CENG 222
 Statistical Methods for Computer Engineering

Week 12

Chapter 11 Regression
11.1 Least squares estimation

Regression

- Analysis of relations between random variables
- Regression of Y on $X^{(1)}, \ldots, X^{(k)}$ is the conditional expectation:
$-\mathrm{E}\left(Y \mid X^{(1)}=x^{(1)}, \ldots, X^{(k)}=x^{(k)}\right)$
$-Y$ is called the response or dependent variable. It is the variable we want to predict
$-X^{(i)}$ sare called the predictors or independent variables.
- Linear multi-variate regression

$$
-Y=\beta_{0}+\beta_{1} X^{(1)}+\beta_{2} X^{(2)}+\cdots+\beta_{k} X^{(k)}
$$

Regression

- In this course, we will cover the simplest form:
- Univariate, linear regression
$-G(x)=\mathrm{E}(Y \mid X=x)=\beta_{0}+\beta_{1} X$
- Intercept: $\beta_{0}=G(0)$
- Slope: $\beta_{1}=G(x+1)-G(x)$

Linear versus Non-Linear Regression

Method of least squares

- Estimate the function $G(x)$ with $\widehat{G}(x)$
- $\widehat{G}(x)$: try to minimize the distance between real observations and predictions

Method of least squares

- Find $\widehat{G}(x)$ that minimizes the sum of squares of the residuals
- $e_{i}=y_{i}-\hat{y}_{i}$
$-\operatorname{Minimize} \sum_{i=1}^{n} e_{i}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}$

Method of least squares

- $Q=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{G}\left(x_{i}\right)\right)^{2}$

$$
=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}
$$

- Take partial derivatives wert β_{0} and β_{1} and equate to 0

Method of least squares

- $\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)=0$
$\rightarrow \beta_{0}=\frac{\sum y_{i}-\beta_{1} \sum x_{i}}{n}=\bar{y}-\beta_{1} \bar{x}$
- Substitute β_{0} in the second normal equation:
$\rightarrow \sum_{i=1}^{n} x_{i}\left(\left(y_{i}-\bar{y}\right)-\beta_{1}\left(x_{i}-\bar{x}\right)\right)=0$
$\rightarrow S_{x y}-\beta_{1} S_{x x}=0$ where

Method of least squares steps

1. Compute \bar{x} and \bar{y}
2. $S_{x x}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$
3. $S_{x y}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$
4. $b_{1}=\hat{\beta}_{1}=S_{x y} / S_{x x}$
5. $b_{0}=\hat{\beta}_{0}=\bar{y}-b_{1} \bar{x}$

- Example 11.3 (World Population)

Regression and correlation

- Recall that covariance and correlation coefficient are:
$-\operatorname{Cov}(X, Y)=E((X-E(X))(Y-E(Y)))$
$-\rho=\frac{\operatorname{Cov}(X, Y)}{\sigma_{x} \sigma_{y}}$
- Sample covariance and sample correlation coefficient can be used to estimate $\operatorname{Cov}(X, Y)$ and ρ

Sample covariance and correlation coefficent

- $s_{x y}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{n-1}$
- $r=\frac{s_{x y}}{s_{x} s_{y}}$
- s_{x} and s_{y} are sample standard deviations
- $s_{x}=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$ and $s_{y}=\sqrt{\frac{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}{n-1}}$
$\rightarrow b_{1}=\frac{s_{x y}}{s_{x x}}=\frac{s_{x y}}{s_{x} s_{x}}=r\left(\frac{s_{y}}{s_{x}}\right)$

Why linear

when we can have 0 sum of errors?

- Answer: to avoid overfitting

