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A Reliable and Reversible Image Privacy Protection

Based on False Colors
Serdar Çiftçi, Ahmet Oğuz Akyüz, and Touradj Ebrahimi, Member, IEEE

Abstract—Protection of visual privacy has become an in-
dispensable component of video surveillance systems due to
pervasive use of video cameras for surveillance purposes. In this
paper, we propose two fully reversible privacy protection schemes
implemented within the JPEG architecture. In both schemes,
privacy protection is accomplished by using false colors with the
first scheme being adaptable to other privacy protection filters
while the second is false color specific. Both schemes support
either a lossless mode in which the original unprotected content
can be fully extracted or a lossy mode, which limits file size
while still maintaining intelligibility. Our method is not region-
of-interest (ROI) based and can be applied on entire frames
without compromising intelligibility. This frees the user from
having to define ROIs and improves security as tracking ROIs
under dynamic content may fail, exposing sensitive information.
Our experimental results indicate the favorability of our method
over other commonly used solutions to protect visual privacy.

Index Terms—Privacy protection, false color, JPEG.

I. INTRODUCTION

S
ECURITY NEEDS have become an indispensable part

of everyday life and video surveillance is one of the

most resorted solutions to address such concerns. A recent

report by the British Security Industry Authority reveals that

there are almost 6 million CCTV cameras in Britain alone,

or around one camera for every 11 individuals [1]. This

excessive usage of visual surveillance raises public concerns

about individuals’ privacy. In addition to surveillance, video

cameras are now being routinely used in ambient-assisted

living applications [2], in which ensuring visual privacy is

also a critical concern [3].

Due to difficulties of storing and analyzing this huge amount

of multimedia data in local servers, deferring these tasks to

the cloud servers has gained popularity [4]. However, this

further exacerbates privacy concerns as such data can also be

acquired by unauthorized parties. This gave rise to various

data hiding schemes in which the data stored in the servers is

encrypted in a reversible manner, either as a ciphertext [5] or

as plaintext [6].

However, none of the existing privacy-protection methods

for multimedia content seem to have gained popularity. One

of the reasons behind this is that all visual privacy protection

solutions proposed so-far rely on either manual identification

of sensitive regions or require a computer vision module to
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do so, resulting in complex operations that often lack robust-

ness and therefore reliability [7]. JPEG-based cloud security

solutions are also improper for monitoring tasks as they either

completely scramble or map the content to a different target

image, which is unrelated to the original [6].

Here, we propose a new approach to visual privacy protec-

tion that offers all features present in state-of-the-art solutions,

while not relying on either manual or automatic sensitive

regions detection, hence offering a simple and robust solution

to the protection of visual privacy surveillance, monitoring,

and multimedia applications.

Our proposed solution aims to strike a balance between

various criteria that are important in visual privacy protec-

tion, namely privacy, intelligibility, reversibility, security, and

robustness. More specifically our goals are: (1) An individual

recorded in a security video should not be easily identifiable

by human observers and face recognition algorithms (privacy);

(2) the privacy protected video should still allow identifica-

tion of suspicious behaviors and gathering of non-sensitive

information such as the number of people in a given area

(intelligibility); (3) in case of a crime, the privacy protected

footage could be reversed to obtain the original unprotected

footage by authorized users (reversibility); (4) this reversal

could only be performed by legally authorized parties and

not by any third parties who may have acquired the protected

content by some means (security); and (5) privacy protection

should be robust in that it should not depend on fragile

computer vision algorithms or manual annotations that may

fail to detect sensitive regions in some frames (robustness).

To accomplish these goals, we propose two false color based

schemes implemented within the JPEG architecture. Both

schemes are related; however, the first is not specific to false

colors and, if desired, can be used with other privacy protection

algorithms. The second, on the other hand, is tailored to be

used with false colors. The benefit of the second scheme is that

it significantly reduces the file size of the protected content by

leveraging the coherence between the original image and the

false colored version.

Our experimental results involving perceptually meaningful

quality metrics and face recognition algorithms indicate the

favorability of our method over other privacy protection meth-

ods. Furthermore, we validate our technique using a subjective

experiment, which confirms that our method achieves a better

intelligibility-privacy balance than the compared techniques.

Finally, we show that our method is resistant to attacks that aim

to recover the original information from the protected content.
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II. RELATED WORK

The goal of visual privacy protection is to prevent sensitive

information present in an image (or video) from being revealed

to the viewers of this content. Many approaches have been

proposed to achieve this goal, varying in complexity from

straightforward filtering methods to sophisticated computer

vision based algorithms. Two excellent surveys are provided

by [7] and [8]. In this section, we first provide an overview of

the main categories of visual privacy protection algorithms. We

then review false color based privacy protection. Finally, we

discuss JPEG and relevant methods that use JPEG-metadata

as restorative information.

A. Visual Privacy Protection (VPP)

The three most commonly used VPP approaches are mask-

ing, blurring, and pixelation (Figure 1). Masking involves

replacing a given ROI with a solid color. Blurring updates

each pixel value with a Gaussian average of its neighborhood.

Pixelation divides the image into a non-overlapping grid and

sets the color of each pixel to the mean color of its enclosing

grid cell [9].

There are several problems with these simple techniques.

Firstly, they not only distort sensitive information but may also

impair the intelligibility of non-sensitive content. Secondly,

they are irreversible: even if blurring and pixelation can be

reversed to some extent, recovering the original information

is generally impossible. Finally, they are vulnerable to certain

types of attacks and therefore may fail to fully conceal the

identities of recorded individuals [10].

Arguably the most secure type of algorithms are those that

involve encryption. These algorithms treat either the entire

image or a selected ROI as a bitstream and apply various

well-known encryption algorithms such as DES, RC5, AES,

or RSA [11]. Due to time complexity of these algorithms, more

lightweight encryption methods specific for digital video have

been proposed [12].

