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Exact Cell vs Approximate Cell

• Cell: A simple region
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Adjacency Graph

• Nodes correspond to cells

• Edges connect nodes of adjacent cells
– Two cells are adjacent if they share a common boundary

• Path Planning in two steps:
– Planner determines cells that contain the start and goal

– Planner searches for a path within adjacency graph
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Types of Decompositions

• Trapezoidal Decomposition

• Morse Cell Decomposition

– Boustrophedon decomposition

– Morse decomposition definition

– Sensor-based coverage

– Examples of Morse decomposition

• Visibility-based Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition



CS548 - Robot Motion Control and Planning 7

Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition
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Trapezoidal Decomposition Path
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Implementation

• Input is vertices and edges

– Sort n vertices O(n logn)

– Determine vertical extensions

– For each vertex, intersect vertical line with each edge –

O(n) time

– Total O(n2) time
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Sweep line approach

• Sweep a line through the space stopping at vertices which are often 
called events

• Maintain a list L of the current edges the slice intersects

• Determining the intersection of slice with L requires O(n) time but with an 
efficient data structure like a balanced tree, perhaps O(log n)

• Really, determine between which two edges the vertex or event lies. 
These edges are eLOWER and eUPPER

• So, really maintaining L takes O(n log n) – log n for insertions, n for 
vertices
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Events
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Example
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Example



CS548 - Robot Motion Control and Planning 17

Example
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Example
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Coverage

• Planner determines an 
exhaustive walk through the 
adjacency graph

• Planner computes explicit robot 
motions within each cell

• Problems

1. Polygonal representation

2. Quantization

3. Position uncertainty

4. Full information

5. What else?
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Boustrophedon Decomposition
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Complete Coverage
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Morse Decomposition in Terms of Critical Pts.
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Morse Decomposition: Connectivity
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Morse Decomposition: Connectivity



CS548 - Robot Motion Control and Planning 25

Morse Decomposition: Connectivity
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Morse Decomposition: Connectivity
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Morse Decomposition: Connectivity
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Morse Decomposition: Coverage
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Morse Decomposition: Topology
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Incremental construction

• While covering the space, look for critical points



CS548 - Robot Motion Control and Planning 31

Algorithm

• Cover a cell until the closing critical point is detected

• If the closing critical point has “uncleaned” cells 
associated with it, chose one and cover, repeat

• If the closing critical point has no uncleaned cells,
– search reeb graph for a critical point with an uncleaned

cell

– Plan a path (on average shorter than bug2) to critical point

– Cover cell, repeat

• Else coverage is complete
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Detect Critical Points
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Encountering Critical Points: Problem



CS548 - Robot Motion Control and Planning 34

Cycle Algorithm
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Sensor-based Complete Coverage

• Goal: Complete coverage of an unknown environment
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Morse Decomposition h(x,y) = x
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Morse Decomposition h(x,y) = x2 + y2
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Morse Decomposition h(x,y) = |x| + |y|
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Morse Decomposition h(x,y) = tan(y/x)
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Brushfire Decomposition
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Brushfire Decomposition h(x,y) = D(x,y)
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Brushfire Decomposition: Coverage Path
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Wavefront Decomposition
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Notation

• A slice is a codimension one manifold (Qλ)

• Slices are parameterized by λ

– varying λ sweeps a slice through the space

• The portion of the slice in the free configuration 

space (Qfree) is Qfreeλ

– Qfreeλ = Qλ ∩ Qfree
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Slice Definition

• Slice can be defined in terms of the preimage of the 

projection operator

h: Q → � (Canny π1: Q → �)

• Vertical slice are defined by

Qλ = h−1(λ), with h(x,y) = x for the plane

• Increasing λ sweeps the slice to the right through 

the plane
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The Pursuer-Evader Problem

• Problem definition

– How do you plan the motion of a pursuer(s) in a polygonal 
environment so that it will eventually “see” an unpredictable evader?

• Assumptions

– Polygonal environment, freespace denoted F

– If the evader is within line of sight of the pursuer, it has been 
“captured”

– Evaders can move arbitrarily fast

– Pursuers have unlimited vision range
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Terminology and Definitions

• γi(t) position of ith pursuer at time t

• V(q) set of points in F visible from q in F

• Contaminated: region of F that might contain the evader

• Cleared: region that is not contaminated.

• Recontaminated: A region that was contaminated, then cleared, and then 

contaminated

• Solution strategy: A strategy γ for any given evader path if there is at some time a 

point where the pursuer sees the evader.
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Information State and Space

• Let q in F be the current pursuer position, let S in F be the set 
of all contaminated points in F, then η = (q, S) is an 

information state. In other words, it is a set of data that 

uniquely describes state of the environment at a given point. 
Is η = (q, S) a function of time?

• The set of all possible information states is the information 
space.
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Information State

• How do we use the information state in our search for the evader?

• At a point q, the edges of the visibility polygon V(q) alternate between 
being on the boundary of F and the interior of F. We will call the edges of 
V(q) that enter the free space gap edges.

• We can assign each gap edge a binary value– if the edge borders a contaminated region, it 

is assigned a “1”, and “0” for all other edges.

• For each point q, we can assign a binary vector B(q) that contains all the gap edge labels

• The pair (q, B(q)) then uniquely describes the information state, for example (q, {010})
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Conservative Regions
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Constructing Conservative Regions
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Examples of Conservative Regions
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Conservative Regions to Graphs
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Directed Information Graph

• Given a graph G, we can derive the information graph GI that includes the 
labels for the gap edges. For each node in G, we include a set of vertices 
in GI, one for each possible gap edge label.

• For example, for a given point and region q in D, there are two gap edges 
in B(q). But we include all possible combinations of B(q) in GI: {00, 01, 10, 
11}. Thus we can identify a vertex in GI with the pair (q, B(q))
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Gap Edge Transitions

• What happens to the gap edges when we move from region to region? There 

are four cases:

1. A gap edge disappears: Don’t worry about it, the area has been cleared

2. A gap edge appears: Assign it a “0” (clear) label

3. Two or more gap edges merge into one: If any of the original edges had a “1”

(contaminated) , then the new edge will be a “1”

4. One gap edge splits into two: Assign new edges the same value as the old edge
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Graph search and solution

• The final step is to simply apply any graph searching algorithm to the 
information graph GI and update the vector B(q) for each region.

• Any node on GI of the form (q, B(q)) such that B(q) = “00…0” (all gap 
edges are 0) or a node with no gap edges is a goal node.

• This algorithm is complete in the case of a single pursuer.
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Worst case bounds
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Intuition on Bounds for H(F)
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Recontamination
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Conclusions / Questions

• The algorithm presented is complete for a single pursuer

• Any graph search algorithm will provide a solution once a 

information graph is extracted from the conservative region 
decomposition.

• Tight bounds exist for the number of pursuers necessary for 

a given free space.

• A complete and correct algorithm does not exist yet for 

H(F)>1

Based on the paper “A Visibility-Based Pursuit-Evasion Problem”, Guibas, Latombe, 

LaValle, Lin, Motwani

Animations are on the web at: http://robotics.stanford.edu/groups/mobots/pe.html


