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In image classification methods, the quality of the input image plays an important role in improving classification performance. 

However, sometimes the low resolution and sharpness of remote sensing images can cause various problems in image analysis. 

Therefore, improving and correcting the quality of remote sensing images is of great importance for the classification of remote 

sensing images. In this study, five man-made and five natural field images were selected from the RSI-Cb remote sensing dataset. 

The corresponding images were super-resolutioned using the Swin-based HST, Swin2SR and SwinIR transformers. The 

classifications were performed using the pre-trained architectures DenseNet121, Xception and EfficientV2_B3 and their 

performance was compared. The results of the experiments show that the classification accuracy was improved by using super-

resolution methods rather than the absence of super-resolution methods. It was found that better results were achieved especially 

for images of natural areas. The best classification performance was achieved when the images were super-resolutioned using the 

HST algorithm and classification was performed using the Xception architecture, as the classification accuracy increased from 

99.18% to 99.59%. 
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1 INTRODUCTION 

Remote sensing is the process of obtaining information about a desired location with technological devices that 

we place at a selected location from a certain distance and analyzing, displaying and monitoring it in spatial, spectral, 

radiometric and temporal resolution with measurements from any distance without physical contact [1]. Remote 

sensing is used in the fields of cartography, hydrology, geology, forestry, agriculture, defense, security and space. 

There are platforms with data sets such as Sentinel, Landsat, Maxar, Planet, UC Merced, EuroSAT, PatternNet, 

SpaceNet, and Google Earth Engine. Improvements have been made in image processing and data mining techniques 

to solve both the problem of providing big data and analyzing the data [2], and the SatlasPretrain [3] dataset is one 

of the big data sets that have been used. 
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Image classification is an important part of computer vision, i.e. the recognition of identical data. It is widely 

used in areas such as healthcare, security, operational efficiency, autonomous systems, agriculture, industry and 

engineering. The most commonly used methods for classification in machine learning are algorithms such as 

support vector machine [4], random forest [5], logistic regression [6], k-nearest neighbor [7]. Bansal et al. provided 

results on the advantages and disadvantages of machine learning algorithms in their study [8]. Furthermore, Ouchra 

et al. [9] showed in a comparison of machine learning methods for the classification of remotely sensed satellite 

images that the classification performance is improved depending on which machine learning method is used in the 

datasets. 

With the introduction of deep learning methods in the field of classification, studies have shown that they 

outperform machine learning techniques [10]. Deep learning is more powerful than machine learning because it 

uses more parameters and more layers to increase the performance of the representation. Powerful computers are 

required due to high computing costs and the difficulty of storing high quality data. Transfer learning promises to 

overcome this problem in computer vision. A model trained for one purpose can serve as a reference for another 

problem [11]. Transfer learning uses the weights and features of previously trained models and is becoming 

increasingly popular due to its time and cost savings. In this study, we used DenseNet121 [12], Xception [13] and 

EfficientV2_B3 [14] architectures as transfer learning for image classification. 

The better the quality of the input image during classification, the better the performance [15]. In this study, the 

concept of super resolution and sharpness is used to improve the image quality. Super-resolution is a high-

resolution version of a low-resolution image. It involves increasing the number of pixels in the image by scaling the 

image. Image processing [16], machine learning [17] and deep learning [18] techniques are widely used in super-

resolution applications. Wang et al. [18] have shown in their study that deep learning outperforms super-resolution 

and is widely used in convolutional networks [19], adversarial generative networks [20] and vision transformers 

[21]. 

Transformers are first used in natural language processing to capture long-range prior information [22]. Self-

attention layers are the core components of transformers and use the keys, values, and query metrics to compute 

how a piece of information interacts with all other indices in the sequence. In image processing, the mechanism 

works by segmenting images into specific parts, flattening the segmented parts, embedding them as a low-

dimensional vector, adding position information, and then evaluating this vector as a patch array. Image 

transformers have achieved successful results in areas such as super-resolution, object detection, image 

enhancement, and segmentation [23]. Liu et al. proposed the Swin transformer [24], a hierarchical hybrid structure 

that divides the image into windows based on patches. Instead of processing the whole image simultaneously, 

patch-based processing divides the image into non-overlapping parts and processes them independently. They have 

multi-head attention mechanisms to capture the relationship between patches in the image and also use shifted 

windows to effectively deal with each other. In this way, global context is captured while maintaining computational 

efficiency. In addition to these advantages, features are hierarchically aggregated at the image patch level. SwinIR 

