CENG 222 Statistical Methods for Computer Engineering

Week 10

Chapter 9 9.4 Hypothesis Testing

Testing Hypotheses

- Hypothesis H_0 and the alternative H_A are two mutually exclusive statements about some unknown parameter θ .
- Testing steps:
 - Collect data
 - Compute a test statistic
 - State if there is sufficient evidence to reject H_0 in favor of H_A
- Examples: 9.22, 9.23, and 9.24

Type I and Type II errors and level of significance

	Result of the test		
	Reject H_0	Accept H_0	
H_0 is true	Type I error	correct	
H_0 is false	correct	Type II error	

- We generally want to limit Type I errors (also called false positives) while minimizing Type II errors (also called false negatives)
- Significance level is the probability to observe Type I errors.

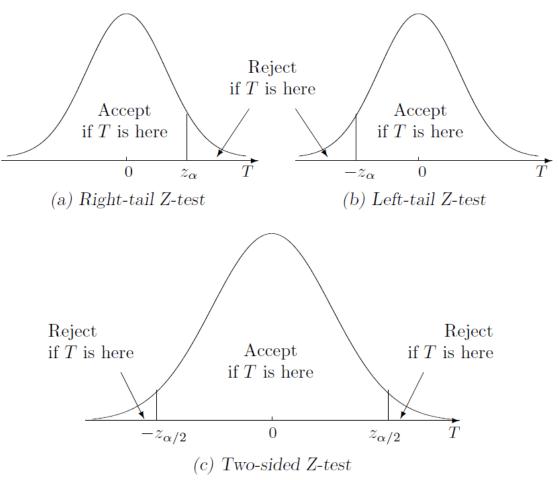
Type I and Type II errors and level of significance

- We generally want to limit Type I errors (also called false positives) while minimizing Type II errors (also called false negatives)
- $\alpha = \mathbf{P}(\operatorname{reject} H_0 | H_0 \text{ is true})$
- Power of the test is the probability to avoid Type II error
 - Power = sensitivity = recall = True Positive Rate
 - $-p(\theta) = \mathbf{P}(\text{reject } H_0 | \theta; H_A \text{ is true})$
- See:

 $-\ https://en.wikipedia.org/wiki/Sensitivity_and_specificity$

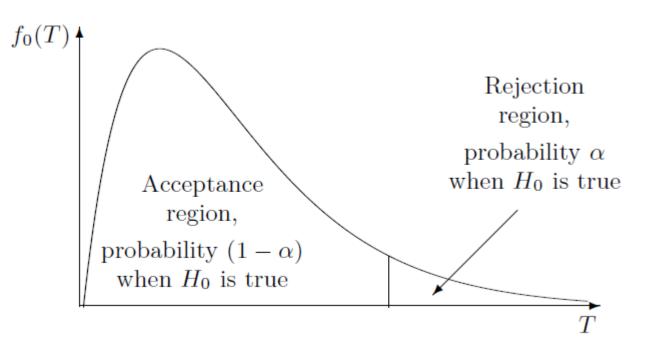
Types of alternatives

• Two sided, one-sided left tail, and one-sided right tail alternatives



Null distribution and acceptance/rejection regions

• The distribution of the test statistic *T* is called the null distribution.



Z-test

- If the null distribution of the test statistic is Standard Normal, the tests are called Z-tests.
- Z-tests are used when we know population variance.
- T-tests are used for unknown population variance
- Tests can be performed for one sample, two samples (e.g., when comparing two populations)
- Common hypotheses are about population means, proportions, and differences.

Two-tail Z-test

- Data: $X_1, ..., X_n$ from Normal(μ, σ) with unknown μ and known σ
- Test $H_0: \mu = \mu_0$ versus $H_A: \mu \neq \mu_0$
 - 1. Find $\pm z_{\alpha/2}$. Acceptance region is $[-z_{\alpha/2}, z_{\alpha/2}]$
 - 2. Compute the test statistic

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$$

3. If Z belongs to the acceptance region do not reject H_0 Otherwise, reject H_0

One-sided right tail Z-test

- Data: $X_1, ..., X_n$ from Normal(μ, σ) with unknown μ and known σ
- Test $H_0: \mu = \mu_0$ versus $H_A: \mu > \mu_0$
 - 1. Find z_{α} . Acceptance region is $(-\infty, z_{\alpha}]$
 - 2. Compute the test statistic

