
CS548 - Robot Motion Control and Planning 1

Robot Motion Control and Planning
http://www.cs.bilkent.edu.tr/~saranli/courses/cs548

Uluç Saranlı
http://www.cs.bilkent.edu.tr/~saranli

Lecture 6 – Cell Decompositions

CS548 - Robot Motion Control and Planning 2

Exact Cell vs Approximate Cell

• Cell: A simple region

CS548 - Robot Motion Control and Planning 3

Adjacency Graph

• Nodes correspond to cells

• Edges connect nodes of adjacent cells
– Two cells are adjacent if they share a common boundary

• Path Planning in two steps:
– Planner determines cells that contain the start and goal

– Planner searches for a path within adjacency graph

CS548 - Robot Motion Control and Planning 4

Types of Decompositions

• Trapezoidal Decomposition

• Morse Cell Decomposition

– Boustrophedon decomposition

– Morse decomposition definition

– Sensor-based coverage

– Examples of Morse decomposition

• Visibility-based Decomposition

CS548 - Robot Motion Control and Planning 5

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning 6

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning 7

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning 8

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning 9

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning 10

Trapezoidal Decomposition

CS548 - Robot Motion Control and Planning 11

Trapezoidal Decomposition Path

CS548 - Robot Motion Control and Planning 12

Implementation

• Input is vertices and edges

– Sort n vertices O(n logn)

– Determine vertical extensions

– For each vertex, intersect vertical line with each edge –

O(n) time

– Total O(n2) time

CS548 - Robot Motion Control and Planning 13

Sweep line approach

• Sweep a line through the space stopping at vertices which are often
called events

• Maintain a list L of the current edges the slice intersects

• Determining the intersection of slice with L requires O(n) time but with an
efficient data structure like a balanced tree, perhaps O(log n)

• Really, determine between which two edges the vertex or event lies.
These edges are eLOWER and eUPPER

• So, really maintaining L takes O(n log n) – log n for insertions, n for
vertices

CS548 - Robot Motion Control and Planning 14

Events

CS548 - Robot Motion Control and Planning 15

Example

CS548 - Robot Motion Control and Planning 16

Example

CS548 - Robot Motion Control and Planning 17

Example

CS548 - Robot Motion Control and Planning 18

Example

CS548 - Robot Motion Control and Planning 19

Coverage

• Planner determines an
exhaustive walk through the
adjacency graph

• Planner computes explicit robot
motions within each cell

• Problems

1. Polygonal representation

2. Quantization

3. Position uncertainty

4. Full information

5. What else?

CS548 - Robot Motion Control and Planning 20

Boustrophedon Decomposition

CS548 - Robot Motion Control and Planning 21

Complete Coverage

CS548 - Robot Motion Control and Planning 22

Morse Decomposition in Terms of Critical Pts.

CS548 - Robot Motion Control and Planning 23

Morse Decomposition: Connectivity

CS548 - Robot Motion Control and Planning 24

Morse Decomposition: Connectivity

CS548 - Robot Motion Control and Planning 25

Morse Decomposition: Connectivity

CS548 - Robot Motion Control and Planning 26

Morse Decomposition: Connectivity

CS548 - Robot Motion Control and Planning 27

Morse Decomposition: Connectivity

CS548 - Robot Motion Control and Planning 28

Morse Decomposition: Coverage

CS548 - Robot Motion Control and Planning 29

Morse Decomposition: Topology

CS548 - Robot Motion Control and Planning 30

Incremental construction

• While covering the space, look for critical points

CS548 - Robot Motion Control and Planning 31

Algorithm

• Cover a cell until the closing critical point is detected

• If the closing critical point has “uncleaned” cells
associated with it, chose one and cover, repeat

• If the closing critical point has no uncleaned cells,
– search reeb graph for a critical point with an uncleaned

cell

– Plan a path (on average shorter than bug2) to critical point

– Cover cell, repeat

• Else coverage is complete

CS548 - Robot Motion Control and Planning 32

Detect Critical Points

CS548 - Robot Motion Control and Planning 33

Encountering Critical Points: Problem

CS548 - Robot Motion Control and Planning 34

Cycle Algorithm

CS548 - Robot Motion Control and Planning 35

Sensor-based Complete Coverage

• Goal: Complete coverage of an unknown environment

CS548 - Robot Motion Control and Planning 36

Morse Decomposition h(x,y) = x

CS548 - Robot Motion Control and Planning 37

Morse Decomposition h(x,y) = x2 + y2

CS548 - Robot Motion Control and Planning 38

Morse Decomposition h(x,y) = |x| + |y|

CS548 - Robot Motion Control and Planning 39

Morse Decomposition h(x,y) = tan(y/x)

CS548 - Robot Motion Control and Planning 40

Brushfire Decomposition

CS548 - Robot Motion Control and Planning 41

Brushfire Decomposition h(x,y) = D(x,y)