A related group of algorithms to encryption are those that

involve scrambling the video content to make it unrecognizable

to viewers [13]. These algorithms permute the data based

on a pseudo-random sequence. The original content can be

recovered solely with the knowledge of the seed value that

gave rise to this sequence. Scrambling can be performed in

the spatial domain, transform domain (e.g. frequency domain),

or a format-dependent codestream domain. For instance, Du-

faux and Ebrahimi [14] propose two scrambling methods for

the MPEG-4 format. The first method is based on pseudo-

randomly flipping the signs of the AC coefficients during

MPEG-4 encoding. The second method takes as input an

encoded codestream and tries to identify the relevant syntax

elements to perform similar sign-flipping operations. Although

these methods are found to be superior to blurring and pixe-

lation for hiding identity [15], [16], they significantly hamper

the intelligibility and the pleasantness of protected content.

Another type of algorithms specifically aim to protect the

privacy of faces. To this end, they either require the face

regions to be manually marked or rely on a face detection

algorithm [17] to do so. The most well-known algorithms that

belong to this group are the k-Same family of algorithms. They

try to anonymize a face by replacing the original face with an

average face computed over k number of face images [18]. The

utility of these algorithms are improved by later approaches

that aim to preserve facial expressions, gender, and overall

appearance [19], [20], [21].

Two other notable methods of face anonymization (i.e. de-

identification) are known as morphing and warping. In the

former, the input face image is morphed to a target face

based on an interpolation parameter [22]. The interpolation

is performed to steer both the intensity and positions of the

key points in the input face toward the target face. In the

warping approach, the automatically selected key points are

randomly shifted to different positions and the remaining

pixels are computed by transformation and interpolation [23].

The drawback of both approaches is that, depending on the

interpolation parameter and the warping strength, the original

face may be unrecoverable.

If the objects of interest can be accurately identified, ab-

straction algorithms can be used to replace the actual objects

by their abstracted versions. For instance, a human figure can

be replaced with a silhouette [24], [25], caricature [26], 3D

avatar [27], or a stick-figure [28]. A comparison of several

abstraction models is provided by Chimoni et al. [29].

An alternative to abstraction is to completely remove the

sensitive objects. The remaining gap is then filled by using im-

age or video inpainting algorithms [30], [31], [32]. It should be

noted that these algorithms are computationally very expensive

and are generally not suitable for real-time applications [33].

Furthermore, such approaches are not suitable for surveillance

or assisted-living applications due to lack of intelligibility.

The primary drawback of all of these VPP approaches

is that they require either a user-defined or automatically

extracted ROI to apply privacy protection. Applying protection

on the full frames severely impairs the intelligibility of the

captured data. Manually defining a ROI is not practical and

the robustness of automatically extracting a ROI depends on

the robustness of object/human detection algorithms, which

are known to fail especially in harsh capture conditions.

B. False Color Based VPP

In image processing, false colors are typically used as a

visualization aid to represent otherwise invisible information.

For instance, it is not uncommon to represent high dynamic

range (HDR) images in false color to convey the high range

of luminances in the captured scene [34].

Recently, false colors are used for the purpose of visual

privacy protection. To this end, an RGB input image is first

transformed into grayscale. The 8-bit grayscale value is then

used to index into an RGB color table (i.e. palette) and the

corresponding RGB triplet is used to replace the original pixel

value (see Figure 2). This approach has been applied for both

images [35] and video [36].

The primary advantage of false color based VPP is that

it can be applied on the entire image without compromising

intelligibility. In other words, selection of a ROI is not

required, which makes this method robust against the fragility
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Fig. 1. Common privacy protection methods.
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Fig. 2. The basic false coloring technique.

of computer vision algorithms that aim to detect sensitive

regions. However, this method is not fully reversible due to

two reasons: (1) The original color to grayscale conversion

dismisses the color information and (2) the color palettes

are typically not one-to-one, which means that two different

grayscale values may get mapped to the same color value ren-

dering the recovery of the original grayscale value impossible.

In this paper, we propose to extend the false color based

VPP such that the original unprotected content can be perfectly

recovered, while still allowing for lossy recovery if the file

size is the primary concern. Furthermore, we implement this

approach within the industry-standard JPEG format. More

specifically, we produce a single JPEG output in which the

main image is the protected one with restorative information

saved in the metadata. An authorized viewer can then decrypt

this extra information to recover the original.

C. Usage of JPEG Metadata Embedding

One of the main strengths of the JPEG standard [37], [38] is

its support for metadata embedding mechanism in the form of

application markers. These markers can be used to store vari-

ous forms of metadata such as EXIF and IPTC, or they can be

used to store vendor-specific information [39]. Traditionally,

this information was used to store extra information that each

vendor may want to make available. More recently, however,

this metadata has been judiciously used to embed restorative

information. This information, when combined with the main

image, may be used to expand the color gamut and/or dynamic

range of the recorded image or video [40], [41], [42], [43].

The most recent JPEG format, known as JPEGXT, also uses

this metadata extensively to store HDR images within a JPEG

file according to several profiles [44]. In our method, we also

use this metadata to allow recovery of the original image from

the protected one.

Of most related to our technique is a recent method called

Secure JPEG [45], which scrambles the given ROIs and saves

the necessary information to descramble it in an application

marker. However, unlike our method, it cannot be used on full

frames as it would destroy the intelligibility of the data. It is

targeted toward social photo sharing applications, rather than

to be used for surveillance or ambient-assisted living tasks.

D. Privacy Models

While most VPP methods implicitly refer to terms such

as utility (i.e. intelligibility) and privacy, Saini et al. propose

a mathematical definition for them [46], [47]. They define

two models, one for privacy loss (Γ) and the other for utility

loss (U ). Both models are comprised of multiple tasks with

each task modeling a different aspect of privacy and utility.

The exact definition of tasks are left to the user as different

users may consider different tasks to be important for either

attribute. The two models are combined to yield the following

energy function:

E = ηΓ(F(V )) + (1− η)U(F(V )), (1)

where F defines a data transformation, V represents the

original data, and η is a user parameter used to define the

importance of privacy loss over utility loss. Using this model,
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the authors develop a hybrid global model in which blurring

and quantization are used in sequence to achieve a better trade-

off between privacy and utility [47].

