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What if the Robot is not a Point?

A large wheeled robot should 

probably not

be modeled as a point...

Nor should robots with extended 

linkages that may contact obstacles

What is the position of the robot in such situations?
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Configuration Space

• A key concept for motion planning is a configuration:

– a complete specification of the position of every point in the system

• A simple example: a robot that translates but does not rotate 

in the plane:

– what is a sufficient representation of its configuration?

• The space of all configurations is the configuration space or 
Cspace.

• Workspace is either the ambient space, or the set of 
reachable points by an end-effector

C-space formalism:
Lozano-Perez ‘79
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Some Other Examples of C-Space

• A rotating bar fixed at a point
– what is its C-space?

– what is its workspace?

• A rotating bar that translates along the rotation axis
– what is its C-space?

– what is its workspace?

• A two-link manipulator
– what is its C-space?
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Robot Manipulators

• What are this arm’s forward kinematics? 

– i.e. How does its position depend on its joint angles?

Find (x,y) in terms of     and   

• Inverse kinematics? 

– Finding joint angles from Cartesian coordinates

– Algebraic or geometric approaches

Given (x,y), what are the values of     and  
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Some Other Examples of C-Space

• A rotating bar fixed at a point
– what is its C-space?

– what is its workspace?

• A rotating bar that translates along the rotation axis
– what is its C-space?

– what is its workspace?

• A two-link manipulator
– what is its C-space?

– what is its workspace?

– Suppose there are joint limits, does this change the C-space?

– The workspace?
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Configuration Space

Put an obstacle in the robot’s workspace

Where can we put       ?
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Obstacles in C-Space

• Let q denote a point in a configuration space Q

• The path planning problem is to find a mapping c:[0,1]→ Q s.t. no 
configuration along the path intersects an obstacle

• Recall a workspace obstacle is WOi

• A configuration space obstacle QOi is the set of configurations q at which 
the robot intersects WOi, that is

• The free configuration space (or just free space) Qfree is

• The free space is generally an open set

• A free path is a mapping c:[0,1]→ Qfree

• A semifree path is a mapping c:[0,1]→ cl(Qfree)  (cl stands for closure)
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Example World (Circular Robot)
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Configuration Space (accomodates robot size)
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Trace The Boundary of the Workspace

A consistent reference point must be picked on the robot!

What about non-circular robots?

Robots with both position and body angle?
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When Only Translation is Allowed

For a fixed robot angle, we can build QOi

Choice of reference point makes a difference
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Cross Section of the C-Space

Assuming a fixed angle of 45 degrees, we are taking a 
cross section of the C-space
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Star Algorithm: Polygonal Obstacles
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Obstacles for a Manipulator Arm

Obstacle in the robot’s workspace

Where can we put the         ?
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Configuration Space Obstacle

Obstacle in the robot’s workspace

How do we get from A to B?
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Two-Link Path
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Properties of C-space Obstacles

• If the robot and the WOi are ________ then _____

– Convex, then QOi are convex

– Closed, then QOi are closed

– Compact, then QOi are compact

– Algebraic, then QOi are algebraic

– Connected, then QOi are connected
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Additional Dimensions

If the robot can both translate and rotate,
What would the configuration of the rectangular robot look like?

A 2D possibility
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A Serious Problem?
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A Serious Problem?

Looks like we need one more dimension (was it obvious?)
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When the robot is at one orientation...
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When the robot is at another orientation...
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Additional Dimensions

If the robot can both translate and rotate,
What would the configuration of the rectangular robot look like?
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2D Rigid Object
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A Planar Robot Arm
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Moving a Piano
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Motion of a Humanoid Robot
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The Topology of the Configuration Space

• Topology is the “intrinsic character” of a space

• Two spaces have different topologies if cutting and 

pasting is required to make them the same (e.g. a 

sheet of paper vs. a mobius strip)

– think of rubber figures --- if we can stretch and reshape 

“continuously” without tearing, one into the other, they 
have the same topology

• A basic mathematical mechanism for talking about 

topology is thehomeomorphism.
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Why Study Topology?

• Extend results from one space to another: spheres 

to stars

• Understand and compare different representations

• Know where you are

• Others?
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Homeo- and Diffeomorphisms

• Recall mappings:
– φ: S → T

– If each element of φ goes to a unique T, φ is injective (or 1-1)

– If each element of T has a corresponding preimage in S, then φ is 
surjective (or onto).