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

3. If Z belongs to the acceptance region do not reject H_0 Otherwise, reject H_0

One-sided left tail Z-test

- Data: $X_1, ..., X_n$ from Normal(μ, σ) with unknown μ and known σ
- Test $H_0: \mu = \mu_0$ versus $H_A: \mu < \mu_0$
 - 1. Find z_{α} . Acceptance region is $[-z_{\alpha}, +\infty)$
 - 2. Compute the test statistic

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

3. If Z belongs to the acceptance region do not reject H_0 Otherwise, reject H_0

Unknown variance: T-test

• We use the estimator for variance

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

• and use the *t*-distribution with n - 1 degrees of freedom

Z-test summary

-							
Null hypothesis	Parameter, estimator		If H_0 is true:	Test statistic			
H_0	$ heta, \hat{ heta}$	$\mathbf{E}(\hat{\theta})$	$\operatorname{Var}(\hat{\theta})$	$Z = \frac{\hat{\theta} - \theta_0}{\sqrt{\operatorname{Var}(\hat{\theta})}}$			
One-sample Z-tests for means and proportions, based on a sample of size n							
$\mu = \mu_0$	μ, \bar{X}	μ_0	$\frac{\sigma^2}{n}$	$\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$			
$p = p_0$	p,\hat{p}	p_0	$\frac{p_0(1-p_0)}{n}$	$\frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1-p_0)}{n}}}$			
Two-sample Z-tests comparing means and proportions of two populations, based on independent samples of size n and m							
$\mu_X - \mu_Y = D$	$\mu_X - \mu_Y,$ $\bar{X} - \bar{Y}$	D	$\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}$	$\frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{\sigma_X^2}{n} + \frac{\sigma_Y^2}{m}}}$			
$p_1 - p_2 = D$	$p_1 - p_2,$ $\hat{p}_1 - \hat{p}_2$	D	$\frac{p_1(1-p_1)}{n} + \frac{p_2(1-p_2)}{m}$	$\frac{\hat{p}_1 - \hat{p}_2 - D}{\sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n} + \frac{\hat{p}_2(1-\hat{p}_2)}{m}}}$			
$p_1 = p_2$	$p_1 - p_2,$ $\hat{p}_1 - \hat{p}_2$	0	$p(1-p)\left(\frac{1}{n} + \frac{1}{m}\right),$ where $p = p_1 = p_2$	$\frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n} + \frac{1}{m}\right)}}$ where $\hat{p} = \frac{n\hat{p}_1 + m\hat{p}_2}{n+m}$			

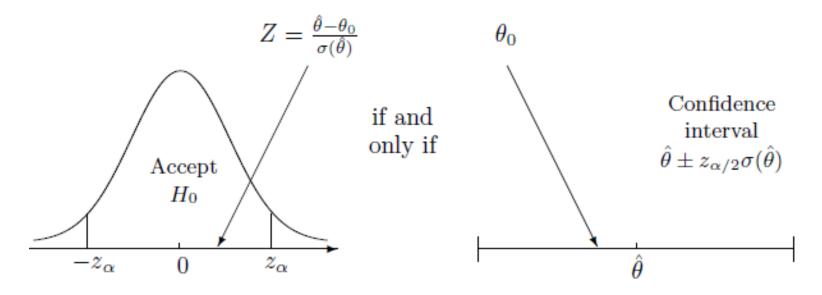
12

T-test summary

$\begin{array}{c} \text{Hypothesis} \\ H_0 \end{array}$	Conditions	$\begin{array}{c} \text{Test statistic} \\ t \end{array}$	Degrees of freedom
$\mu = \mu_0$	Sample size n ; unknown σ	$t = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$	n-1
$\mu_X - \mu_Y = D$	Sample sizes n, m ; unknown but equal standard deviations, $\sigma_X = \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{s_p \sqrt{\frac{1}{n} + \frac{1}{m}}}$	n + m - 2
$\mu_X - \mu_Y = D$	Sample sizes n, m ; unknown, unequal standard deviations, $\sigma_X \neq \sigma_Y$	$t = \frac{\bar{X} - \bar{Y} - D}{\sqrt{\frac{s_X^2}{n} + \frac{s_Y^2}{m}}}$	Satterthwaite approximation, formula (9.12)

Confidence intervals versus two-sided level- α tests

• A level- α two sided test is the same as testing whether a given test statistic is in the $(1 - \alpha)100\%$ confidence interval [a,b]



• Examples: 9.31, 9.35 (one-sided test)

P-value

- Instead of a fixed significance level α, we can compute the boundary level for acceptance/rejection for the computed test statistic
 - This computed value is called the p-value
 - It is the probability that another sample results in a more extreme test static.