III. PROPOSED METHOD

Our proposed method consists of two schemes. The first

scheme is more general in that, besides false coloring, it

can be used with any privacy protection strategy. The second

scheme, on the other hand, makes use of the color palette to

reduce the file size of the protected image without affecting its

intelligibility. Both schemes support lossless and lossy modes

as discussed in detail in the following subsections.

A. Scheme One

1) Protection Pipeline: The protection pipeline of the first

scheme is illustrated in Figure 3. Here, the input image (I)

is first converted into grayscale. Next, by using the grayscale

values as indices into a color palette, the false color image

(FI) is obtained. This image is saved as the main JPEG image

in the output file. FI is then JPEG encoded and decoded to

simulate what the decoder will see at the decoding end. We

call this image FI ′. Afterwards, the difference image (DI) is

computed as:

DIc(x, y) = |Ic(x, y)− FI ′c(x, y)|, (2)

where (x, y) indicates the pixel index and c ∈ {R,G,B}. As

this difference is sometimes negative, an accompanying sign

image (SI) is computed as well:

SIc(x, y) =

{

1 if Ic(x, y)− FI ′c(x, y) < 0,

0 otherwise.
(3)

For efficient storage, we use a single bit for each difference

and then compress it losslessly using the zlib compression

algorithm [48]. The difference image may be either losslessly

or lossily compressed. For lossless compression, we use zlib

whereas for lossy compression we use JPEG compression

or downsampling (both can be used simultaneously as well).

The compressed and encrypted DI and SI are then saved as

metadata in JPEG application markers.

2) Recovery Pipeline: For recovery (Figure 4), the JPEG

file is first decoded to obtain the false color image, difference

image, and the sign image. Note that the decoded false color

image will be equal to FI ′ introduced above. In the lossless

mode, the difference and sign images will be equal to DI and

SI . These streams are first decrypted using the authorization

key and then decompressed. The recovered image, R, is

obtained by:

Rc(x, y) = FI ′c(x, y) + sDIc(x, y) (4)

with s computed as:

s =

{

1 if SIc(x, y) = 0,

−1 otherwise.
(5)

Note that, the recovered image R will be equal to the original

image I , in the case that the difference image (DI) is

losslessly compressed. Otherwise, R will deviate from I as

dictated by the compression artifacts.

B. Scheme Two

1) Protection Pipeline: The main workflow of our second

scheme is similar to the first (Figure 5). However, in this

scheme, we capitalize on the coherence between the original

image and the inverted false color image to significantly reduce

the size of the protected image.

In this scheme, the false color image, FI , is computed

somewhat differently to avoid color-to-gray conversion (see

Figure 6). For each color value Ic(x, y) in the original image,

the corresponding false color value FIc(x, y) is computed as:

FIc(x, y) = Pc[Ic(x, y)], (6)

where Pc denotes the cth channel of the color palette P .

Next, after FIc is encoded and decoded to obtain FI ′c,

instead of directly subtracting it from I , we first apply an

inverse table look-up to obtain I ′:

I ′c(x, y) = P inv
c [FI ′c(x, y)]. (7)

Here, P inv
c represents a pseudo-inverse of the cth channel of the

color palette. We call it pseudo-inverse as most color palettes

are not one-to-one and therefore non-invertible. In practice,

given FI ′c(x, y), we search inside Pc to find the index of the

most similar color value:

I ′c(x, y) = argmin
i∈{0,1,...,255}

|Pc[i]− FI ′c(x, y)|. (8)

If there are multiple such values that minimize this difference,

we choose the index according to the histogram of the original

image. For example, if i = 5 and i = 125 are two solutions

of Equation 8, and hist(Ic)[125] > hist(Ic)[5], we choose

125 as the inverse. This ensures that the inverted value will

be similar to the original value for the maximum number of

pixels.

Once I ′c is computed in this fashion, it is subtracted from

I to obtain the difference and sign images (using Equations 2

and 3 after substituting FI ′c with I ′c). Note that, unlike in

Scheme One, the difference image in this case will have many

zero or small components that can be compressed efficiently.

Furthermore, an opportunity for a different type of lossy

compression presents itself in this particular case. Depending

on a quality threshold, τ , all values in DI that are smaller

than τ may be set to zero:

DI ′c(x, y) =

{

0 if DIc(x, y) < τ ,

DIc(x, y) otherwise.
(9)

In this case, the corresponding SIc(x, y) values should also

be set to zero to improve the compression efficiency for the

sign image as well. After this process, the difference and sign

images are compressed and encrypted before being written

to the JPEG application markers. We also compress, encrypt,

and write the histograms of each channel and the color palette

within the JPEG application markers as well to be used during

the recovery process.
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Fig. 8. Characteristics of the color palettes used in this study.

2) Recovery Pipeline: In the recovery pipeline of the

second scheme (Figure 7), first all encrypted metadata is

decrypted followed by decompression, if needed. Then using

the decoded false color image FI ′, the input image histogram

hist(Ic), and the color palette P , an approximate of the

original image, I ′ is computed using Equation 7. This image

is then combined with the difference and sign images as in

Equation 4 by substituting I ′c for FI ′c. Note that, similar to

Scheme One, the recovered image R will be identical to the

original image I if the difference and sign images are not

thresholded and compressed in a lossless manner.

IV. RESULTS

To help demonstrate the validity of our approach we have

conducted a large set of experiments. In this section, we

first demonstrate the visual quality of our outputs in lossless

protection mode for both schemes. We then illustrate the effect

of lossy compression on both file size and recovered image

quality. This is followed by a comparison with other well-

known privacy protection approaches using a face recognition

benchmark. Next, we share the results of subjective and

objective evaluations conducted on a novel dataset, in which

we compare the privacy vs. intelligibility trade-off of our

algorithm with commonly used VPP approaches. Finally, we

investigate whether a simulated attack on false color protected

content could effectively reverse protection compromising the

privacy of the recorded individuals.

