a connected subgraph
of the transition diagram. To overcome this dif-
ficulty, we can generate all states by taking per-
mutations of 2n literals beforehand, and use them
as non–processed nodes. This algorithm is named
algorithm 2. However, this would decrease the
performance considerably for graphs which are not
fully connected. A hybrid of these two algorithms,
named algorithm 3, is also possible. In this case, a

set of desired nodes is given to the system as non–
processed nodes. System discovers the remaining
nodes by applying the first algorithm. All of these
3 algorithms were implemented in Tdv.

4 Performance Issues

In order to discuss the complexities of the algo-
rithms, let us consider a domain with n fluents,
m actions, T causally explained transitions and N
nodes. We assume N and T are actual number of
nodes and edges, respectively, in the resulting tran-
sition diagrams, hence they satisfy

• 0 ≤ N ≤ 2n (concurrent and non–concurrent
case)

• 0 ≤ T ≤ N×2m×N (concurrent) or 0 ≤ T ≤
N×(m + 1)×N (non–concurrent case)

Therefore, algorithm 1 runs in O(T )4 in general
and in O(N×2m×N) for the worst case. Algorithm
2 first discovers all possible nodes (O(2n)), then it
finds all causally explained transitions (O(T )). So,
algorithm 2 runs in O(2n) + O(T ), which impiles
a worst case of O(2n × 2m × 2n) and a best case
of O(2n). Algorithm 3, like algorithm 1, runs
faster than algorithm 2. This algorithm runs in
O(T1+T2+T3+· · ·+Tn), where each Ti denotes the
number of causally explained transitions in discov-
ered subgraph i. As we can easily see, the summa-
tion satisfies the 0≤T1 + T2 + T3 + · · ·+ Tn≤ T in-
equality, since the summation of number of causally
explained transitions in subgraphs cannot exceed
the total number of causally explained transitions.

Our experiments, see appendix, showed that our
program runs reasonably fast for domains with 211

or less nodes. Each of the examples took less than
six minutes on an average Pentium II PC with 64
MB RAM. We observed that, most of this time is
spent for file I/O operations of Ccalc. We believe
that running times may be decreased to 30–75%
if Ccalc is compiled with the SAT solvers. On
the other hand, we should note that the problem
is, by definition, exponential; i.e. there can be up
to 2n×2m×2n transitions. So, for larger domains,
Tdv cannot produce results fastly, or even indefi-
nitely. For example, Tdv is not able to produce the

4If the graph is not connected, T is the number of causally
explained transitions in the subgraph discovered by the al-
gorithm.



transition diagram of airport problem[LMRT00],
since there are 42 fluents—which impiles 242 =
4.398.046.511.104 possible nodes.

5 Visual Customizations

GraphViz package offers some customizations
about the visual appearance of graphs, and we have
an interface for these options. Tdv supports the
customizations of shape of nodes, node and edge
fonts, size/color of node and edge fonts, multi-line
labels for nodes and edges, thickness of edges, scale
of graphs and it is able to produce a smaller version
of transition diagrams by merging5 bi–directional
edges, etc.

In addition to these customization, dotty pro-
gram of GraphViz package allows its users to mod-
ify the layout of the graph.

6 Conclusion and Suggested
Work

Action laguages is one of the important topics in
current AI research. In order to help the study of
action languages research a tool which is capable
of displaying the transition diagrams of C programs
is developed. We will improve our tool by imple-
menting algorithm 3. Three different algorithms
were developed to achieve speed and completeness.
Also, several visual customizations are offered for
convenience. System is tested in SWI–Prolog un-
der Windows NT/2000. Minor revisions may be
done to run the program under different operating
systems. Furthermore, we believe that it would be
useful to develop a web based interface to achive a
cross–platform system.

Acknowledgements

We are grateful to Vladimir Lifschitz and Esra Er-
dem for their suggestions and useful comments.

5If there are two nodes X and Y such that there is a
transition from X to Y with action set A and another tran-
sition from Y to X with the same set of actions , i.e. A,
Tdv can display a single edge with two arrowheads which
reduces the number edges displayed. Such kind of edges are
called bi–directional edges.

Appendix

Yale Shooting Domain

:- sorts gun.

:- variables G :: gun.

:- constants

g1, g2 :: gun;

load(gun), shoot(gun) :: action;

alive, loaded(gun) :: inertialFluent.

load(G) causes loaded(G).

shoot(G) causes -alive if loaded(G).

shoot(G) causes -loaded(G).

C code for yale shooting example

References

[BG97] Chitta Baral and Michael Gelfond. Rea-
soning about effects of concurrent ac-
tions. Journal of Logic Programming
31, 1997.

[Fan95] Lin Fangzhen. Embracing causality in
specifying the indirect effects of actions.
Proc. of IJCAI-95, pages 1985–1991,
1995.

[GL98a] Michael Gelfond and Vladimir Lifs-
chitz. Actions languages. Electronic
Transactions on AI, page 3, 1998.

[GL98b] Enrico Giunchiglia and Vladimir Lifs-
chitz. An actions language based on
causal explanation: Preliminary report.
Proc. AAAI–98, pages 623–630, 1998.

[KN91] Eleftherios Koutsofios and Stephen
North. Drawing graphs with dot. Tech-
nical report, AT&T Bell Laboratories,
Murray Hill, NJ, September 1991.

[KS92] H. Kautz and B. Selman. Planning as
satisfaibility. Proc. of ECAI–92, pages
359–379, 1992.

[LMRT00] Vladimir Lifschitz, Norman McCain,
Emilio Remolina, and Armando Tac-
chella. Getting to the airport: the old-
est planning problem in AI. Logic-Based
Artificial Intelligence, pages 147–165,
2000.



[McC99] Norman McCain. Using the causal
calculator with the C input language.
Technical report, 1999.

[MT97] Norman McCain and Hudson Turner.
Causal theories of action and change.
Proc. AAAI–97, pages 460–465, 1997.

Transition diagram of yale shooting example


