
   

Abstract 

We present a new axis-based shape representation 
scheme along with a matching framework to address the 

problem of generic shape recognition. The main idea is to 
define the relative spatial arrangement of local symmetry 

axes and their metric properties in a shape centered 

coordinate frame. The resulting descriptions are invariant 

to scale, rotation, small changes in viewpoint and 

articulations.  Symmetry points are extracted from a 

surface whose level curves roughly mimic the motion by 
curvature. By increasing the amount of smoothing on the 

evolving curve, only those symmetry axes that correspond 

to the most prominent parts of a shape are extracted. The 

representation does not suffer from the common 

instability problems of the traditional connected 
skeletons. It captures the perceptual qualities of shapes 

well. Therefore finding the similarities and the differences 

among shapes becomes easier. The matching process 

gives highly successful results on a diverse database of 

2D shapes. 

1. Introduction 

Shape information plays a key role in the overall 

perception process.  Although considerable progress has 

been made in its representation and matching, generic 

shape recognition problem remains largely unsolved. 

Most of the implemented representation schemes are 

suited for narrow domains where there is limited and 

predictable variability of input data. They differ from each 

other by the aspects of the shape that they make explicit.  

Generic shape recognition demands representations that 

can capture the large degree of variability as a result of 

changes in illumination, viewpoint, rotation, scale, 

articulation etc. Many researchers have tried to identify 

the requirements of shape representation schemes that can 

be used for generic shape recognition e.g. [5]. The idea of 

decomposing a shape into primitives and building up its 

description in a frame that expresses the links between 

these primitives was first made explicit by Marr and 

Nishihara [6] and has been one of the most promising 

guidelines for recognition. Representations based on 

symmetry axes have been considered in this respect 

because of their ability to capture the perceptual 

properties of shapes. 

An early axis-based representation in the literature is 

the prairie fire model of Blum [2]. The shape boundary 

evolves in the inward direction with a constant speed 

producing shocks  (quench points).  The locus of quench 

points and their time of formation define a morphological 

skeleton. Morphological skeleton is an instable 

representation: a small change in the shape may cause a 

significant change in its description. 

A variety of techniques have been suggested to 

overcome this instability problem. Traditionally, pruning 

of the axes has been mostly used to regularize the 

morphological skeleton. Pruning methods define a 

saliency measure for axis points and discard those points 

whose significance are below a threshold. Axis length, 

propagation velocity, maximal thickness, the ratio of the 

axis and the boundary it unfolds are the most typical 

significance measures which do not reflect the perceptual 

prominence of parts well [9]. 

With the developments in curve evolution and the 

introduction of reaction-diffusion scale space by Kimia et 

al. [4], it became possible to combine skeletonization and 

smoothing into a single process.  The amount of diffusion 

(smoothing) determines the detail of the skeletal 

description or the scale of the representation. Survival of a 

branch over scales is a measure of significance [11]. 

Though this idea of a combined framework is appealing, 

it has not been used in practice for obtaining stable axial 

descriptions for recognition. The researchers who has 

proposed recognition frameworks based on this 

formulation used only those axial descriptions obtained by 

morphological evolution [8,10]. This may be due to two 
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facts. First, when diffusion is introduced, detection of  

first order shocks, which are the local curvature maxima 

of the evolving curve, becomes difficult. Second, even a 

small amount of diffusion leads to a disconnected 

skeleton. This is not an artifact of computation. Symmetry 

points measure the deviation of the evolving boundary 

from a circle. Hence, when a curve locally gets rid of a 

protrusion or an indentation  -under the influence of 

diffusion- the symmetry branch tracking it terminates. 

Deriving a hierarchical representation from a 

disconnected skeleton is a more difficult problem. An 

alternative implementation is provided by Tari, Shah and 

Pien [12]. They introduced a surface whose level curves 

correspond to the smoothed fire front. Key to their work is 

the inverse proportionality of the level curve curvature to 

the surface gradient which allowed them to capture the 

local symmetry points even under significant amount of 

diffusion.  