In our experiments, we first analyzed a large number of

color palettes available in National Library of Medicine Insight

Segmentation and Registration Toolkit (ITK) [49]. We decided

to use 3 color palettes based on their apparent effectiveness in

preserving privacy. Among these, the Blues palette has a more

monotonic variation of colors, Hardcandy is extremely erratic,

and the Green-Pink is in-between. These palettes are shown

in Figure 8 together with 3D scatter plots that show the path

traversed by each palette within the RGB color space.

A. Lossless Compression

We first illustrate our results for the Protest scene shown

in Figure 9. In this scene, 6 people comprised of 3 males and

3 females are holding banners and simulating a protestation

scenario. Each row represents a different color palette. The

first column shows the privacy protected false color images,

the second column shows the difference images and the third

column shows the sign images (same for Scheme Two in the

last three columns). In the sign images, negative differences

are indicated by 1 (mapped to 255 for illustration purposes)

and positive differences by 0. Because this difference is

computed for each channel, it contains colors made up of

combination of the three primary colors. For all three color

palettes and for both schemes, it can be observed that while

the protected images are still intelligible, the identities of the

people are mostly concealed.

By inspecting these figures, one can observe the differences

between the two schemes as well as the effect of the color

palette. First, it can be observed that the false color images

are very similar for both schemes. As for the difference

images, the second scheme yields images that have smaller

values than in Scheme One. This is due to the recovery step

(Equations 7 and 8) applied in the second scheme. However,

the color palettes also influences the quality of the recovery.

For the Blues palette, which is more monotonic than the other

two palettes (Figure 8), the quality of the recovery is very

well and therefore the difference image contains very small

values. However, for the other two palettes the recovery is

progressively less effective due to their less regular variations

across the color scale.

As for the sign images, they appear to be more noisy as the

difference images have smaller pixel values. This is because

the small differences may be positive or negative, and this

may change rapidly from pixel to pixel (even between color

channels of a pixel).

These observations are also supported by the byte-sizes

of these components in both schemes (Table I). Here, FI

represents the JPEG-compressed size of the false color image

at JPEG quality setting 85; DI and SI represent the lossless

zlib-compressed size of the difference and sign images; and PI

represent the total bitstream size of the protected images. As

shown in this table, the DI in Scheme Two is smaller than that

of Scheme One, whereas the SI is larger. Also, the DI value

in Scheme Two increases with the variance of the palette.

B. Lossy Compression

In many applications, the file size of the protected images

may be critical and the extra overhead introduced by the

required metadata may be too large. For this purpose, we also

propose a lossy mode and present our experimental results in

terms of image quality versus file size.

As the chief overhead is introduced by the difference image,

we explored several techniques to reduce its size. In Scheme

One, we experimented with storing it with JPEG compression

as well as by downsampling it. Our results are shown in

Figure 10. In the first three columns of this figure, the JPEG

quality value of the difference image, QD, is varied as 85,

50, and 10. In the last three columns, the difference image

is downsampled with factors of 2, 8, and 16. The images

shown are the recovered images. Structural similarity index

(SSIM) values [50] with respect to the original images are

also reported. As expected, the visual quality of the recovered

images degrades with the increased compression of the dif-

ference image. However, the file size of the protected images

also gets smaller. Of the two compression techniques, JPEG

encoding the difference image appears to be a better approach
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Fig. 9. Visual representation of false color based protection components for Scheme One and Scheme Two.

TABLE I
THE FILE SIZE OF VARIOUS COMPONENTS IN BOTH SCHEMES. THE ORIGINAL IMAGE HAS A RESOLUTION OF 1920× 1080 AND OCCUPIES 674.36 KBS

OF DISK SPACE.

Scheme One Scheme Two
FI DI SI PI FI DI SI PI

Blues 486.01KB 5.23MB 183.25KB 5.89MB 492.79KB 3.21MB 634.77KB 4.31MB

Green-Pink 596.61KB 5.06MB 173.83KB 5.82MB 624.01KB 4.22MB 614.28KB 5.43MB

Hardcandy 1.02MB 5.34MB 438.05KB 6.79MB 1.02MB 5.18MB 638.86KB 6.83MB

as it not only produces smaller files but also better maintains

the visual quality.

While the same compression strategies can be used for

Scheme Two as well, a different type of compression strategy

can be employed. As the difference image in Scheme Two

is computed after performing an inverse color-palette look-

up, it contains many small values. By defining a threshold

parameter, τ , below which these differences are set to zero,

one can further make the difference image more compressible.

Our results for the effectiveness of this approach are shown

in Figure 11. In the first three images we show that for the

Blues color palette as the τ value is increased, the loss in the

recovered image quality remains almost negligible despite a

significant reduction in file size. In the last three images, the

same is shown for the less regular Hardcandy color palette. As

can be seen by the SSIM score and the file size, this approach

is less effective for this color palette compared to the Blues

palette, as in the latter the difference image does not contain

many small values.

To allow generalization of our results, we captured several

videos that simulate various surveillance scenarios. From each

video, we selected a representative frame resulting in a total of

12 test images. We then performed the lossy compression ap-

proaches described earlier. Our results are reported in Table II.

For the lossless case, the best compression ratio is provided by

the second scheme with the Blues palette (7.07). For the JPEG

encoding vs. downsampling of the first scheme, the former

yields not only better compression but also higher average

SSIM scores. By increasing the τ threshold in the second

scheme, one can obtain protected files that are even smaller

than the original files. However, for highly irregular color

palettes, such as Hardcandy, even high threshold values do

not produce very small files as the difference image contains

many pixels that are above this threshold.