– If φ is surjective and injective, then it is bijective (in which case an 
inverse, φ-1 exists).

– φ is smooth if derivatives of all orders exist (we say φ is C∞)

• If φ: S → T is a bijection, and both φ and φ-1 are continuous, 
φ is a homeomorphism; if such a φ exists, S and T are 
homeomorphic.

• If homeomorphism where both φ and φ-1 are smooth is a 
diffeomorphism.
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Some Examples

• How would you show a square and a rectangle are 
diffeomorphic?

• How would you show that a circle and an ellipse are 

diffeomorphic (implies both are topologically S1)

• Interestingly, a “racetrack” is not diffeomorphic to a circle

– composed of two straight segments and two circular segments

– at the junctions, there is a discontinuity; it is therefore not possible to 
construct a smooth map!

– How would you show this (hint, do this for a function on �1 and think 
about the chain rule)

– Is it homeomorphic?
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Local Properties

Ball: 

Neighborhood: 

• Manifolds
– A space S locally diffeomorphic (homeomorphic) to a space T if each 

p in S, there is a neighborhood containing it for which a 
diffeomorphism (homeomorphism) to some neighborhood of T exists.

– S1 is locally diffeomorphic to �1

– The sphere is locally diffeomorphic to the plane (as is the torus)

– A set S is a k-dimensional manifold if it is locally homeomorphic to 
�k
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Charts and Differentiable Manifolds

• A Chart is a pair (U,φ) such that U is an open set in a k-dimensional 
manifold and φ is a diffeomorphism from U to some open set in �k

– think of this as a “coordinate system” for U (e.g. lines of latitude and longitude 
away form the poles).

– The inverse map is a parameterization of the manifold

• Many manifolds require more than one chart to cover (e.g. the circle 
requires at least 2)

• An atlas is a set of charts that

– cover a manifold

– are smooth where they overlap (the book defines the notion of C∞ related for 
this; we will take this for granted).

• A set S is a differentiable manifold of dimension n if there exists an atlas 
from S to �n

– For example, this is what allows us (locally) to view the (spherical) earth as 
flat and talk about translational velocities upon it.
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Parameterization of the Torus
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A Few Final Definitions

• A manifold is path-connected if there is a path between any 
two points.

• A space is compact if it is closed and bounded

– configuration space might be either depending on how we model 
things

– compact and non-compact spaces cannot be diffeomorphic!

• With this, we see that for manifolds, we can

– live with “global” parameterizations that introduce odd singularities 
(e.g. angle/elevation on a sphere)

– use atlases

– embed in a higher-dimensional space using constraints

• Some prefer the latter as it often avoids the complexities 
associated with singularities and/or multiple overlapping 

maps
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2D Manifolds
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Minor Notational Points

• �1 × �1 × ... × �1 = �n

• S1 × S1 × ... × S1 ≠ Sn (= Tn, the n-dimensional torus)

• Sn is the n-dimensional sphere

• Although Sn is an n-dimensional manifold, it is not a 

manifold of a single chart --- there is no single, 

smooth, invertible mapping from Sn to Rn

– they are not ??morphic?
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Representing Rotations

• Consider S1 --- rotation in the plane

• The action of a rotation is to, well, rotate --> Rθ: �
2 →�2

• We can represent this action by a matrix R that is applied 

(through matrix multiplication) to points in �2

cos(θ) - sin(θ)

sin(θ) cos(θ)

• Note, we can either think of rotating a point through an angle, 

or rotate the coordinate system (or frame) of the point.
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Geometric Transforms

• Now, using the idea of homogeneous transforms,we

can write:

• The group of rigid body rotations SO(2) × �(2) is 

denoted SE(2) (for special Euclidean group)

• This space is a type of torus
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SE(2)
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From 2D to 3D Rotation

• One can think of a 3D rotation as a rotation about different axes:

– rot(x,θ) rot(y,θ) rot(z,θ)

– there are many conventions for these (see Appendix E)

• Euler angles (ZYZ) --- where is the singularity (see eqn 3.8)

• Roll Pitch Yaw (ZYX)

• Angle axis coordinates

• Quaternions

• The space of rotation matrices has its own special name: SO(n) (for 
special orthogonal group of dimension n). It is a manifold of dimension n.

• What is the derivative of a rotation matrix?