When skeletons are used for shape matching and 

recognition, the common paradigm is to convert the 

skeletal description to a graph or a tree and reduce the 

problem to matching of these structures. Existing methods 

mainly differ from each other by the distance measures 

they use to compute similarities between representation 

primitives and by the graph (or tree) matching algorithms 

they employ, e.g. [3,7,8,10,13]. An interesting idea in Zhu 

and Yuille [13] is the generation of more than one 

possible skeleton graph for the input shape to overcome 

the unreliability of the skeleton. Even though the 

approaches based on connected skeletons are successful to 

some extent, the instabilities of the representations lower 

their performance. Also, the complexity of the 

descriptions or the data structures leads to 

computationally expensive matching and recognition 

algorithms. These rich descriptions may be suitable for 

reconstructing a shape, but may not be necessary for 

recognition. 

Our approach is to derive from shapes their coarsest 

level descriptions in the form of a disconnected set of 

axial branches. Relative placement of the branches and 

their metric properties are measured in a polar coordinate 

frame centered on the shape. In this respect, it is quite 

similar to the 3D model representation of Marr and 

Nishihara [6] in which the spatial arrangement of major 

component axes are specified by a model axis that 

provides coarse information. An important property of our 

representation is that it can produce descriptions that are 

variant to changes in scale, rotation, and viewpoint in 

addition to the descriptions that are invariant to these 

changes. Even though invariance to these transformations 

is desirable, there are situations in which transformation 

variant descriptors must be used, e.g. discriminating ‘6’ 

from ‘9’. 

Underlying method of symmetry point detection is 

closely related to the method of Tari, Shah and Pien [12]. 

The shape matching process is a branch and bound 

algorithm which searches over all possible matchings 

between two shapes. Even though the worst case 

complexity of the branch and bound algorithm is high, in 

practice our matching process is very fast because the 

number of primitives in the descriptions is small and the 

number of permutations that need to be tested are 

decreased using additional constraints. 

2. Detection of Symmetry Axes 

2.1. Detection of symmetry points 

The symmetry point detection method is the method of 

Tari, Shah and Pien [12] (TSP) with the exception that we 

take the smoothing parameter to infinity when computing 

the distance surface.  In TSP, the basic tool is the function 

v  whose level curves are interpreted as a family of 

evolving curves under the influence of constant and 

curvature motions. When compared to standard 

implementation methods [4,11],  this one is much simpler 

and much faster. Function v  is computed by solving the 

following equation: 

2

2
0, | 1

v
v v

ρ Γ∇ − = =

where is the shape boundary. 

The symmetry points which track the protrusions and 

indentations of the evolving curve are given by the 

minima and maxima of the gradient along the level curve 

respectively. The vanishing of the gradient provides 

further information. They are the shape centers where the 

level curves of the shape shrink into a point or the break 

points due to presence of narrow necks. During the course 

of evolution a branch tracking the protrusions (a positive 

axis) may merge with a branch tracking the indentations 

(a negative axis) terminating both branches. If a branch 

does not terminate at such a junction, it comes to rest at a 

surface extrema. Figure 1 shows the function v  and the 

symmetry axes obtained from this function in the TSP 

framework. 
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             (a)                                          (b) 

(c)

(d)                                      (e) 

Figure 1. TSP Method (a) Original shape (b) Surface 

1-v (ρ = 32) (c) Full Symmetry Points (d) Positive 

Symmetry Points (e) Negative Symmetry Points 

In curve evolution based shape analysis, boundary 

smoothing is the primary method of axis regularization 

which alleviates most of the sensitivity problems. A scale 

space representation is obtained by changing the amount 

of smoothing. The ability to generate scale-space 

descriptions of shapes has been considered essential for 

recognition. Despite its great appeal, the idea has not been 

applicable in practice for a number of reasons. First of all, 

the scales generated are not “absolute”. The selection of 

the same smoothing parameter for different shapes does 

not guarantee that these shapes will be represented at the 

same level of detail. This is because the survival time of 

symmetry axes is a local property which depends on the 

curvature of nearby protrusions and indentations.  

Moreover, skeletonization methods require skeletons to be 

connected so that the relations among branches can be 

expressed easily. If a symmetry branch doesn’t connect to 

the main skeleton, it is discarded. The transition from one 

scale to the other may be accompanied by substantial 

changes in the skeleton structure. Because of this large 

change, the task to determine the correspondences 

between symmetry branches at different levels of detail 

becomes a difficult problem. Unless a method is devised 

to compare two shapes at the same level of detail, these 

scale-space representations can not be used in practice.  

