CENG 222

Statistical Methods for Computer Engineering

Week 11

Chapter 10
10.1 Chi-square Tests



Chi-square distribution
Introduced in Section 9.5.1 (not covered)
Used to model sample variance.

Recall that sample variance is:

1 —
- 5% =—¥, (X; — X)*

n—1
s is not Normal because the summands
(X; — X)? are not independent, they all depend
on X.
s? is also not symmetric (left tail of its
distribution ends at O because It is always non-
negative)



Chi-square distribution

* When X;s are independent and Normal with
Var(X;) = 0%, the distribution of

(n—1)s* - X, — X\°
=25
Is Chi-square with (n — 1) degrees of freedom.

» Chi-square (X#) with v degrees of freedom is a
continuous distribution with density:

1 v_4
fx) =— x2 e /2, x>0




Chi-square distribution

 Chi-square Is a special case of Gamma
— Chi-square(v) = Gamma(v/2,1/2)

— For example, Chi-square with 2 degrees of
freedom Is Exponential(1/2)

» Chi-square (X?) expectation and variance:
E(X)=v
Var(X) = 2v
» Chi-square (X#) is introduced by Karl Pearson
(1857-1936) who was the teacher of the
Student (William Gosset).



Chi-square distribution
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FIGURE 9.12: Chi-square densities with v = 1, 5, 10, and 30 degrees of freedom. Each
distribution is right-skewed. For large v, it is approximately Normal.



Chi-Square Tests

 Tests of counts by comparison of observed
counts with expected counts

— Use bins for continuous distributions
» Chi-square statistic

¥2 — yN {Obs(k)—Exp(k)}?
fe=1 Exp (k)

N: number of categories or bins

Obs(k) is the observed counts of sampling units in category k.

Exp(k) = expected number of sampling units is the null
hypothesis H, Is true.



Chi-square tests

The Chi-square test is always a one-sided
right-tail test.

Level alpha rejection region Is:

- R = [Xé, +c0)

P-value is

- P =P(X?%>X2,,)

In order to apply Chi-square test, each

category should have an expected count of at

least 5. If not, merge categories to increase
count.



Testing a distribution

« To test whether a sample (X, X5, ..., X;,) of
size n Is from a distribution F,.

—Hy: F=Fy  vs  Ha: F#£F,

1.

2.

Divide the support of F, into bins B, ... By (5-8
bins are sufficient).

Count number of sampling units falling into each
bin B,
Exp(k)=nF, (B,). Check if all expected counts are

> 5. If so, compute test statistic and conduct the
test; if not, merge bins and restart from Step 1.



Example 10.1: Fair Die?

90 tosses of a die are observed

12345 6
20 15 12 17 9 17

F, = discrete uniform distribution 1..6

Bins are already defined for this discrete
distribution

— Exp(k) =90*1/6=15 (no need to merge bins)

Compute X%,



Example 10.1: Fair Die?

90 tosses of a die are observed
1 2 |3 4 |5 |6 |
20 15 12 17 9 17

Compute X2,

¥2 (20-15)% | (15-15)*  (12-15)% |
obs — 415 15 15
(17—15)2_|_(9—15)2_|_(17—15)2:5.2
15 15 15
v=N-1=5

From Table A6, P = P(X? >5.2) =0.2..0.8

Cannot reject H, . Evidence for unfairness is
not sufficient.
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Testing a family of distributions

 First, estimate the distribution parameters (may
use MLE)

— Degrees of freedom of X2 is reduced by the number of
distribution parameters estimated

e (N —d — 1) where d is the number of estimated parameters.
» Then, conduct the X2 test as before.

11



Example 10.2: Transmission errors

Transmission errors In communication channels
are usually Poisson. Let’s test this.

170 channels are randomly selected

o 1 2 3 4 5 |7
44 52 36 20 12 3) 1

Estimate lambda
X 44(0)+52(1)+36(2)+20(3)+12(4)+5(5)+1(7)
1.

X =
5

170

o1
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Example 10.2: Transmission errors

170 channels are randomly selected

o 1 2 3 4 5 |7
44 52 36 20 12 5 1

e A =1.55

* If we select 6 bins (last bin: # errors >5) the last
bins expected count becomes 3.6. So, reduce to 5

bins (last bin: # errors >4)
k o 1 2 (3 4
Exp(k) 36 55.9 43.4 22.5 12.3
Obs(k) 44 52 36 20 18
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Example 10.2: Transmission errors

k Jo 1 2 |3 |4 |
Exp(k) 36 559 434 225 123
Obs(k) 44 52 36 20 18

® ngS — 62

ev=N-1-1=3
e From Table A6, P = P(X* >6.2) =0.1..0.2
« Conclusion: There Is no evidence against a

Poisson distribution of the number of transmission

Errors.
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Testing iIndependence

 Testing independence of two factors A and B.

A and B partition the population into k and m
categories, respectively.

Bi B B | total
Ay ni1 112 M1m ni.
Ao nor  M22 n2m na.
Aj, Nkl k2 - Nkm N
column
Cotal N4 1.9 - = n

 Use ratios to estimate probabilities x € A;,
xEB]-,and XEAinBj
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Testing iIndependence

» |If the null hypothesis was true, the expected count

n
n;; would be n =%~
J n n
oW
B By -.- DBy total
Al 111 119 s s MN1m 1.
AF.., k1 Mg . e Mk T
cf{z}:hl;g’in N Mg - TNy | M. =m0
k wm (0bs(i,j)—Exp (i,j)}?
° Xobs — i 12'

Exp (L))
e v=(k—1)(m-1)



Example 10.4:
Spam vs Image Attachments

» A sample of 1000 emails Is observed:

Obs(i, j) = n;; | With images No images | n;.
Spam 160 240 400

No spam 140 460 600
n.; 300 700 1000

» EXpected counts are estimated as:

}:i';}__:)(i:j) — En"'iin'j} With images No images | n;.

Spam 120 280 400

No spam 180 420 600

n.; 300 700 1000
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Example 10.4:
Spam vs Image Attachments

2 (160—120)% | (240-280)* (140—180)*
® XObS — | | |
120 280 180
460—420)%
( ) =31.75
420

ev=02-1)(2-1)=1
« From Table A6, P <0.001.

» We have significant evidence that image
attachments are related to being spam.
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