C. Face recognition

In this section, we illustrate the performance of our algo-

rithm and compare it with other privacy protection techniques

using a face recognition benchmarking framework developed

by Korshunov et al. [51]. This framework uses three different

face recognition algorithms (FRAs), namely Eigenfaces [52],

Fisherfaces [53], and LBPH [54], which are all implemented

in OpenCV. As for the dataset, it uses the FERET face image

dataset that contains multiple face images of 100 individu-

als [55]. For comparison, we used the three filters that are

provided with this framework. These are blurring, pixelation,

and warping [23]. Sample outputs of our method and the

compared filters are shown in Figure 12.

The aggregated results are shown in Table III. In this table,

the lower the value, the better the protection performance. For

all three FRAs and all three color palettes, the performance

of false color based privacy is very good with the highest

recognition rate being 0.14 for the LBPH-Green-Pink combi-

nation. The Blues and Hardcandy palettes perform very well

and their recognition rates are not higher than the chance level

of 1% for the Eigenfaces and Fisherfaces algorithms. Of the

compared algorithms, our method is outperformed only by

pixelation with the LBPH algorithm. However, as shown in

Figure 12, a pixelation window size of 5 is not effective at

preserving privacy. On the other end, a window size of 55
prevents intelligibility and reversibility entirely. Furthermore,

the performance of pixelation is not good under other FRAs.
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QD : 85, SSIM: 0.91

PI: 1.32 MB

QD : 50, SSIM: 0.82

PI: 1018.92 KB

QD : 10, SSIM: 0.62

PI: 796.57 KB

DS: 2, SSIM: 0.75

PI: 2.02 MB

DS: 8, SSIM: 0.29

PI: 761.17 KB

DS: 16, SSIM: 0.22

PI: 692.59 KB

Fig. 10. Recovery results for lossy compressions in Scheme One. QD , DS, and PI namely stands for JPEG compression quality of the difference image,
down sampling factor of the same, and protected image file size. Results are shown for the Blues color palette.

τ : 10, SSIM: 0.99

PI: 2.16 MB

τ : 40, SSIM: 0.97

PI: 732.71 KB

τ : 70, SSIM: 0.97

PI: 516.53 KB

τ : 10, SSIM: 0.99

PI: 6.40 MB

τ : 40, SSIM: 0.86

PI: 5.41 MB

τ : 70, SSIM: 0.64

PI: 4.53 MB

Fig. 11. Recovery results for lossy compressions in Scheme Two. τ stands for thresholding value for the difference image. Results are shown for Blues
(left-three) and Hardcandy (right-three) color palettes.

TABLE II
PROTECTED TO ORIGINAL IMAGE FILE SIZE RATIOS AGGREGATED OVER 12 TEST IMAGES. SSIM SCORES ARE SHOWN AFTER THE COMMA. THE FALSE

COLOR IMAGE JPEG ENCODING QUALITY IS FIXED AT 85.

Scheme One Scheme Two

Lossless QD: 85 QD: 50 QD: 10 DS: 2 DS: 8 DS: 16 Lossless τ : 10 τ : 40 τ : 70

Blues 9.95 1.91, 0.92 1.44, 0.84 1.12, 0.65 3.40, 0.78 1.11, 0.39 0.98, 0.33 7.07 2.72, 0.99 0.94, 0.98 0.74, 0.97

Green-Pink 10.08 1.92, 0.89 1.49, 0.82 1.25, 0.71 3.48, 0.87 1.27, 0.64 1.16, 0.58 9.37 6.70, 0.98 4.12, 0.86 2.67, 0.71

Hardcandy 12.09 3.47, 0.82 2.76, 0.68 2.35, 0.53 4.69, 0.69 2.31, 0.46 2.19, 0.41 12.25 11.35, 0.99 9.45, 0.82 7.90, 0.56

Original Image Blues Green-Pink Hardcandy Blurring (5) Blurring (55) Pixelation (5) Pixelation (55) Warping (13) Warping (3)

Fig. 12. Sample outputs of the compared methods for a face image from FERET dataset. Numbers in parenthesis indicate the blurring kernel size, pixelation
window size, and warping strength value (note that this value is inversely proportional to the degree of warping). Images’ resolution was 320× 320.

Based on these results, it can be argued that false color based

privacy protection outperforms the compared approaches on

this evaluation task.

We also used the same evaluation framework to assess the

recovery performance of our algorithm. To this end, protected

images with various degrees of lossy compression are recov-

ered to obtain approximations of the original images. The

overall face recognition results on the recovered face images

are reported in Table IV. The recovery results with respect to

Eigenfaces and Fisherfaces are all around 90%. This is very

close to the baseline performance that would be obtained if

the recovered images were identical to the originals. For the

LBPH algorithm, the Blues palette performs the best, followed

by the Green-Pink and Hardcandy palettes.

To summarize, the face recognition evaluation indicates that

the proposed false coloring algorithm protects privacy better

than the compared approaches. Furthermore, the protected

images can be reversed to obtain recovered images which

can be recognized by FRAs, even when compressed by lossy

compression algorithms.

D. Surveillance Video Dataset

We created a novel surveillance video dataset, called ME-

TUSURV1, in order to better understand the intelligibility

vs. privacy trade-off of the proposed algorithm and compare

it with other VPP algorithms. This dataset includes several

security related scenarios such as fighting, protesting, stealing,

physical/verbal harassment, bag leaving, and bag exchanging.

While there are such datasets in the literature, the distinguish-

ing feature of METUSURV is that it also contains face images

of the people that are recorded in these videos. The face

images were captured in a controlled room and each face was

represented using three images, one frontal and two profile. In

total, 60 individuals’ (40M and 20F) faces were captured. A

subset of these individuals acted in the recorded videos.

As for the recording, various surveillance situations were

enacted. Some of the people in these videos were not part

of the face image dataset. Of a larger number of captured

videos, 12 of them were found to have sufficient quality to be

included in the dataset. All of these videos were cropped to

1Authors may be contacted to access and use this dataset for research
purposes.
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TABLE III
FACE RECOGNITION ACCURACY RATES. THE LOWER THE VALUE, THE BETTER THE PROTECTION PERFORMANCE. STR. LEV., KER. SIZE, WIN. SIZE

RESPECTIVELY DENOTES WARPING STRENGTH LEVEL, BLURRING KERNEL SIZE, AND PIXELATION WINDOW SIZE. AS THE WARPING ALGORITHM

RANDOMLY DETERMINES THE INITIAL WARPING POINTS, IT IS RUN FOR 10 ITERATIONS AND THE MEAN ACCURACY VALUES ARE REPORTED.

