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The Basic Idea

• A really simple idea:

– Suppose the goal is a point g in �2

– Suppose the robot is a point r in �2

– Think of a “spring” drawing the robot 
toward the goal and away from 
obstacles:

– Can also think of like and opposite 
charges
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Another Idea

• Think of the goal as the bottom of a bowl

• The robot is at the rim of the bowl

• What will happen?
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The General Idea

• Both the bowl and the spring analogies are ways of storing 
potential energy

• The robot moves to a lower energy configuration

• A potential function is a function U : �m →�

• Energy is minimized by following the negative gradient of the 
potential energy function:

• We can now think of a vector field over the space of all q’s ...
– at every point in time, the robot looks at the vector at the point and 

goes in that direction
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Attractive/Repulsive Potential Field

• Uatt is the “attractive” potential --- move to the goal

• Urep is the “repulsive” potential --- avoid obstacles
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Artificial Potential Field Methods

Attractive Potentials
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Artificial Potential Field Methods

Attractive PotentialsIn some cases, it may be desirable to have 

distance functions that grow more slowly to 

avoid huge velocities far from the goal

one idea is to use the quadratic potential near the goal (< d*) and 

the conic farther away One minor issue: what?
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Artificial Potential Field Methods

Repulsive Potentials
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Artificial Potential Field Methods

Repulsive Potentials
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Total Potential Function
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Potential Fields
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Gradient Descent

• A simple way to get to the bottom of a potential

• A critical point is a point q* where

– Equation is stationary at a critical point

– Max, min, saddle

– Stability?
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The Hessian

• For a 1-d function, how do we know we are at a unique 
minimum (or maximum)?

• The Hessian is the m×m matrix of second derivatives

• If the Hessian is nonsingular (Det(H) ≠ 0), the critical point is 

a unique point

– if H is positive definite (xT H x > 0), a minimum

– if H is negative definite, a maximum

– if H is indefinite, a saddle point
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Gradient Descent
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Single Object Distance
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Compute Distance: Sensor Information
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Computing Distance: Use a Grid

• use a discrete version of space and work from there

– The Brushfire algorithm is one way to do this

• need to define a grid on space

• need to define connectivity (4/8)

• obstacles start with a 1 in grid; free space is zero
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Brushfire Algorithm

• Initially: create a queue L of pixels on the boundary of all 
obstacles

• While L ≠∅
– pop the top element t of L

– if d(t) = 0,

• set d(t) to 1+mint’ in N(t),d(t) ≠ 0 d(t’)

• Add all t’in N(t) with d(t)=0 to L (at the end)

• The result is a distance map d where each cell holds the 
minimum distance to an obstacle.

• The gradient of distance is easily found by taking differences 
with all neighboring cells.



CENG786 - Robot Motion Control and Planning 19

Brushfire example
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Potential Functions Question

• How do we know that we have only a single (global) 
minimum?

• We have two choices:

– not guaranteed to be a global minimum: do something other than 
gradient descent (what?)

– make sure only one global minimum (a navigation function, which we’ll 
see later).
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The Wave-front Planner

• Apply the brushfire algorithm starting from the goal

• Label the goal pixel 2 and add all zero neighbors to L

– While L ≠∅

• pop the top element of L, t

• set d(t) to 1+mint’ in N(t),d(t) > 1 d(t’)

• Add all t’ in N(t) with d(t)=0 to L (at the end)

• The result is now a distance for every cell

– gradient descent is again a matter of moving to the neighbor with the 
lowest distance value
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The Wavefront Planner: Setup
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The Wavefront in Action (Part 1)

• Starting with the goal, set all adjacent cells with “0” to the current cell + 1

– 4-Point Connectivity or 8-Point Connectivity?

– Your Choice. We’ll use 8-Point Connectivity in our example
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The Wavefront in Action (Part 2)

• Now repeat with the modified cells

– This will be repeated until no 0’s are adjacent to cells with values >= 2

• 0’s will only remain when regions are unreachable
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The Wavefront in Action (Part 3)

• Repeat again...
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The Wavefront in Action (Part 4)

• And again...
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The Wavefront in Action (Part 5)

• And again until...
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The Wavefront in Action (Done)

• You’re done

– Remember, 0’s should only remain if unreachable regions exist
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The Wavefront, Now What?