CS548 - Robot Motion Control and Planning 42

Brushfire Decomposition: Coverage Path

CS548 - Robot Motion Control and Planning 43

Wavefront Decomposition

CS548 - Robot Motion Control and Planning 44

Notation

• A slice is a codimension one manifold (Qλ)

• Slices are parameterized by λ

– varying λ sweeps a slice through the space

• The portion of the slice in the free configuration

space (Qfree) is Qfreeλ

– Qfreeλ = Qλ ∩ Qfree

CS548 - Robot Motion Control and Planning 45

Slice Definition

• Slice can be defined in terms of the preimage of the

projection operator

h: Q → � (Canny π1: Q → �)

• Vertical slice are defined by

Qλ = h−1(λ), with h(x,y) = x for the plane

• Increasing λ sweeps the slice to the right through

the plane

CS548 - Robot Motion Control and Planning 46

The Pursuer-Evader Problem

• Problem definition

– How do you plan the motion of a pursuer(s) in a polygonal
environment so that it will eventually “see” an unpredictable evader?

• Assumptions

– Polygonal environment, freespace denoted F

– If the evader is within line of sight of the pursuer, it has been
“captured”

– Evaders can move arbitrarily fast

– Pursuers have unlimited vision range

CS548 - Robot Motion Control and Planning 47

Terminology and Definitions

• γi(t) position of ith pursuer at time t

• V(q) set of points in F visible from q in F

• Contaminated: region of F that might contain the evader

• Cleared: region that is not contaminated.

• Recontaminated: A region that was contaminated, then cleared, and then

contaminated

• Solution strategy: A strategy γ for any given evader path if there is at some time a

point where the pursuer sees the evader.

CS548 - Robot Motion Control and Planning 48

Information State and Space

• Let q in F be the current pursuer position, let S in F be the set
of all contaminated points in F, then η = (q, S) is an

information state. In other words, it is a set of data that

uniquely describes state of the environment at a given point.
Is η = (q, S) a function of time?

• The set of all possible information states is the information
space.

CS548 - Robot Motion Control and Planning 49

Information State

• How do we use the information state in our search for the evader?

• At a point q, the edges of the visibility polygon V(q) alternate between
being on the boundary of F and the interior of F. We will call the edges of
V(q) that enter the free space gap edges.

• We can assign each gap edge a binary value– if the edge borders a contaminated region, it

is assigned a “1”, and “0” for all other edges.

• For each point q, we can assign a binary vector B(q) that contains all the gap edge labels

• The pair (q, B(q)) then uniquely describes the information state, for example (q, {010})

CS548 - Robot Motion Control and Planning 50

Conservative Regions

CS548 - Robot Motion Control and Planning 51

Constructing Conservative Regions

CS548 - Robot Motion Control and Planning 52

Examples of Conservative Regions

CS548 - Robot Motion Control and Planning 53

Conservative Regions to Graphs

CS548 - Robot Motion Control and Planning 54

Directed Information Graph

• Given a graph G, we can derive the information graph GI that includes the
labels for the gap edges. For each node in G, we include a set of vertices
in GI, one for each possible gap edge label.

• For example, for a given point and region q in D, there are two gap edges
in B(q). But we include all possible combinations of B(q) in GI: {00, 01, 10,
11}. Thus we can identify a vertex in GI with the pair (q, B(q))

CS548 - Robot Motion Control and Planning 55

Gap Edge Transitions

• What happens to the gap edges when we move from region to region? There

are four cases:

1. A gap edge disappears: Don’t worry about it, the area has been cleared

2. A gap edge appears: Assign it a “0” (clear) label

3. Two or more gap edges merge into one: If any of the original edges had a “1”

(contaminated) , then the new edge will be a “1”

4. One gap edge splits into two: Assign new edges the same value as the old edge

CS548 - Robot Motion Control and Planning 56

Graph search and solution

• The final step is to simply apply any graph searching algorithm to the
information graph GI and update the vector B(q) for each region.

• Any node on GI of the form (q, B(q)) such that B(q) = “00…0” (all gap
edges are 0) or a node with no gap edges is a goal node.

• This algorithm is complete in the case of a single pursuer.

CS548 - Robot Motion Control and Planning 57

Worst case bounds

CS548 - Robot Motion Control and Planning 58

Intuition on Bounds for H(F)

CS548 - Robot Motion Control and Planning 59

Recontamination

CS548 - Robot Motion Control and Planning 60

Conclusions / Questions

• The algorithm presented is complete for a single pursuer

• Any graph search algorithm will provide a solution once a

information graph is extracted from the conservative region
decomposition.

• Tight bounds exist for the number of pursuers necessary for

a given free space.

• A complete and correct algorithm does not exist yet for

H(F)>1

Based on the paper “A Visibility-Based Pursuit-Evasion Problem”, Guibas, Latombe,

LaValle, Lin, Motwani

Animations are on the web at: http://robotics.stanford.edu/groups/mobots/pe.html