In our work, the derived symmetry axes need not to be 

connected and the final data structure for matching and 

recognition is neither a graph nor a tree. In order to obtain 

a stable shape description, we propose using a sufficiently 

large smoothing parameter. Consider the two vases shown 

in Figure 2. Interpretations at ρ = 32  (which is 

considerably a large diffusion parameter) are significantly 

different.  Notice that the first surface has one saddle 

point and two elliptic points corresponding to the neck of 

the vase and the centers of the top and bottom parts 

respectively. The second surface, on the other hand, has 

one elliptic point. Slight change in the thickness of the 

neck led to a significant change in the interpretation of the 

topology. 

                   

(a)                                  

(b) 

Figure 2. (a) Vase shape with a neck, its full symmetry 

points, and function 1-v (b) Second vase shape with a 

thicker neck 

If our shape representation scheme is to be used on a 

broad shape domain where a great variability on the 

thickness, length, width and size is expected, the level of 

smoothing required for each shape should be determined. 

This level, which is necessary to obtain a stable 

description, varies from shape to shape. The computation 

time increases as the amount of diffusion is increased. 

Therefore, it is not feasible to select a very large 

smoothing value and use this fixed value to extract the 

description from all shapes. The strategy we employ is to 

select a small smoothing value and increase it until a 

function with a single extremum point is obtained which 

means that the description has a single center. For 

efficiency reasons, we use linear diffusion with Dirichlet 
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conditions on the shape boundary.  

2 , 1
v

v v
δ
δτ Γ

= ∇ =

To describe it briefly, letting ρ → ∞ drops the second 

term of TSP whose solution is a function which is equal to 

one everywhere. Yet, we can consider an iterative scheme 

to obtain the surface v  at a critical time T during its 

evolution towards ones everywhere. Sufficiently evolved 

surface has a single elliptic point corresponding to a 

single shape center. Details of the computation are given 

in [1]. 

Figure 3. Full symmetry points of some shapes with 

significant necks. 

Figure 3 shows symmetry points we compute for some 

shapes. Despite their obvious necks, the representation 

interprets them as a single blob. There is one practical 

difficulty associated with some dog-bone or dumbbell-

like shapes where the two main parts of the shape have 

nearly the same prominence (Figure 4). It takes a 

significant amount of computation time to reduce these 

kinds of shapes to a single point. Therefore, it is logical to 

retain their dumbbell-like topology in the final 

description. Having two types of descriptions may lead to 

instability when some shapes that are between these two 

types are encountered.  This is a trade-off between 

computational efficiency versus accuracy.  

Figure 4. A dog-bone shape 

2.2. Grouping symmetry points into axes and 

pruning 

The next step in deriving the skeletal representation is 

to group symmetry points into symmetry axes. This is not 

a trivial task. In [11] a set of rules to group skeletal points 

are presented. In our work, the grouping is roughly based 

on the connectedness [1].  We use pruning only to get rid 

of the small noise branches near the boundary 

(discretization artifacts). Figure 5 shows some results. 

                  

            

Figure 5. Full symmetry axes of some shapes after 

grouping and pruning. 

3. The Representation 

3.1. Setting up the canonical coordinate frame 

If a symmetry branch survives long enough, it comes to 

rest at a shape center or a neck point. There are always at 

least two positive and two negative symmetry branches 

that flow into a shape center (elliptic point) [12].  These 

branches represent the most prominent features of the 

shape. During the evolution, when all minor branches 

have terminated at junction points, the resulting shape 

includes only the most significant branches and it can be 

considered as the coarsest description of the original 

shape. A shape may undergo changes in scale, rotation, 

and viewpoint. It may also undergo non-rigid 

transformations such as articulation and boundary 

perturbations. However, the coarsest structure will remain 

almost the same. Consider Figure 6. The two positive 

symmetry axes (red) and the two negative symmetry axes 
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(yellow) reach the shape center (green). When all the 

branches except these major ones have terminated, the 

shape becomes, in its coarsest form, an ellipse.  

