CENG 222 Statistical Methods for Computer Engineering

Spring 2018-2019

Section 1
Tolga Can (Office: B-109)
e-mail: tcan@ceng.metu.edu.tr

Section 1 Course Web Page:
http://www.ceng.metu.edu.tr/~tcan/ceng222_s1819

Goals of the course

- Learn techniques and tools to be able to:
- analyze and interpret large scale data,
- apply probability theory and statistics to handle uncertainty,
- infer facts and relationships from collected data, and
- construct simulations by sampling from arbitrary distributions
- Acquire skills for the hot new CS field: "Data Science"

Course outline

- See the tentative schedule at:
- http://user.ceng.metu.edu.tr/~tcan/ceng222_s1819/Sched ule/index.shtml

Grading

- Midterm exam - 40\%
- Final exam - 40%
- 4 Assignments (5\% each) - 20%

Section 1 Course Web Site

- Syllabus
- Lecture slides and reading materials

cow

- Assignments
- Announcements at the news group: course. 222
- We may also use ODTU-Class for assignments and announcements

Textbook

- Probability and Statistics for Computer Scientists, Second Edition, Michael Baron, 2013
- Your main resource of study for this course

Probability

- Studies uncertainty
- A random experiment
- An experiment/observation which does not have a certain outcome before it is conducted
- Examples
- Tossing a coin
- Observing the life time of a light bulb
- Number of games the Cavaliers will win this season
- Others?

Sample space

- The set of all possible outcomes of a random experiment is called the sample space
- Tossing a coin:
- Sample space $=\{H, T\}$
- Tossing two coins:
- Sample space $=\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- Lifetime of a light bulb:
- Sample space $=[0,+\infty)$

Event

- Any collection of possible outcomes of an experiment
- Any subset of the sample space
- Examples:
- Experiment: tossing two coins. Event: obtaining exactly one head. $\{\mathrm{HT}, \mathrm{TH}\} \subset\{\mathrm{HH}, \mathrm{HT}, \mathrm{TH}, \mathrm{TT}\}$
- Experiment: lifetime of light bulb. Event: light bulb does not last more than a month.
$[0,1] \subset[0,+\infty)$

Event

- A sample space of N possible outcomes yields 2^{N} possible events
- Example: tossing a dice once
- Sample space $=\{1,2,3,4,5,6\}$
- Number of possible events $=2^{6}=64$
- Example events?

Notation used in the book

- $\Omega=$ sample space
- $\varnothing=$ empty event
- $\boldsymbol{P}\{E\}=$ probability of event E

Event algebra

- Union of two events: same as set union
$-A \cup B=\{x: x \in A$ or $x \in B\}$
- Intersection of two events: same as set intersection
$-A \cap B=\{x: x \in A$ and $x \in B\}$
- Complementation: same as in sets
$-A^{c}$ or $\bar{A}=\{x: x \in \Omega$ and $x \notin A\}$
- Difference: same as in sets
$-\mathrm{A} \backslash \mathrm{B}=\{\mathrm{x}: x \in A$ and $x \notin B\}$

Disjoint and exhaustive events

- Disjoint events: If A and B have no outcomes in common, i.e., $A \cap B=\varnothing$
- Also called mutually exclusive events
- If the union of a number of events equals the sample space, they are called exhaustive
$-A \cup B \cup C=\Omega$

Complement, Union, Intersection

- $\overline{A \cup B}=\bar{A} \cap \bar{B}$
- $\overline{A \cap B}=\bar{A} \cup \bar{B}$
- $\overline{E_{1} \cup E_{2} \cup E_{3} \cup E_{4}}=\overline{E_{1}} \cap \overline{E_{2}} \cap \overline{E_{3}} \cap \overline{E_{4}}$
- $\overline{E_{1} \cap E_{2} \cap E_{3} \cap E_{4}}=\overline{E_{1}} \cup \overline{E_{2}} \cup \overline{E_{3}} \cup \overline{E_{4}}$

Probability

- Assignment of a real number to an event
- The relative frequency of occurrence of an event in a large number of experiments
- $\boldsymbol{P}(A)$
- Axioms of probability:
$-\mathbf{P}(A) \geq 0$
$-\mathbf{P}(\Omega)=1$
- If A and B are mutually exclusive events, then $\boldsymbol{P}(A \cup B)=\mathbf{P}(A)+\mathbf{P}(B)$
- Any function that satisfies these axioms is called a probability function

Example

- Experiment:
- Tossing two coins
$-A=\{$ obtaining exactly one head $\}$
$-\boldsymbol{P}(A)=$?

Computing probabilities

- for non-"mutually exclusive" events:
- $\boldsymbol{P}(A \cup B)=\boldsymbol{P}(A)+\boldsymbol{P}(B)-\boldsymbol{P}(A \cap B)$

Independent Events

- $\boldsymbol{P}\left(E_{1} \cap E_{2} \cap E_{3}\right)=P\left\{E_{1}\right\} \cdot P\left\{E_{2}\right\} \cdot P\left\{E_{3}\right\}$

Applications in reliability

- Example 2.18
- Example 2.19
- Example 2.20

Conditional probability

- Updating of the sample space based on new information
- Consider two events A and B. Suppose that the event B has occurred. This information will change the probability of event A.
- $\boldsymbol{P}(A \mid B)$ denotes the conditional probability of event A given that B has occurred.

