CENG 222
 Statistical Methods for Computer Engineering

Week 11

Chapter 10
10.1 Chi-square Tests

Chi-square distribution

- Introduced in Section 9.5.1 (not covered)
- Used to model sample variance.
- Recall that sample variance is:
$-s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}$
- s^{2} is not Normal because the summands $\left(X_{i}-\bar{X}\right)^{2}$ are not independent, they all depend on \bar{X}.
- s^{2} is also not symmetric (left tail of its distribution ends at 0 because it is always nonnegative)

Chi-square distribution

- When X_{i} s are independent and Normal with $\operatorname{Var}\left(X_{i}\right)=\sigma^{2}$, the distribution of

$$
\frac{(n-1) s^{2}}{\sigma^{2}}=\sum_{i=1}^{n}\left(\frac{X_{i}-\bar{X}}{\sigma}\right)^{2}
$$

is Chi-square with $(n-1)$ degrees of freedom.

- Chi-square $\left(\mathrm{X}^{2}\right)$ with v degrees of freedom is a continuous distribution with density:

$$
f(x)=\frac{1}{2^{\frac{v}{2}} \Gamma\left(\frac{v}{2}\right)} x^{\frac{v}{2}-1} e^{-x / 2}, \quad x>0
$$

Chi-square distribution

- Chi-square is a special case of Gamma
- Chi-square (v) $=\operatorname{Gamma}(v / 2,1 / 2)$
- For example, Chi-square with 2 degrees of freedom is Exponential(1/2)
- Chi-square $\left(\mathrm{X}^{2}\right)$ expectation and variance:

$$
\begin{gathered}
\mathrm{E}(X)=v \\
\operatorname{Var}(X)=2 v
\end{gathered}
$$

- Chi-square $\left(\mathrm{X}^{2}\right)$ is introduced by Karl Pearson (1857-1936) who was the teacher of the Student (William Gosset).

Chi-square distribution

FIGURE 9.12: Chi-square densities with $\nu=1,5,10$, and 30 degrees of freedom. Each distribution is right-skewed. For large ν, it is approximately Normal.

Chi-Square Tests

- Tests of counts by comparison of observed counts with expected counts
- Use bins for continuous distributions
- Chi-square statistic

$$
X^{2}=\sum_{k=1}^{N} \frac{\{\operatorname{Obs}(k)-\operatorname{Exp}(k)\}^{2}}{\operatorname{Exp}(k)}
$$

N : number of categories or bins
$\operatorname{Obs}(k)$ is the observed counts of sampling units in category k.
$\operatorname{Exp}(k)=$ expected number of sampling units is the null hypothesis H_{0} is true.

Chi-square tests

- The Chi-square test is always a one-sided right-tail test.
- Level alpha rejection region is:
$-R=\left[\mathrm{X}_{\alpha}^{2},+\infty\right)$
- P -value is
$-P=\mathbf{P}\left(\mathrm{X}^{2}>\mathrm{X}_{o b s}^{2}\right)$
- In order to apply Chi-square test, each category should have an expected count of at least 5. If not, merge categories to increase count.

Testing a distribution

- To test whether a sample $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ of size n is from a distribution F_{0}.
$-H_{0}: F=F_{0}$ vs $H_{\mathrm{A}}: F \neq F_{0}$

1. Divide the support of F_{0} into bins $B_{1} \ldots B_{\mathrm{N}}(5-8$ bins are sufficient).
2. Count number of sampling units falling into each bin B_{k}
3. $\operatorname{Exp}(k)=n F_{0}\left(B_{\mathrm{k}}\right)$. Check if all expected counts are >5. If so, compute test statistic and conduct the test; if not, merge bins and restart from Step 1.

Example 10.1: Fair Die?

- 90 tosses of a die are observed

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
20	15	12	17	9	17

- $F_{0}=$ discrete uniform distribution $1 . .6$
- Bins are already defined for this discrete distribution
$-\operatorname{Exp}(k)=90 * 1 / 6=15$ (no need to merge bins)
- Compute $\mathrm{X}_{o b s}^{2}$

Example 10.1: Fair Die?

- 90 tosses of a die are observed

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
20	15	12	17	9	17

- Compute $\mathrm{X}_{o b s}^{2}$

$$
\begin{gathered}
X_{o b s}^{2}=\frac{(20-15)^{2}}{15}+\frac{(15-15)^{2}}{15}+\frac{(12-15)^{2}}{15}+ \\
\frac{(17-15)^{2}}{15}+\frac{(9-15)^{2}}{15}+\frac{(17-15)^{2}}{15}=5.2
\end{gathered}
$$

- $v=N-1=5$
- From Table A6, $P=\mathbf{P}\left(\mathrm{X}^{2}>5.2\right)=0.2$.. 0.8
- Cannot reject H_{0}. Evidence for unfairness is not sufficient.

