Robot Motion Control and Planning

http://www.cs.bilkent.edu.tr/~saranli/courses/cs548

Lecture 6 — Cell Decompositions

Uluc Saranli

http://www.cs.bilkent.edu.tr/~saranli

CS548 - Robot Motion Control and Planning

Exact Cell vs Approximate Cell

« Cell: A simple region

CS548 - Robot Motion Control and Planning

Adjacency Graph

* Nodes correspond to cells

« Edges connect nodes of adjacent cells
— Two cells are adjacent if they share a common boundary

» Path Planning in two steps:
— Planner determines cells that contain the start and goal
— Planner searches for a path within adjacency graph

CS548 - Robot Motion Control and Planning 3

Types of Decompositions

» Trapezoidal Decomposition

* Morse Cell Decomposition
— Boustrophedon decomposition
— Morse decomposition definition
— Sensor-based coverage
— Examples of Morse decomposition

* Visibility-based Decomposition

CS548 - Robot Motion Control and Planning

Trapezoidal Decomposition

V12

Ug

CS548 - Robot Motion Control and Planning

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning

10

Trapezoidal Decomposition Path

CS548 - Robot Motion Control and Planning

11

Implementation

 Input is vertices and edges

— Sort n vertices O(n logn)
— Determine vertical extensions

— For each vertex, intersect vertical line with each edge —
O(n) time
— Total O(n?) time

CS548 - Robot Motion Control and Planning 12

Sweep line approach

Sweep a line through the space stopping at vertices which are often
called events

Maintain a list L of the current edges the slice intersects

Determining the intersection of slice with L requires O(n) time but with an
efficient data structure like a balanced tree, perhaps O(log n)

Really, determine between which two edges the vertex or event lies.
These edges are e oyer and € pper

So, really maintaining L takes O(n log n) — log n for insertions, n for
vertices

CS548 - Robot Motion Control and Planning 13

Events

“other” vertex of ejower has a y-coordinate lower than the “other”™ vertex of eupper

€upper Cupper Eupper

Supper
1
Elower n

€] Elomwer
. lower
Elowrer

=
-
-~
=
]

Out Middle

Elawer Al Eupper are both to the left of the sweep line wer 15 to the left and e, 15 to the right of the sweep lne

delete E]D‘WET an_d E:upper fr.:.ln the 115t- f].ﬂ]l'—"tﬂ L= — 'F]'I'l]'t'l t]ll.‘:' 15.‘»'\1'. FIT.II']. iﬂ.ﬂl‘-‘l]‘t +-1.I.ppm'
(s ELOWER: €lower: €upper:s €UPPER:: ---) (++-s ELOWER ; Elower; €UPPER; - -)
(.., CLOWER, €UPPER: -) (s ELOWER . €uppers EUPFER ., ...
In Jower 15 to the right and eyppe 1s to the left of the sweep line
Clower AN €ypper are both to the right of the sweep line delete eypper from the list and insert ejgye;
INSert €jgwer aNd €ypper into the list (s ELOWER: Cupper: €UPPER: - -

_) _ (.-:s ELOWER. €lowers EUPPER, - .-)
() (LOWER: ©UPPER: ---) — (s ELOWER : €lowers €upper: CUPPER:)

CS548 - Robot Motion Control and Planning 14

L:0— {es,e13}

flower ANd €ypper are both to the right of the sweep line

INSert Clower ANd eypper to the list

(---s (LOWER: EUPPER: ---) — (---s CLOWER : €lower €upper: €UPPER; --)

CS548 - Robot Motion Control and Planning

15

L: {r_“.ﬂ.ﬂlg} — {58*50-53-‘513}

Clower AN €ypper are both to the right of the sweep line

msert €jower ANd eypper Nto the list

l--:s CLOWER: €UPPER: ---) — |- ELOWER) €lower : Cupper: CUPPER: +++)

CS548 - Robot Motion Control and Planning

16

L: {("3.(‘{]‘[’3.4&‘.]3} — {E'Hiiﬂ-ﬂa-f'l:?}

Elgwer 15 to the left and e, 1s to the right of the sweep line

delete e)gper from the list and insert eypper

(... CLOWER: €lowers EUPPER.« -+)
(... .LOWER. €upper; €UPPER - --)

CS548 - Robot Motion Control and Planning

17

{t':g.{'l.i'g.rﬁk S 1112} — {{':gﬁfﬁ. 5. F]g}.

delete €1,y and e, from the list

i

-

+:s ELOWER : €lower: €upper: €UPPER: - -

\---s ELOWER, €UPPER; -)

CS548 - Robot Motion Control and Planning

18

Coverage

Planner determines an
exhaustive walk through the
adjacency graph

« Planner computes explicit robot
motions within each cell

. Problems

Polygonal representation
Quantization

Position uncertainty

Full information

What else?

oL~

CS548 - Robot Motion Control and Planning 19

Boustrophedon Decomposition

Loverage Path in a Cell. C_‘E'\'E‘I'H_E'.,'E" Path in a Cell.