[25], HST [26], Swin2SR [27] are some of the Swin-based works that have improved the performance of super-

resolution, and we have used these methods in our study. Our contributions to this work are listed below: 

• We applied three different swin-based super-resolution methods to the sampled RSI-Cb [28] remote 

sensing dataset and classified them using pre-trained state-of-the-art classification methods to determine 

the best combinations. 
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• We tested our study on five man-made structured image-set and five natural field image-set and found that 

the natural images are improved better than man-made images. 

• Our experiments show that the use of super-resolution as pre-processing in image classification increases 

classification accuracy. 

2 RELATED WORK 

Remote sensing is used in geographic information systems, aerospace, mining, engineering and many other 

fields. Zhang et al. [29] describe the development and challenges of remote sensing techniques. In addition, Richards 

and Jia [30] have done extensive work on enhancing, correcting and analyzing remote sensing images. With the 

popularization of machine learning, it has been observed that the performance of remote sensing images and data 

is increasing to make them meaningful [31, 32]. Cengiz and Avcı [33] compared the performance of machine 

learning methods with the super-resolution method of satellite images. Various studies on the RSI-Cb dataset, which 

we used in this study, have also performed classifications using deep learning methods [34, 35]. 

In image classification, the improvement of the image through image preprocessing affects the performance. 

Therefore, when classifying remote sensing images, the data should be of high quality. To improve image quality, 

various deep learning methods have been used to increase classification accuracy [36,37]. Swin-based transformers 

are increasingly used to improve the resolution and sharpness of super-resolution images. They are also used in 

healthcare [38], metrology [39], agriculture [40] and many other fields. Jannat and Willis [41], who were the first 

to use the Swin Transformer, a Vision Transformer (VIT), for classification, were more successful in classification 

performance compared to traditional CNN models using the EuroSat, NWPU-RESISC45 and AID datasets. Sentinel-

1 and Sentinel-2 features using Random Forest, Support Vector Machine, VGG-16, 3D CNN, and Swin Transformer 

were compared with their proposed coastal wetland classification model built from Google Earth Engine (GEE) 

images and LIDAR data called DEM using QGIS software and the LAS tool [42]. They proposed a 3-layer model with 

a modified version of the VGG-16 model, a 3D CNN and a Swin transformer and obtained better results. They 

developed a Swin Unet model for segmenting Sentinel-2 MSI (Multi-Spectral Imager) images into 10 categories and 

an image segmentation for preprocessing [43]. Swin UNet consists of an encoder, a bottleneck, a decoder and a skip 

connection based on the skip connection of UNet to reduce semantic information loss. The model has shown 

promising results compared to other CNN-based models, including DeepLabV3+ and U-Net, as well as VGG, 

ResNet50, MobileNet and Xception. They have proposed a new Swin Transformer-based model for contrastive self-

supervised learning (Swin-TCSSL) using the CIFAR-10, Snapshot Serengeti, Stanford Dogs, Animals with Attributes, 

and ImageNet datasets [44]. Swin Transformer [24], introduced as Tiny Swin-T with respect to C = 96, layer 

numbers = {2, 2, 6, 2} Swin -TCSSL is a self-supervised learning method coupled with input images. Swin -TCSSL 

achieves good accuracy while reducing computation time and cost compared to other methods. 3D Swin T 

(3DSwinT-HCL), a method developed for classifying hyperspectral images with fine details, is an alternative to 

supervised learning with self-supervised learning (SSL) [45]. Another method, SpectralSWIN, developed a Swin 

Spectral Module (SSM) that effectively represents spectral-spatial features in hyperspectral images [46]. P-Swin 

[47] proposed a parallel window-based transformation network that better extracts contextual information from 

remote sensing data. In this study, we used HST [26], SwinIR [25], and Swin2SR [27] for super-resolution. 

Remote sensing image classification has been extensively studied and CNN-based classification [48] compared 

the results of research with different models such as VGG-16, U-Net using CNN model for different datasets. Gargees 

and Scott [49] developed a chip-based change detection method to extract features from the images of RSI-CB256 
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and CoMo dataset, and performed classification in the deep visual model by orthogonal feature reduction using 

ResNet50, which is known as deep convolutional neural network (DCNN) and belongs to transfer learning methods. 