Testing a family of distributions

- First, estimate the distribution parameters (may use MLE)
- Degrees of freedom of X^{2} is reduced by the number of distribution parameters estimated
- $(N-d-1)$ where d is the number of estimated parameters.
- Then, conduct the X^{2} test as before.

Example 10.2: Transmission errors

- Transmission errors in communication channels are usually Poisson. Let's test this.
- 170 channels are randomly selected

- Estimate lambda
- $\hat{\lambda}=\bar{X}=\frac{44(0)+52(1)+36(2)+20(3)+12(4)+5(5)+1(7)}{170}=$ 1.55

Example 10.2: Transmission errors

- 170 channels are randomly selected

$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{7}$
44	52	36	20	12	5	1

- $\hat{\lambda}=1.55$
- If we select 6 bins (last bin: $\#$ errors ≥ 5) the last bins expected count becomes 3.6. So, reduce to 5 bins (last bin: \# errors ≥ 4)

\boldsymbol{k}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\operatorname{Exp}(k)$	36	55.9	43.4	22.5	12.3
$\operatorname{Obs}(k)$	44	52	36	20	18

Example 10.2: Transmission errors

\boldsymbol{k}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\operatorname{Exp}(k)$	36	55.9	43.4	22.5	12.3
$\operatorname{Obs}(k)$	44	52	36	20	18

- $\mathrm{X}_{o b s}^{2}=6.2$
- $v=N-1-1=3$
- From Table A6, $P=\mathbf{P}\left(\mathrm{X}^{2}>6.2\right)=0.1$.. 0.2
- Conclusion: There is no evidence against a Poisson distribution of the number of transmission errors.

Testing independence

- Testing independence of two factors A and B.
- A and B partition the population into k and m categories, respectively.

	B_{1}	B_{2}	\cdots	B_{m}	row total
A_{1}	n_{11}	n_{12}	\cdots	$n_{1 m}$	$n_{1} \cdot$
A_{2}	n_{21}	n_{22}	\cdots	$n_{2 m}$	n_{2}.
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
A_{k}	$n_{k 1}$	$n_{k 2}$	\cdots	$n_{k m}$	$n_{k} \cdot$
column total	$n \cdot 1$	$n \cdot 2$	\cdots	$n \cdot m$	$n . .=n$

- Use ratios to estimate probabilities $x \in A_{i}$, $x \in B_{j}$, and $x \in A_{i} \cap B_{j}$

Testing independence

- If the null hypothesis was true, the expected count $n_{i j}$ would be $n \frac{n_{i .}, \frac{n_{j}}{n}}{n}$

	B_{1}	B_{2}	\cdots	B_{m}	row total
A_{1}	n_{11}	n_{12}	\cdots	$n_{1 m}$	$n_{1} \cdot$
A_{2}	n_{21}	n_{22}	\cdots	$n_{2 m}$	n_{2}.
\cdots	\cdots	\cdots	\cdots	\cdots	\cdots
A_{k}	$n_{k 1}$	$n_{k 2}$	\cdots	$n_{k m}$	n_{k}.
column total	$n \cdot 1$	$n \cdot 2$	\cdots	$n \cdot m$	$n . .=n$

- $\mathrm{X}_{o b s}^{2}=\sum_{i=1}^{k} \sum_{j=1}^{m} \frac{\{O b s(i, j)-\widehat{E x p}(i, j)\}^{2}}{\widehat{E x p}(i, j)}$
- $v=(k-1)(m-1)$

Example 10.4: Spam vs Image Attachments

- A sample of 1000 emails is observed:

$\operatorname{Obs}(i, j)=n_{i j}$	With images	No images	$n_{i} \cdot$
Spam	160	240	400
No spam	140	460	600
$n \cdot j$	300	700	1000

- Expected counts are estimated as:

$\widehat{\operatorname{Exp}}(i, j)=\frac{\left(n_{i \cdot}\right)\left(n_{\cdot j}\right)}{n}$	With images	No images	$n_{i} \cdot$
Spam	120	280	400
No spam	180	420	600
$n_{\cdot j}$	300	700	1000

Example 10.4: Spam vs Image Attachments

- $\mathrm{X}_{o b s}^{2}=\frac{(160-120)^{2}}{120}+\frac{(240-280)^{2}}{280}+\frac{(140-180)^{2}}{180}+$ $\frac{(460-420)^{2}}{420}=31.75$
- $v=(2-1)(2-1)=1$
- From Table A6, $P<0.001$.
- We have significant evidence that image attachments are related to being spam.