CS548 - Robot Motion Control and Planning

20

Complete Coverage

Cells

Critical Points

Exhaustive walk 1—-2—4—2_3-_5-6—

__‘_'._

| — . E =]
D= = ——

CS548 - Robot Motion Control and Planning

|

L T 'S-‘F"-..
e
! ."' - I'. ‘,'-r“"f |
o N i "-,I " '-:'..‘
2 l} L _._:;*_*f "'-.. 6
.
3

21

Morse Decomposition in Terms of Critical Pts.

Vi

—

. slice

Slice function. h(x,y)= x
At a critical point x of h|y,.Vh(x)=Vm(x) where M = {x|m(x)=0}

CS548 - Robot Motion Control and Planning 22

Morse Decomposition: Connectivity

I -connected

CS548 - Robot Motion Control and Planning

23

Morse Decomposition: Connectivity

2-connected

CS548 - Robot Motion Control and Planning

24

Morse Decomposition: Connectivity

1l -connected

CS548 - Robot Motion Control and Planning

25

Morse Decomposition: Connectivity

2-connected

CS548 - Robot Motion Control and Planning

26

Morse Decomposition: Connectivity

* Connectivity of the slice in the free space
changes at the critical points

CS548 - Robot Motion Control and Planning

27

Morse Decomposition: Coverage

» Each cell can be covered by back and
forth motions

CS548 - Robot Motion Control and Planning

28

Morse Decomposition: Topology

* Reeb graph represents the topology of
the cellular decomposition

CS548 - Robot Motion Control and Planning 29

Incremental construction

« While covering the space, look for critical points

T

A5 A

Stage 1 Stage 2 Stage 3

CS548 - Robot Motion Control and Planning 30

Algorithm

Cover a cell until the closing critical point is detected

If the closing critical point has “uncleaned” cells
associated with it, chose one and cover, repeat

If the closing critical point has no uncleaned cells,

— search reeb graph for a critical point with an uncleaned
cell

— Plan a path (on average shorter than bug?2) to critical point
— Cover cell, repeat

Else coverage is complete

CS548 - Robot Motion Control and Planning 31

Detect Critical Points

Slices

Cell

CS548 - Robot Motion Control and Planning

32

Encountering Critical Points: Problem

‘ ' Uneovered Area
o Missaed Critical Points

CS548 - Robot Motion Control and Planning

33

Cycle Algorithm

Forward phase: The robot follows a slice, i.e., laps, until it encounters
an obstacle. Then the robot follows the boundary of the obstacle in
the forward sweep direction until either the robot moves laterally one
lap width or until the robot encounters a critical point in the floor.

Reverse phase: The robot executes one or more laps in the reverse
direction, intermixed with reverse boundary-following. Each reverse
boundary-following operation terminates when the robot finds a criti-
cal point or when the aggregate lateral motion in the reverse direction
is one lap width.

Closing phase: The robot executes one or more laps along the
slice, possibly intermixed with boundary-following. Each boundary-
following operation terminates when the robot encounters S; or the
slice in which S; lies.

Closing Phase

Reverse Phasa

Forward Phas=e

CS548 - Robot Motion Control and Planning 34

Sensor-based Complete Coverage

« G@Goal: Complete coverage of an unknown environment

Time-exposure photo of a coverage experiment

CS548 - Robot Motion Control and Planning 35

Morse Decomposition h(x,y) = X

Coverage Path in a Cell

CS548 - Robot Motion Control and Planning

36

Morse Decomposition h(x,y) = X2 + y?