The chip-based method facilitates change detection by making it easier to analyze the level of detail in the images. 

They used soft clustering based on the fuzzy C-Means algorithm to combine the images. Cluster analysis, geospatial 

analysis and metric change analysis were used to analyze the images. On the RSI-CB256 dataset, the validation and 

test performances were 98.72% and 99.31%, respectively. Jayasree et al. [50] classified a large aerial image dataset 

generated by Google Earth using AID and RSI-CB256 by running it through a CNN with the EfficientNetB7, 

MobileNetV2 and ResNet50 models. They achieved an accuracy of 94% for the AID dataset and an accuracy of 

96.53% for the RSI-CB256. Wijaya et al. [51] compared the performance of MobileNet V-2, ResNet50 and VGG-16 

models used for limited resources using RSI-CB256 satellite imagery and contributed that they can be used for 

computationally intensive devices. Huang [52], who developed the RSIC model fusion method based on deep 

transfer learning and multi-feature networks, classified remote sensing images using the VGG16, Inception V3, 

ResNet50, and MobileNet models. The source domain is trained with one of the four models using parameters 

trained with the CNN ImageNet, and then a model is created by binary fusion by transferring information to the 

target domain TL-CNN. In the study [52] using the UC land use dataset and the RSIC benchmark dataset RSI-CB, the 

best model was the Transfer Learning ResNet50-MobileNet (TL-RM) with an average accuracy of 96.8%. To extract 

the best features from the SAT-4, SAT-6, and RSI-CB datasets, VGG19 and ResNet50 architectures were used for 

decision tree, K-nearest neighbor (K-NN), and modified random forest with empirical loss function for classification 

with the combination of the separately extracted features and an accuracy of 97% in decision tree, 89.05% in K-NN, 

and 99.89% in modified RF [53]. 

3 MATERIAL AND METHOD 

3.1 Dataset 

The RSI-Cb [28] remote sensing image dataset has a size of more than 24,000 256x256 pixels with 35 subclasses 

from 6 categories. In our experiments, we used 10 subclasses. These are airplane, bare land, city building, container, 

desert, forest, marina, mountain, parking lot and river. These classes are used in the datasets as 5 man-made 

structures and 5 natural structures. The dataset consists of a total of 7247 images, of which 6514 are used for 

training the model, 721 for validation and 733 for testing the accuracy of the model. 

3.2 Methods for Super-resolution and Image Sharpening 

3.2.1 SwinIR 

SwinIR [25] is a method that promises to increase the super-resolution of the image, clean up the image and 

reduce JPEG compression artifacts by using a Swin-based transformer algorithm. SwinIR consists of three parts. 

These are shallow feature extraction, deep feature extraction and high-quality image reconstruction. The most 

important module of the three parts, deep feature extraction, is the Residual Swin Transformer Block (RSTB) with 

additional residual connections to multiple Swin Transformer layers. This residual block establishes an identity-

based connection with the reconstruction so that features from different blocks can be aggregated. This method has 
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shown more promising results than other super-resolution methods. For super-resolution in this work, we used 

the trained model from the SwinIR authors' Github1 and chose scale 4. 

3.2.2 Hierarchical Swin Transformer (HST) 

HST [26], which extracts features in a hierarchical structure, is processed using the divide-and-conquer 

technique, which gives the network representability. Therefore, it has improved the difficult image distortions in 

the image in terms of parameters and performance. The HST architecture is a hierarchical architecture with three 

branches. Pang et al. [54] developed a FAN technique that has three different convolutional layers with 

hierarchically different kernel sizes and levels to extract hierarchical features at three scales. They used multiple 

RSTBs for feature extraction. To upscale the image from a low scale to a high scale, they combined the pixel shuffle 

technique [55] and applied a feature fusion module. They achieved better results with the proposed method than 

with the SwinIR method. We opted for scale 4 and used the checkpoint_comp40_x4 model trained by HST. For the 

HST model, we used the code from the authors' Github2. 