Conditional probability

- If A and B are events in Ω and $\boldsymbol{P}(B)>0$, then $\mathbf{P}(A \mid B)$ is called the conditional probability of A given B if the following axiom is satisfied:
$-\boldsymbol{P}(A \mid B)=\boldsymbol{P}(A \cap B) / \boldsymbol{P}(B)$
- Example: tossing a fair dice.
$-A=\{$ the number on the dice is even $\}$
$-B=\{$ the number on the dice $<4\}$
$-\boldsymbol{P}(A \mid B)=$?

Independence

- If $\boldsymbol{P}(A \mid B)=\boldsymbol{P}(A)$ we call that event A is independent of event B
- Note:
- if two events A and B are independent, then

$$
\boldsymbol{P}(A \cap B)=\boldsymbol{P}(A) \boldsymbol{P}(B)
$$

- Show that $\boldsymbol{P}(B \mid A)=\boldsymbol{P}(B)$ also holds in this case.
- In other words, A and B are mutually independent
- This does NOT mean that they are disjoint. If A and B are disjoint then $\boldsymbol{P}(B \mid A)=0$

Independence

- Example: tossing a fair dice.
$-\mathrm{A}=\{$ the number on the dice is even $\}$
$-\mathrm{B}=\{$ the number on the dice $>2\}$
$-\mathrm{P}(\mathrm{A} \mid \mathrm{B})=$?
$-\mathrm{P}(\mathrm{B} \mid \mathrm{A})=$?
$-\mathrm{P}(\mathrm{A})=$?
$-\mathrm{P}(\mathrm{B})=$?
- Example 2.31

Bayes' Rule

- Using conditional probability formula we may write:

$$
\begin{aligned}
& -\boldsymbol{P}(A \mid B)=\boldsymbol{P}(A \cap B) / \boldsymbol{P}(B) \\
& -\boldsymbol{P}(B \mid A)=\boldsymbol{P}(A \cap B) / \boldsymbol{P}(A) \\
& -\boldsymbol{P}(A \cap B)=\boldsymbol{P}(A \mid B) \boldsymbol{P}(B)=\boldsymbol{P}(B \mid A) \boldsymbol{P}(A) \rightarrow \\
& \quad \boldsymbol{P}(B \mid A)=\boldsymbol{P}(A \mid B) \boldsymbol{P}(B) / \boldsymbol{P}(A)
\end{aligned}
$$

- This is known as the Bayes' rule
- It forms the basis of Bayesian statistics
- What additional probabilities do we need to know to solve Example 2.32?

Law of Total Probability

- Let $B_{1}, B_{2}, B_{3}, \ldots, B_{k}$ be a partition of the sample space. B_{i} s are mutually disjoint. Let A be any event.
- Note that B_{i} s also partition A
- Then for each $i=1,2, \ldots, k$

$$
P\left(B_{i} \mid A\right)=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{P(A)}=\frac{P\left(A \mid B_{i}\right) P\left(B_{i}\right)}{\sum_{j=1}^{k} P\left(A \mid B_{j}\right) P\left(B_{j}\right)}
$$

When $\boldsymbol{P}(A)$ is not directly known, but known conditionally, we make use of this law.

Bayes' Rule for two events

$$
P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A)}=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P(A \mid \bar{B}) P(\bar{B})}
$$

- Now, solve Exercise 2.32, given $\boldsymbol{P}(B)$

Another example

- A novel disease diagnostic kit is 95% effective in detecting a certain disease when it is present. The test also has a 1% false positive rate. If 0.5% of the population has the disease, what is the probability a person with a positive test result actually has the disease?

Solution

- $A=\{$ a person's test result is positive $\}$
- $B=\{$ a person has the disease $\}$
- $\boldsymbol{P}(B)=0.005, \boldsymbol{P}(A \mid B)=0.95, \boldsymbol{P}\left(A \mid B^{c}\right)=0.01$

$$
\begin{aligned}
& P(B \mid A)=\frac{P(A \mid B) P(B)}{P(A \mid B) P(B)+P\left(A \mid B^{c}\right) P\left(B^{c}\right)} \\
& =\frac{0.95 \times 0.005}{0.95 \times 0.005+0.01 \times(1-0.005)}=\frac{475}{1470} \approx 0.323
\end{aligned}
$$

Random Variables

- A random variable (r.v.) associates a unique numerical value with each outcome in the sample space. It is a real-valued function from a sample space Ω into real numbers.
- Similar to events it is denoted by an uppercase letter (e.g., X or Y) and a particular value taken by a r.v. is denoted by the corresponding lowercase letter (e.g., x or y).

Examples

- Toss three coins. $X=$ number of heads
- Pick a student from the Computer Engineering Department.
$X=$ age of the student
- Observe lifetime of a light bulb
$X=$ lifetime in minutes
- X may be discrete or continuous