LBPH Eigen Fisher

Warping
Str. Lev.: 3 Str. Lev.: 13 Str. Lev.: 3 Str. Lev.: 13 Str. Lev.: 3 Str. Lev.: 13

0.75 0.91 0.77 0.89 0.76 0.89

Blurring
Ker. Size: 5 Ker. Size: 55 Ker. Size: 5 Ker. Size: 55 Ker. Size: 5 Ker. Size: 55

0.72 0.14 0.89 0.79 0.89 0.79

Pixelation
Win. Size: 5 Win. Size: 55 Win. Size: 5 Win. Size: 55 Win. Size: 5 Win. Size: 55

0.04 0.00 0.89 0.55 0.89 0.55

False Coloring
Blues Green-Pink Hardcandy Blues Green-Pink Hardcandy Blues Green-Pink Hardcandy

0.07 0.14 0.09 0.00 0.07 0.01 0.00 0.07 0.01

TABLE IV
FACE RECOGNITION ACCURACY RATES FOR RECOVERED IMAGES. THE CLOSER TO 1, THE BETTER THE ACCURACY.

LBPH Eigen-Fisher

QD DS τ QD DS τ

Pal.

Param.
85 50 10 2 8 16 10 40 70 85 50 10 2 8 16 10 40 70

Blues 0.91 0.83 0.81 0.90 0.88 0.78 0.87 0.89 0.88 0.89 0.88 0.88 0.89 0.89 0.88 0.89 0.89 0.89

Green-Pink 0.91 0.86 0.55 0.88 0.86 0.79 0.84 0.77 0.69 0.89 0.89 0.89 0.89 0.89 0.87 0.89 0.89 0.89

Hardcandy 0.34 0.07 0.03 0.15 0.10 0.06 0.90 0.07 0.02 0.89 0.89 0.88 0.89 0.86 0.82-0.83 0.89 0.89 0.89

approximately 15 seconds. All videos and face images were

captured using a Canon EOS 600D DSLR camera.

Furthermore, each surveillance scenario was recorded sev-

eral times using the same group of actors. One of these

recordings was selected as the main video and the others were

used to train the face recognition algorithms as discussed in

Section IV-D2.
1) Subjective Evaluation: We conducted a user study to

evaluate the effectiveness of false coloring on privacy and

intelligibility. In our evaluation, 6 videos were selected from

the METUSURV dataset. For false coloring, the Blues palette

was selected as representative of our method as the other

color palettes produced a similar result in the face recog-

nition benchmark. For comparison, we opted for blurring

and pixelation as they are commonly used and can also be

applied globally while maintaining intelligibility. Blurring was

performed using a Gaussian kernel with σ = 9 pixels evaluated

over a window size of 55× 55. The block size for pixelation

was selected as 10× 10.

Through a web-based interface, we asked each participant

to indicate which people were present in a given video and

whether they noticed any suspicious activities. The experimen-

tal interface is shown in Figure 13.

The participants were instructed to first study the six faces

shown in order to identify them in the upcoming video.

Exactly half of these faces were present resulting in a chance

estimation rate of 50%. Once the participants were ready, they

clicked the “Play Video for Face Recognition” button to view

the privacy protected video. The video could be seen only

once. After the video was shown, the participants were shown

the face pictures again to collect their responses.

Next, the participants clicked the “Play Video for Activity

Analysis” button, which resulted in the presentation of the

same video for the second time. This time the participants’

task was to identify the potentially suspicious activities that

were taking place in the video. Again, the video was shown

only once and when it ended the participants were shown a

page in which they could select the activities they observed

(Figure 14). The reason for separating the face recognition

task from the activity analysis task was that coping with both

of them simultaneously proved to be very challenging during

the pilot runs of the experiment.

Each participant viewed 6 different videos (2 videos for each

of the 3 VPP algorithms) throughout the experiment. While the

presentation order of the videos was random, the experiment

was designed so that the same video was not shown twice

with a different privacy protection method. This was done

to eliminate a potential memory effect between the methods.

Also, the pairing between the face images and the videos was

done manually to ensure that for each trial half of the 6 faces

were present in the video. The display order of the faces on

the face recognition screen (Figure 13) was random.

In total, 48 participants (19 females, 29 males) participated

in the experiment. None of the participants were acquainted

with the people shown in the videos to eliminate other cues

from affecting their decisions. Each participant could finish

the experiment within 15 minutes.

The results of the experiment are given in Tables V and VI.

In Table V, it can be seen that the mean face recognition rate

for false coloring, 0.57, is the lowest among the compared

methods (0.59 for blurring and 0.62 for pixelation). Note

that this rate is close to the chance rate of 0.50, that would

be achieved if the participants were making entirely random

decisions. As for the activity detection, Table VI shows the

f-scores corresponding to each algorithm. Here, it can be seen

that participants could better observe the suspicious activities

under false coloring (0.86) than under blurring (0.84) and

pixelation (0.84).

To summarize, the subjective evaluation results suggest that

false coloring preserves privacy better than the compared

methods while having a less impact on intelligibility. We,

however, note that this evaluation only considered the who and

what questions that pertain to privacy and intelligibility. As
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Fig. 13. The experimental interface for face recognition.

Fig. 14. The experimental interface for activity recognition.

suggested by Saini et al. [47], the questions of where and when

may also have an effect on both attributes. For instance, if one

can infer where a footage was captured, when it was captured,

and what actions were taking place, he/she can determine who

the people are without explicitly recognizing their faces. The

design of our experiment, especially the requirement that the

participants did not know about the actors, was not suitable

for this type of analysis. Furthermore, as in any evaluation,

the choice of the parameters might have affected the specific

outcomes obtained. However, due to the difficulty of running

a subjective experiment over a large number of parameter

values, a sensible set of values were determined by visually

inspecting the outputs to obtain a balance between privacy and

intelligibility.