• To find the shortest path, according to your metric, simply always move 
toward a cell with a lower number

– The numbers generated by the Wavefront planner are roughly proportional to 

their distance from the goal
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Another Example
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Wavefront (Overview)

• Divide the space into a grid.

• Number the squares starting at the start in either 4 or 8 point 
connectivity starting at the goal, increasing till you reach the

start.

• Your path is defined by any uninterrupted sequence of 

decreasing numbers that lead to the goal.
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Navigation Functions

• A function φ: Qfree → [0,1] is called a navigation 
function if it
– is smooth (or at least C2)

– has a unique minimum at qgoal

– is uniformly maximal on the boundary of free space

– is Morse

• A function is Morse if every critical point (a point 
where the gradient is zero) is isolated.

• The question: when can we construct such a 
function?
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Sphere World

• Suppose that the world is a sphere of radius r0 centered at q0

containing n obstacles of radius ri centered at qi, i=1 .. n

– β0(q) = -d2(q,q0) + r0
2

– βi(q) = d2(q,qi) - ri
2

• Define β(q) = Π βi(q) (Repulsive)

– note this is zero on any obstacle boundary, positive in free space and 
negative inside an obstacle

• Define                               (Attractive)

– note this will be zero at the goal, and increasing as we move away

– κ controls the rate of growth
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Sphere World

• Consider now

– is only zero at the goal

– goes to infinity at the boundary of any obstacle

– By increasing κ, we can make the gradient at any 

direction point toward the goal

– It is possible to show that the only stationary point is the 

goal, with positive definite Hessian because

• therefore no local minima

• In short, following the gradient of          is guaranteed 

to get to the goal (for a large enough value of κ)



CENG786 - Robot Motion Control and Planning 35

An Example: Sphere World

• One problem: the value of          may be very large

• A solution: introduce a “switch”

• Now, define

– this bounds the value of the function

– however,             may turn out not to be Morse

• A solution: introduce a “sharpening function”

• For large enough κ, this is a navigation function on the sphere world!
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Navigation Function for Sphere World

For sufficiently large k,            

is a navigation function
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Navigation Function :        , varying k



CENG786 - Robot Motion Control and Planning 38

From Spheres to Stars and Beyond

• While it may not seem like it, we have solved a very general problem

• Suppose we have a diffeomorphism from some world W to a sphere 
world S

– if           is a navigation function on S then

– is a navigation function on W!

• note we also need to take the diffeomorphism into account for distances

• Because    is a diffeomorphism, the Jacobian is full rank

• Because the Jacobian is full rank, the gradient map cannot have new zeros 

introduced (which could only happen if the gradient was in the null space of the 

Jacobian)

• A star world is one example where a diffeomorphism is known to exist

– a star-shaped set is one in which all boundary points can be “seen” from some 

single point in the space.
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_____ jections
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Diffeomorphism vs. Homeomorphism
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Which of the following are the same?
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Construct the Mapping
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Potential Fields on Non-Euclidean Spaces

• Thus far, we’ve dealt with points in Rn --- what about real manipulators

• Recall we can think of the gradient vectors as forces -- the basic idea is to 
define forces in the workspace (which is �2 or �3)
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Force on an Object
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Potential Function on Rigid Body
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Potential Fields for Multiple Bodies

• Recall we can think of the gradient vectors as forces -- the basic idea is to 
define forces in the workspace (which is �2 or �3)

– We have JT f = u where f is in W and u is in Q

– Thus, we can define forces in W and then map them to Q

– Example: our two-link manipulator
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Potential Fields on Non-Euclidean Spaces

Example: our two-link manipulator

• J =    -L1sα - L2 sα+β - L2 sα+β

L1 cα + L2 cα+β L2 cα+β

Suppose qgoal = (0,0)t, then fW = (x,y)

• fq =     x (- L1 sα - L2 sα+β) + y ( L1 cα + L2 cα+β)

x (- L2 sα+β) + y L2 cα+β
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In General

• Pick several points on the manipulator

• Compute attractive and repulsive potentials for each

• Transform these into the configuration space and add

• Use the resulting force to move the robot (in its configuration space)
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Summary

• Basic potential fields

– attractive/repulsive forces

• Gradient following and Hessian

• Navigation functions

• Extensions to more complex manipulators