3.2.3 Swin2SR 

Swin2SR [27] is an improved version of the Swin transformer. Swin2SR uses the Residual Transformer Block 

(RSTB) and the new SwinV2 transformer [56]. By using the SwinV2 transformer, the feature variance of the deeper 

layers is improved by using post-normalization instead of pre-normalization. They upscaled the method with 

bicubic interpolation [57]. In this way, no significant structural information is lost. Good results were obtained in 

removing JPEG compression errors, super-resolving the image and removing image distortions. In this paper, we 

use the Swin2SR_CompressedSR_X4_48 (ClassicalSR_X2) model as scale 4, which is pre-trained in the Swin2SR 

super-resolution method. Swin2SR was run with the code available on Github3. 

3.3 Methods for Image Classifications 

3.3.1 DenseNet-121 

DenseNet [58], also known as Densely Connected Convolutional Networks, is an architecture that provides 

maximum information flow, with each layer forwarding all other layers, and has excellent performance. In 

DenseNet, there are layers with bottlenecks and dense blocks as transitions. The critical point of this model is the 

bottleneck layer, which reduces the number of parameters by reusing features by forwarding each layer to the other 

layers. The bottleneck layer consists of two convolutional layers and a batch normalization layer. The first layer 

reduces the number of input feature maps, while the second layer generates 3x3 feature maps for output. The 

output of this layer is merged with the second convolution layer of the input feature maps. The transition layer 

consists of a 1x1 convolution layer, a batch normalization layer and a 2x2 mean pooling layer. These layers reduce 

the number of feature maps and reduce the spatial dimensionality of the maps. The result is high accuracy through 

efficient use of parameters and memory. DenseNet121 [12] states that DenseNet consists of 121 connected 

convolutional layers that contain a 1000-unit layer up to the last output layer in addition to the DenseNet features. 

 

1 https://github.com/JingyunLiang/SwinIR/releases/download/v0.0/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_GAN.pth 

2 https://github.com/lixinustc/HST-for-Compressed-Image-SR 

3 https://github.com/mv-lab/swin2sr 
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3.3.2 Xception  

Xception [13] is a convolutional neural network with 71 layers. It is an extension of the Inception V3 architecture, 

replacing the Inceptionv3 [59] modules with depth-separable convolutions. While Inception applies different filter 

sizes to the convolutional layers, Xception applies depth-separable convolutions to the convolutional layers. This 

makes it possible to achieve more effective results with fewer parameters. There is also an intermediate ReLU 

nonlinearity in the middle layer. Xception has 3 streams. These are the input stream, the middle stream and the 

output stream. The input stream consists of two block convolution layers and a ReLU activation function. These 

layers are followed by depth-separable convolution layers, a maximum pooling layer and hopping connections. The 

middle stream consists of ReLu and depth-separable convolutional layers. This middle stream is updated 8 times. 

Finally, the output stream has global average pooling as a mixture of the architectures of the input and middle 

streams. 

3.3.3 EfficientV2_B3 

EfficientNetV2 [14] is an extension of EfficentNet [60]. In addition to the inverted bottleneck residual blocks of 

MobileNetv2 [61], EfficientNet is an architecture that scales all depth, width and resolution dimensions with a 

uniform coefficient. The uniform scaling method uses AutoML [62] to adjust the layers, depth, and resolution of the 

network according to the size of the input image, which requires a size-aware channel. This fine-tuning has been 

found to improve performance. EfficientNetV2 adds both MBConv [63] and fused-MBConv [63] to EfficentNet, a 

smaller expansion ratio for MBConv, a preference for many times smaller 3x3 kernel sizes, and the elimination of 

the stride-1 step in the last step. These changes have improved both the performance and speed of training. 

4 EXPRIMENTS AND EVALUATION 

4.1 Configurations 

The experiments were performed on a GoogleColab [64] A100GPU processor using the PyTorch library. Pre-

trained DenseNet-121, Xception and EfficientV2_B3 were used as architectures and trained with global average 

pooling followed by 3 times relu, batch normalization, dropout and in the fully connected layer. A learning 

parameter of 0.001 and the Adam optimization algorithm were used for optimization. The experiments were 

performed for 50 epochs with the RSI-Cb dataset and with super-resolution using the HST, Swin2SR and SwinIR 

architectures. 