2) Objective Evaluation: Ensuing the subjective evaluation,

objective experiments were also conducted to understand how

well face recognition algorithms (FRAs) can successfully

recognize the people in the protected videos.

The FRAs need a training image set for creating a model

that is used for identifying the detected faces in a given

image. Face images in the METUSURV dataset were taken

in an indoor environment and they were not sufficient to

train a model for recognizing people in the videos that were

captured in an outdoor environment. For that reason, a new

training dataset was created by first executing the Viola-Jones

face detection algorithm [17] on each frame of the captured

surveillance videos. Each surveillance scenario was recorded

several times using the same group of actors. One of these

recordings was selected as the main video (this was the video

shown to the participants in the subjective evaluation) and the

others were used to train the face recognition algorithms.

The regions returned by the face detection algorithm were

visually observed to ensure that they correspond to faces.

Furthermore, some of the faces could not be found by the al-

gorithm as they were distorted by motion-blur artifacts. These

faces were manually cropped and put into the training set.

For each face, at least 10 different training images were thus

selected. Eigenfaces [52], Fisherfaces [53], and LBPH [54]

were used as the face recognition algorithms.

The generated face recognition models were tested on

videos that were protected with blurring, pixelation, and false

coloring VPP algorithms. The evaluation of the results were

performed with respect to three different definitions of true

positive (TP) and false positive (FP).

In Evaluation 1, the TP count was incremented whenever

a region (returned by the face detector) was identified as

a person that was present in the video. The FP count was

incremented when an identified person was not present in the

video. In this evaluation, it is important to note that the region

returned by the face detector may not actually correspond

to a face region. In Evaluation 2, non-face regions returned

by the face detector were manually removed from testing.

Finally, in Evaluation 3, in addition to removing non-face

regions, the TP count was only incremented if a face region

was attributed to the correct person. Likewise, the FP count

was only incremented when a face region was attributed to a

wrong person. To this end, Evaluation 3 can be considered as

the most refined measure as it considers correctness of each



11

TABLE V
FACE RECOGNITION RATES OBTAINED IN THE SUBJECTIVE EVALUATION AVERAGED OVER ALL PARTICIPANTS. THE RANGE OF ALL SCORES IS IN [0, 1].

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Average

Blurring 0.73 0.47 0.56 0.60 0.65 0.53 0.59

Pixelation 0.78 0.61 0.55 0.58 0.69 0.54 0.62

False Coloring 0.64 0.43 0.54 0.55 0.69 0.60 0.57

TABLE VI
SUSPICIOUS ACTIVITY DETECTION RESULTS.

Video 1 Video 2 Video 3 Video 4 Video 5 Video 6 Average

Blurring 0.81 0.89 0.74 1.00 0.71 0.90 0.84

Pixelation 0.78 0.91 0.74 0.97 0.71 0.92 0.84

False Coloring 0.79 0.93 0.76 0.98 0.75 0.91 0.86

region individually.

As for true negative (TN) and false negative (FN), all eval-

uations used the same criteria. The TN count was incremented

whenever a person not present in the video (but present in the

training set) was not identified. The FN count was incremented

when a person present in the video was not identified. The

evaluations were made with respect to precision, recall, and

f-score. The overall results computed by taking the average of

the 6 videos are shown in Table VII.

In this table, it can be seen that false coloring produces

the lowest f-score in all evaluations except in Evaluation

1/Fisherfaces combination. For that combination, blurring

yields a slightly lower score than false coloring. The unfiltered

row in this table shows the precision, recall, and f-score results

for unprotected videos. It is important to note that the precision

for the unfiltered videos increases from Evaluation 1 to Eval-

uation 2. This is because as non-face regions are removed,

the FRAs are less likely to make Type-1 error. However,

the same pattern is not observed especially for false coloring

results. This is because as non-face regions are removed, in

many cases, the remaining number of regions on which FRAs

operate become zero or very limited. This suggests that often

recognition of a face in a false colored video fails in the

detection step. Furthermore, it is important to note that the

precision obtained in Evaluation 3 is consistently lower than

the precision in Evaluation 2 for all presentation types. This

is expected because the success criteria of Evaluation 3 was

more strict as explained above.

E. Security Evaluation

Besides privacy and intelligibility, security against unau-

thorized users is another desirable property of an effective

VPP algorithm. Here, we evaluate whether false coloring is

secure against an attacker who tries to revert the protected

face images to their unprotected versions. To this end, we

selected 12 face images from the FERET dataset representing

people of different ethnicities (Figure 15). From each face, we

selected pixels that correspond to skin, lip, and hair regions.

For each region, pixel values within a 5×5 neighborhood were

averaged to obtain a representative color.

Next, a target face transformed by our second scheme was

selected. The false color RGB value for the corresponding face

Fig. 15. Images selected from the FERET dataset for security evaluation.

regions were computed giving rise to the following mapping:

Gr → RGBr. (10)

Here, Gr represents the grayscale value of region r ∈
{skin, hair, lip} from the FERET image and RGBr represents

the corresponding false color value from the target face. This

mapping was then sorted by increasing Gr value, and the

missing values of the color palette were computed by linear

interpolation. Note that as we used 12 input images, this

resulted in 12 reconstructed palettes for each target face.

Next, an inverse look-up to each reconstructed color palette

was produced to find the corresponding grayscale value for

each false color pixel. Some palettes produced better results

than others and we visually determined the best palette as the

most accurate reversal of a target face. The results are shown in

Figure 16 for each of the false color palettes evaluated in this

study. As can be seen in this figure, while the Blues and Green-

Pink palettes are vulnerable to this attack, the Hardcandy

palette remains resistant for each target face. This evaluation

leads us to conclude that if security is the primary concern, one

should select a palette with more random variation to avoid

reconstruction of the original data by unauthorized users.