CS548 - Robot Motion Control and Planning

37

Morse Decomposition h(x,y) = |X| + |y|

CS548 - Robot Motion Control and Planning

Morse Decomposition h(x,y) = tan(y/x)

CS548 - Robot Motion Control and Planning 39

Brushfire Decomposition

Voronoi regions

CS548 - Robot Motion Control and Planning 40

Brushfire Decomposition h(x,y) = D(x,y)

L/

| Collision poipt

Obstacles

Sta:-ij___*;tf 1 Htugu 2

Local maxima First saddle point(s)

E— ?} B Obstacles
v
= B Cell 2
}- O Cell 3
B Cell 4

Stage 3 Local maxima

Stage 4
CS548 - Robot Motion Control and Planning 41

Brushfire Decomposition: Coverage Path

CS548 - Robot Motion Control and Planning 42

Wavefront Decomposition

CS548 - Robot Motion Control and Planning

43

Notation

« A slice is a codimension one manifold (Q,)

» Slices are parameterized by A
— varying A sweeps a slice through the space

* The portion of the slice in the free configuration
Space (eree) s eree)\
- eree)\ = Q)\ N eree

CS548 - Robot Motion Control and Planning

44

Slice Definition

« Slice can be defined in terms of the preimage of the
projection operator

h:Q— R (Canny 1m,: Q — ‘R)

» Vertical slice are defined by
Q, = h-1(A), with h(x,y) = x for the plane

 Increasing A sweeps the slice to the right through
the plane

CS548 - Robot Motion Control and Planning 45

The Pursuer-Evader Problem

* Problem definition

— How do you plan the motion of a pursuer(s) in a polygonal
environment so that it will eventually “see” an unpredictable evader?

« Assumptions
— Polygonal environment, freespace denoted F

— If the evader is within line of sight of the pursuer, it has been
“captured”

— Evaders can move arbitrarily fast
— Pursuers have unlimited vision range

Free space F
Polygonal

obstacles

CS548 - Robot Motion Control and Planning 46

Terminology and Definitions

v;(t) position of " pursuer at time t

V(q) set of points in Fvisible from gin F

Contaminated: region of F that might contain the evader
Cleared: region that is not contaminated.

Recontaminated: A region that was contaminated, then cleared, and then
contaminated

Solution strategy: A strategy y for any given evader path if there is at some time a
point where the pursuer sees the evader.

Visibility polygon Fig)

Pursuers path, y*

Contaminated
area

clear area

CS548 - Robot Motion Control and Planning 47

Information State and Space

« Let g in F be the current pursuer position, let S in F be the set
of all contaminated points in F, thenn = (g, S) is an
information state. In other words, it is a set of data that
uniguely describes state of the environment at a given point.
Is n = (g, S) a function of time?

« The set of all possible information states is the information
space.

CS548 - Robot Motion Control and Planning 48

Information State

How do we use the information state in our search for the evader?

At a point g, the edges of the visibility polygon V(q) alternate between
being on the boundary of F and the interior of F. We will call the edges of
V(q) that enter the free space gap edges.

Gap edges

The blue area is
¥(q) for the
point shown

”/
Gap edge

We can assign each gap edge a binary value— if the edge borders a contaminated region, it
is assigned a “1”, and “0” for all other edges.

For each point g, we can assign a binary vector B(q) that contains all the gap edge labels
The pair (g, B(q)) then uniquely describes the information state, for example (g, {010})

CS548 - Robot Motion Control and Planning 49

Conservative Regions

* A connected set D C F is conservative if for all g € F, and for all v:[t0, t1]
— D such that y is continuous and v(t,)= y(t,)= g, then the same
iInformation state is Dbtained.‘

Ok, but what does that mean?

As long as we stay in the same conservative region, the information state will not change. If we
break the free space F down into conservative regions, then if we visit one point in a region,
we will obtain the same information that we would have gotten from any other point in the
same region

Position gl Position g2 (with path shown from ql) Position g3
Moving the robot from ql to q2. the information state does not change.
But when we move from ql to q3 the information state does change- the region in the lower center is cleared

Thus 1 and g2 are in the same conservative region

CS548 - Robot Motion Control and Planning 50

Constructing Conservative Regions

So how do we construct them?

Draw rays extending the edges of obstacles until they hit another obstacle. We also draw rays
extending away from any two vertices that don’t have an obstacle between them.
The three general cases are shown below.

I I]

1

’ \

Extend edges in all possible directions Extend pairs of vertices outwards only if it 1s
free in both directions along a line through
the two vertices

Case 1 Case 2 Case 3

(Note that we have not shown all the possible rays for the obstacles)

For Case 3: Letv, € C.. v; € C;. ThenifAv, +(1-2) v; eF for all & € (-e. 1+¢) then we draw a ray
extending from v; away from v; and vice versa until they hit an obstacle (except lamda = 0.177)

CS548 - Robot Motion Control and Planning 51

Examples of Conservative Regions

+ Because the information state is the same in a given conservative
region, all we really need to do is visit the center of each region to
obtain the state.