(a)                                           (b) 

Figure 6. (a) Most prominent branches of the hand 

shape. (b) The state of the hand shape at the time the 

branches except the major ones have terminated. 

The center point and one of the major axes allows us to 

set up a canonical coordinate frame (Figure 7). Any one 

of the major axes can be selected. The line connecting the 

origin to a nearby point on the selected major axis defines 

the reference axis. This point on the major axes should be 

chosen within the ellipse representing the coarsest form 

because the major axes may bend or even bifurcate as we 

move away from this region (Figure 8). 

Figure 7. Four possible reference axes of the hand 

shape 

(a) 

 (b) 

Figure 8. The major axes of (a) the hand shape and (b) 

a human shape. 

No matter which major axis is chosen as a reference 

axis, the same axis must be chosen for similar shapes. 

Since there are two major axes of the same type, there is 

an ambiguity in the process. If the descriptions of two 

similar shapes depend on different coordinate frames, the 

matching algorithm will be unable to determine the 

similarities of shapes. This situation may necessitate 

creating at least two descriptions. In this paper, we 

employ a strategy that reduces the matching time of our 

branch and bound algorithm drastically. We use the two 

major symmetry axes of the same type and describe a 

shape as two halves. Each half is represented in its own 

coordinate frame.  

For a dumbbell-like shape, one of the three surface 

extrema may be chosen as the origin. The fact that each 

hyperbolic point of the surface has at least two positive 

symmetry axes with negative curvature [12] removes this 

ambiguity (Figure 9).  

Figure 9. Reference axes for a dog-bone shape. 

3.2. Spatial organization of symmetry branches 

The relative placement of symmetry axes and their 

metric properties e.g. length are measured in the chosen 

coordinate frame. Each symmetry branch is represented 
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by an arrow from the origin to the termination point. The 

termination points are used because when a shape’s limbs 

articulate, the points where they connect to the main part 

of the shape tends to remain the same.   

The length of the arrow defines r ; the angle between 

the arrow and the reference axis defines θ providing a 

polar representation.  Symmetry axes are added to a 

subshape in a counter clockwise direction, hence, the 

array of symmetry branches is sorted in ascending order 

of their angle with reference axes (Figure 10). This 

enables the use of an order constraint in the matching 

process. 

Figure 10. The reference axes (red) and the position 

vectors (blue) of the symmetry axes of the hand shape. 

3.3. The canonical coordinate frame: handling 

ambiguities 

In the previous section, we assumed that only four 

symmetry axes flow into the shape center. More 

complicated situations may occur when more than two 

negative branches reaches to the center. That is when the 

symmetry is more than two-fold. We have to guarantee 

that the same coordinate frame is formed for the shapes in 

the same class. A simple solution is to interpret these 

situations as the ambiguities of the representation and to 

generate a number of possible descriptions. If there are n 

major axes that reach the shape center, we select all the 

two permutations of n major axes to generate possible 

descriptions (Figure 11).  

Figure 11. Possible reference axes of a shape. 

This redundancy of descriptions doesn’t incur high 

computational penalties in the matching process. First, not 

too many shapes have this property and typically at most 

three or four negative axes come near the shape center.  

4. Shape Matching 

Shape matching stage where the best correspondences 

between two shapes are determined, is the basis of 

recognition. A similarity measure is defined and the 

correspondences are ranked according to the similarity 

score they produce. In our matching framework, the local 

symmetry axes are the primitives of the shape description. 

The information stored for each primitive is summarized 

in Table 1.  

The location in polar coordinates (r, θ), the normalized 

length and the type information of a branch are used to 

compute the similarity between two branches. It is natural 

to compare the features of two branches independently 

and obtain a similarity score based on the averaging of the 

similarity scores of the features. A normalized similarity 

scale that varies between 0 and 1 is used, with 1 

indicating that the two axes are identical. If the types of 

branches are different, they are simply not matched. The 

similarity score for location features is computed using: 

( ) ( )0 1 0 1, 1 max ,0 , ,i i i i i i

sim thrf f f f f f i r θ= − − =

The score for normalized length is computed similarly 

except that it is also normalized by the total axes length.  

If any
i

simf  is zero, the score is considered to be zero. 