V. CONCLUSIONS & FUTURE WORK

We presented a false color based privacy protection algo-

rithm implemented within the JPEG architecture and demon-

strated its performance by conducting extensive experiments.

In particular, we have shown our method to be effective against

not only face recognition algorithms but also against human

observers through objective and subjective evaluations.

The primary advantages of our method is that it can be

applied on entire images, obviating the need to define privacy

sensitive ROIs. This is important because while manually
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TABLE VII
FACE RECOGNITION ACCURACY RESULTS ON PROTECTED VIDEOS. LOWER VALUES INDICATE BETTER PROTECTION. PREC. AND REC. INDICATES

PRECISION AND RECALL VALUES.

Evaluation 1 Evaluation 2 Evaluation 3

Prec. Rec. F-Score Prec. Rec. F-Score Prec. Rec. F-score

Eigenfaces

Blurring 0.27 0.32 0.28 0.25 0.27 0.24 0.12 0.17 0.13

Pixelation 0.35 0.47 0.36 0.49 0.47 0.39 0.41 0.40 0.32

False Coloring 0.28 0.08 0.12 0.17 0.02 0.04 0.00 0.00 0.00

Unfiltered 0.48 0.83 0.56 0.51 0.83 0.58 0.42 0.68 0.48

Fisherfaces

Blurring 0.30 0.26 0.25 0.16 0.20 0.17 0.15 0.17 0.15

Pixelation 0.27 0.51 0.30 0.27 0.47 0.29 0.15 0.34 0.19

False Coloring 0.29 0.30 0.27 0.08 0.02 0.03 0.00 0.00 0.00

Unfiltered 0.33 0.78 0.42 0.34 0.78 0.42 0.28 0.66 0.35

LBPH

Blurring 0.24 0.44 0.29 0.14 0.32 0.20 0.14 0.32 0.20

Pixelation 0.21 0.39 0.26 0.19 0.35 0.24 0.15 0.25 0.17

False Coloring 0.20 0.16 0.17 0.06 0.02 0.03 0.00 0.00 0.00

Unfiltered 0.55 0.78 0.61 0.64 0.78 0.65 0.58 0.71 0.59

Original Blues Green-Pink Hardcandy Original Blues Green-Pink Hardcandy Original Blues Green-Pink Hardcandy

Fig. 16. The best reconstruction results by inverting a color palette using FERET images (see text for details).

defining ROIs is cumbersome and its utility is limited to

static scenes, automatic selection of ROIs through detection

algorithms is subject to robustness of these algorithms.

The selection of a suitable color palette was found to be

an important aspect of our method. Regular (i.e. monotoni-

cally varying) color palettes which exhibit inverse relationship

between luminance and color saturation (i.e. low luminances

are represented with more saturated colors and high lumi-

nances are represented with less saturated ones) are found

to be effective in preserving privacy, a finding supported by

earlier work [56]. Furthermore, regular color palettes result in

very small protected file sizes, especially if minor losses are

tolerable as afforded by the τ parameter in the second scheme.

As for security, however, regular color palettes are more

likely to be decipherable by unauthorized individuals by

mapping out relationships between false color pixel values and

real object colors as demonstrated by our security evaluation

experiments. Irregular palettes, such as Hardcandy, are found

to provide higher security. However, there is a balance between

security and intelligibility: a completely random palette would

be very secure but not intelligible as all structural details would

be lost. Also, as shown in the previous section, using more

irregular palettes results in larger protected file sizes. Perhaps,

the most desirable approach would be to define custom color

palettes specifically designed for privacy protection purposes

– an issue that we leave for future work.

We note that the dependence of the results on the color

palette is not necessarily a weakness of our method, but it

rather highlights the fact that suitable palettes should be chosen

by considering the goals of the application. If the goal is to

maximize privacy and security, irregular palettes should be

preferred. If the goal is to provide a certain degree of privacy,

more regular color palettes could be more suitable. As such,

we consider the color palette as a parameter of our method

with the best one to be decided based on the actual use case.

It is important to note that the idea of storing the differ-

ence and sign images as metadata may apply to other VPP

approaches such as blurring and pixelation. However, in false

coloring storing the color palette and histogram allows for a

greater reduction in file size compared to the other approaches.

This is in addition to the fact that false coloring outperforms

both approaches with respect to an extensive set of evaluations

as conducted in this study.

Finally, although the proposed solution is illustrated for

JPEG images, it is possible to apply it in a simple manner

to any other image and video formats that support inclusion

of metadata. For instance, in AVC/H.264 and HEVC/H.265

formats, this mechanism can be implemented via Supplemental

Enhancement Information (SEI) markers. Such an extension

is likely to facilitate more widespread adoption of false color

based privacy protection by real-world surveillance systems.
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privacy by context: a level-based visualisation scheme,” in Intl. Conf.

on Ubiquitous Computing and Ambient Intelligence. Springer, 2014,
pp. 333–336.

[29] K. Chinomi, N. Nitta, Y. Ito, and N. Babaguchi, “Prisurv: privacy
protected video surveillance system using adaptive visual abstraction,”
in Intl. Conf. on Multimedia Modeling. Springer, 2008, pp. 144–154.

[30] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester, “Image inpaint-
ing,” in Proc. of the 27th annual Conf. on Computer Graphics and

Interactive Techniques. ACM Press/Addison-Wesley Publishing Co.,
2000, pp. 417–424.

[31] H. Zhang and Q. Peng, “A survey on digital image inpainting,” Journal

of image and graphics, vol. 12, no. 1, pp. 1–10, 2007.

[32] A. R. Abraham, A. K. Prabhavathy, and J. D. Shree, “A survey on video
inpainting,” Intl. Journal of Computer Applications, vol. 56, no. 9, 2012.

[33] M. Granados, J. Tompkin, K. Kim, O. Grau, J. Kautz, and C. Theobalt,
“How not to be seen - object removal from videos of crowded scenes,”
vol. 31, no. 2pt1, pp. 219–228, 2012.
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