4.2 Evaluation Metrics 

The accuracy and F1 score metrics were used to evaluate the performance and effectiveness of the DenseNet121, 

Xception and EfficientV2_B3 models at super-resolution of remote sensing image data using the HST, Swin2SR and 

SwinIR transformers. Accuracy determines how often the model makes an accurate prediction. The F1 score metric 

is the harmonic mean of precision and recall. The accuracy and F1 scores obtained after 50 epochs of training with 

the DenseNet121, Xception and EfficientV2_B3 models for remote sensing images acquired with the HST, Swin2SR 

and SwinIR transformers on the validation set. Table 1 shows that the classification performance without super-

resolution is lower than that with super-resolution. When classifying with the DenseNet121 architecture, SwinIR 

has the highest accuracy and F1-score. When classifying with the Xception architecture, HST has the highest 
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accuracy and F1 score. In the classification with the EfficientV2_B3 architecture, Swin2SR has the highest accuracy 

and F1 score. 

Table 1: Results from the validation set using DenseNet121, Xception and the EfficientV2_B3 architecture model with transfer 

learning technique. 

 DenseNet121 Xception EfficientV2_B3 

 Accuracy F1-score Accuracy F1-score Accuracy F1-score 

Raw Image 0.9891              0.9894        0.9918       0.9916 0.9864 0.9884 

HST 0.9918       0.9908       0.9959        0.9960        0.9905 0.9908 

SwinIR 0.9932 0.9932 0.9932 0.9929 0.9918 0.9929 

Swin2SR 0.9918        0.9919        0.9932        0.9934        0.9932 0.9947 

 
Table 2: Results of the average F1 score values for man-made and natural classes using the DenseNet121, Xception and 

EfficientV2_B3 architecture models with transfer learning technique. 

 DenseNet121 Xception EfficientV2_B3 

 Man-made Natural Man-made Natural Man-made Natural 

Raw Image 0.99182 0.98688 0.99434 0.98898 0.99794 0.97882 

HST 0.99366 0.98796 0.99794 0.99404 0.99584 0.98586 

SwinIR 0.99434 0.99200 0.99182 0.99404 0.99794 0.98792 

Swin2SR 0.99182 0.99200 0.99794 0.98894 1.0000 0.98948 

Average 0.99327 0.99065 0.99590 0.99234 0.99793 0.98775 

 

        The accuracy rates of other studies for the entire RSI-Cb dataset were 95.13% with the VGG-16 architecture in 

[48], 99.31% with the ResNet50 architecture in [49], 96.53% with the ResNet50 architecture in [50], 98.94% in 

[51], 96.8% with the TL-RM architecture in [52], and 99.89% with the Random Forest architecture in [53]. In our 

study, it was found that the classification accuracy of the 10 subclasses selected from the RSI-Cb dataset increased 

from 99.18% to 99.59% after super-resolution with the HST method and classification with the Xception model. 

The F1 values of the images created with the Swin-Transformer are evaluated as man-made and natural in Table 2. 

It can be seen from the results in Table 2 that natural images provide better results. 

4.3 Generated Images 

An image of the container class we used in the dataset, whose resolution and sharpness was improved using the 

HST, Swin2SR and SwinIR algorithms, is shown in Figure 1. 

 

Figure 1: Cropped regions from the container image with the original input, and the results of SwinIR, HST and Swin2SR. 
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 Figure 2: Confusion matrices for the validation part of the RSI-Cb dataset using the images from Input, SwinIR, HST and 

Swin2SR on the pre-trained models DenseNet121, Xception and EfficientV2_B3. The final (bottom right) confusion matrix is the 

HST Super-resolutioned Xception classification confusion matrix, which gives the best result. 

5 CONCLUSIONS 

This study investigated the change in image classification performance with increasing image resolution and 

sharpness. We evaluated the performance of remote sensing image data acquired with HST, Swin2SR and SwinIR 

transformers. We evaluated the performance using the pre-trained models DenseNet121, Xception and 

EfficientV2_B3 and assessed their effectiveness using the metrics accuracy and F1-score. The results show that 

increasing image quality significantly improves classification accuracy and F1-score. It was also found that the 

performance was better for the images with natural structures than for the images with man-made structures. Since 

the quality of the image improves the classification, it can be said that the preprocessing of image enhancement 

improves the classification performance. In the future, it is planned to use transformer-based image enhancement 

and color preservation techniques in addition to the super-resolution techniques used. 
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