This prevents the matching of two branches that are very 

different in some aspects but similar in others. 

The order of the branches along the shape boundary is 

also stored in the description.  It is used to sort out 

impossible correspondences in the matching process. This 

reduces computation time and leads to perceptually more 

accurate matchings. 

The proposed description is invariant to scale, rotation 

and translation. Some applications may not desire 

invariance, thus we store the extrinsic coordinates of the 

center point (for translation), the total length of symmetry 

axes  (for scale) and the orientation of the reference axes 

in the 2D image plane (for rotation). 
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Table 1. The information stored in the descriptions 

Description 

element 
Information Stored 

Shape 
Center Point ( )0 0,x y

Total Length of Axes  

Orientation of Reference Axis { }0 1,m m

Local Symmetry 

Axis

Type (Positive, Negative) 

Location ( ),r θ
Normalized Length  

Reference Axis (Yes, No) 

Next Symmetry Axis 

Previous Symmetry Axis 

The total similarity of two shapes is determined by the 

weighted sum of the similarity scores of the matched 

branch pairs. The lengths of branches determine weights. 

Therefore, a prominent branch that is not matched affects 

the overall similarity score of the shapes significantly. 

The matching process is a branch and bound algorithm 

that searches over all possible matchings of two shapes. 

The worst case complexity of this type of algorithm is 

high, but in practice our matching process is very fast. 

The number of shape primitives is small and additional 

measures are employed to reduce the number of 

permutations that need to be tested. Those matchings that 

would violate the order constraint are not tested. The 

generation of a permutation is stopped when it is 

determined that the current branch of computation will 

not be able to produce a higher similarity value than the 

current maximum. Lastly, the representation of the shape 

as two halves in two different coordinate frames makes it 

possible to reduce the problem into two half problems 

providing a drastic decrease in computation time. 

5. Examples 

We demonstrate the correspondence matching results 

on a few illustrative shape pairs. In Figure 12, the 

matching process is able to find the correspondences 

when a shape undergoes rotation and articulation. In the 

case of missing parts (Figure 13), the perceptually correct 

correspondences are found since the spatial organization 

of the symmetry branches are stored in the descriptions. 

The unmatched finger lowers the total similarity score 

significantly. In Figure 14, the matching of a horse and a 

cat yields a similarity value of 0.711.  The differences in 

the metric properties of matched branch pairs are reflected 

in the overall similarity score. 

Figure 12. Similarity value is 0.918.  

Figure 13. The similarity value is 0.728. 

Figure 14. The similarity value is 0.711.  

We have evaluated the recognition performance of our 

system on a diverse shape database. As shown in Figure 

15, the database includes 14 categories with 4 shapes in 

each category. Among the shapes within the same 

category there are differences in orientation, scale, 

articulation and small boundary details. This is mainly to 

evaluate the performance of the matching process under 

visual transformations. Figure 16 shows the nearest 

neighbors of some query shapes. Notice that in all the 

example queries the top four matches are from the same 

category resulting in a %100 recognition rate. 
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Figure 15. Our shape database  

0.920 0.915 0.898 0.892 0.672 0.653 

 0.957 0.864 0.787 0.765 0.624 0.572

 0.923 0.903 0.796 0.752 0.724 0.703

 0.912 0.906 0.874 0.852 0.763 0.705

 0.887 0.887 0.803 0.827 0.680 0.671

 0.892 0.841 0.805 0.646 0.500 0.483

 0.837 0.809 0.803 0.610 0.580 0.549

 0.890 0.877 0.835 0.824 0.824 0.796

Figure 16. Some query results   

6. Conclusion 

We presented an unconventional approach to shape 

recognition using skeletons. Unlike common skeletal 

representations, our branches are disconnected. It is 

precisely the disconnected nature of the branches that 

enables us to define a shape centered reference frame and 

measure metric properties easily and accurately. In this 

representation, both the invariant and variant 

interpretations can be generated quite robustly. Use of 

extremely large regularization value is the major source of 

robustness. In fact, it is the regularization which leads to 

disconnectedness. Proposed matching algorithm is able to 

find the perceptually correct correspondences and produce 

a similarity score which may be interpreted as a 

probability of shape equivalence and may be used as an 

index in very large shape databases. 
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