– A tricky question --- what is the topology of that space ;-)
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Geometric Transforms

• Now, using the idea of homogeneous transforms,we

can write:

• The group of rigid body rotations SO(3) × �(3) is 

denoted SE(3) (for special Euclidean group)

• What does the inverse transformation look like?
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Examples
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More Example Configuration Spaces
(contrasted with workspace)

• Holonomic robot in plane:
– workspace �2

– configuration space �2

• 3-joint revolute arm in the plane
– Workspace, a torus of outer radius L1 + L2 + L3

– configuration space T3

• 2-joint revolute arm with a prismatic joint in the plane
– workspace disc of radius L1 + L2 + L3

– configuration space T2 × �

• 3-joint revolute arm mounted on a mobile robot (holonomic)
– workspace is a “sandwich” of radius L1 + L2 + L3

– �2 × T3

• 3-joint revolute arm floating in space
– workspace is �3

– configuration space is T3
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Dimension of the Configuration Space

• The dimension is the number of parameter necessary to uniquely specify 
configuration

• One way to do this is to explicitly generate a parameterization (e.g with 
our 2-bar linkage)

• Another is to start with too many parameters and add (independent) 
constraints

– suppose I start with 4 points in the plane (= 8 parameters), A, B, C, D

– Rigidity requires d(A,B) = c1 (1 constraints)

– Rigidity requires d(A,C) = c2 and d(B,C) = c3 (2 constraints)

– Rigidity requires d(A,D) = c4 and d(B,D) = c5 and ??? (?? constraints)

– HOW MANY D.O.F?

• The question is:

– How many DOF do you need to move freely in 3-space?
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More on Dimension

• �1 and SO(2) are 
– one dimensional manifolds

• �2, S2 and T2 are 
– two dimensional manifolds

• �3, SE(2) and SO(3) are 
– three dimensional manifolds

• �6, T6 and SE(3) are 
– six dimensional manifolds



CENG786 - Robot Motion Planning and Control 48

Transforming Velocity

• Recall forward kinematics K: Q → W

• The Jacobian of K is the n × m matrix with entries
– Ji,j = d Ki / d qj

• The Jacobian transforms velocities:
– dw/dt = J dq/dt

• If square and invertible, then
– dq/dt = J-1 dw/dt

• Example: our favorite two-link arm...
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Useful Observations

• The Jacobian maps configuration velocities to workspace 
velocities

• Suppose we wish to move from a point A to a point B in the 

workspace along a path p(t) (a mapping from some time 

index to a location in the workspace)

– dp/dt gives us a velocity profile --- how do we get the configuration 
profile?

– Are the paths the same if choose the shortest paths in workspace and 
configuration space?
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Holonomic vs. Non-Holonomic Systems

• The previous constraints were holonomic -- they 
constrained theconfiguration of the system.
– g(q, t) = 0 (note they can be time-varying!)

• Non-holonomic constraints are of the form
– g(q,dq/dt,t) = 0 (position and velocity)

• Example: A mobile robot with location x and 
orientation θ has motion
– dx/dt = (v(t) cos(θ), v(t) sin(θ))

– Note that the kinematics of this system involves 
integration!
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Nonholonomicity

• Scout robot (and many other mobile robots) share a common 
(if frustrating) property: they have nonholonomic constraints.

– makes it more difficult to navigate between two arbitrary points

– need to resort to techniques like parallel parking

Another (informal) definition, a robot is nonholonomic if it 

can not move to change its pose instantaneously in all 
available directions within its workspace (although the 

complete set of motions spans the workspace

E.g. A car moves in x,y, theta, but can only go forward and backward along a curve
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Nonholonomicity

• Scout robot (and many other mobile robots) share a common 
(if frustrating) property: they have nonholonomic constraints.

– makes it more difficult to navigate between two arbitrary points

– need to resort to techniques like parallel parking

By  definition, a robot is nonholonomic if it can not move to 

change its pose instantaneously in all available directions

differential-drive robots

are nonholonomic

multiple-trailer 

rigs are “very”

nonholonomic
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Holonomic Robots

Navigation is simplified considerably if a robot can move 
instantaneously in any direction, i.e., is holonomic.



CENG786 - Robot Motion Planning and Control 54

Holonomic Designs
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Summary

• Configuration spaces, workspaces, and some basic ideas 
about topology

• Types of robots: holonomic/nonholonomic, serial, parallel

• Kinematics and inverse kinematics

• Coordinate frames and coordinate transformations

• Jacobians and velocity relationships

T. Lozano-Pérez.

Spatial planning: A configuration space approach.

IEEE Transactions on Computing, C-32(2):108-120, 1983.