CS548 - Robot Motion Control and Planning 52

Conservative Regions to Graphs

Now that we have the space decomposed into conservative regions, we can
represent each region as the node on a finite, planar graph G.

CS548 - Robot Motion Control and Planning 53

Directed Information Graph

Given a graph G, we can derive the information graph G, that includes the
labels for the gap edges. For each node in G, we include a set of vertices
in G, one for each possible gap edge label.

For example, for a given point and region g in D, there are two gap edges
in B(q). But we include all possible combinations of B(q) in G,: {00, 01, 10,
11}. Thus we can identify a vertex in G, with the pair (g, B(q))

=, N
[rf' KTJ
e "\I ,a”'"\ If' "\I
lx_/" N ./

Freespace with overlaid graph G

NN N
TANY, "x_%_/" 'x;,
e
e 0]
" f’ﬂﬁj@ S
N/ 11}
n

Information Graph G,

CS548 - Robot Motion Control and Planning 54

Gap Edge Transitions

What happens to the gap edges when we move from region to region? There
are four cases:

1. A gap edge disappears: Don’t worry about it, the area has been cleared
2. A gap edge appears: Assign it a “0” (clear) label

3. Two or more gap edges merge into one: If any of the original edges had a “1”
(contaminated) , then the new edge will be a “1”

4. One gap edge splits into two: Assign new edges the same value as the old edge

*
d —

q; a4z

*Moving from ql to q2. the single gap edge * Moving from q3 to q4. two gap edges merge into one
disappears (Case 1) (Case 3)

* From q2 to q1. a gap edge reappears (Case 2) From q4 to q3. a single edge splits into two (Case 4)

CS548 - Robot Motion Control and Planning 55

Graph search and solution

The final step is to simply apply any graph searching algorithm to the
information graph G, and update the vector B(q) for each region.

Any node on G, of the form (g, B(q)) such that B(q) = “00...0” (all gap
edges are 0) or a node with no gap edges is a goal node.

This algorithm is complete in the case of a single pursuer.

F Start node
/
e
IS
M
T

N\ N
) (o)
\.

,/’

i,

-

: ~
Goal node \ T

_/

CS548 - Robot Motion Control and Planning 56

Worst case bounds

How many pursuers do you need to have to find an evader in a given space?
That depends on the geometry of the space

+ For a simply connected free space, F, with n edges, H(F) = ©(log n), where H(F)
is the number of pursuers needed.

- For a free space F with h holes and n edges, H(F)«&:®(logn)

Simply connected Free space with hole

* Simply connected means all the edges can be connected into a single continuous path

Why does the hole matter? If there 1s a hole, the evader can always be on the side
opposite a single pursuer. Thus a space with one hole requires two pursuers.

Quick review: O(n)=*at most” £}(n)=*atleast™ ©(n)=asymptotically equal

CS548 - Robot Motion Control and Planning 57

Intuition on Bounds for H(F)

+ For a simply connected environment, H(F)= ©(log n). We can see this
by using a “Q" shaped free space.

L L L

—1 —1 —1 —1

12 edges, one
pursuer 36 edges. two pursuers 108 edges, three pursuers

» For a space with / holes and » edges, H(F) = ®(/h +1logn)

« The VA pursuers are used to divide the space into simply
connected components, while the log(n) pursuers search
the remaining space

4 holes. 111 edges. 4 pursuers

CS548 - Robot Motion Control and Planning 58

Recontamination

» There are some simply connected free spaces with H(F)=1 where
recontamination will be required Q(n) times

.--"'J#-. /"
/"/ '.\K"‘«.
e Here the peak will be
P g . N recontaminated 3 times,
[e - e\ requiring 2 extra visits to the
= == i 00— =t —— peak(see web animation)

CS548 - Robot Motion Control and Planning 59

Conclusions / Questions

« The algorithm presented is complete for a single pursuer

* Any graph search algorithm will provide a solution once a
iInformation graph is extracted from the conservative region
decomposition.

« Tight bounds exist for the number of pursuers necessary for
a given free space.

« A complete and correct algorithm does not exist yet for
H(F)>1

Based on the paper “A Visibility-Based Pursuit-Evasion Problem”, Guibas, Latombe,
LaValle, Lin, Motwani

Animations are on the web at: http://robotics.stanford.edu/groups/mobots/pe.html

CS548 - Robot Motion Control and Planning 60

