CENG 222 Statistical Methods for Computer Engineering

Week 13

Chapter 6 Stochastic Processes Markov Processes and Markov Chains

Definitions and Classification

- X(t, ω) denotes a stochastic process where t ∈ T is time and ω ∈ S is an outcome
- At any fixed time $X_t(\omega)$ is a random variable.
- If we fix an outcome, $X_{\omega}(t)$ is a function of time and is called a *realization*, a *sample path*, or a *trajectory* of a process $X(t, \omega)$.
- If the set of times is discrete, the process is called a *discrete-time* process. Otherwise, it is called a *continuous-time* process.
- Similarly, if the outcomes are discrete, the process is called *discrete-state* process (and *continuous-state* otherwise)

Example stochastic processes

- Temperature
- Stock value
- Number of jobs in a queue
- Number of internet connections
- Football score
- Poisson process
- Binomial process
- Brownian motion

Markov Process

 A stochastic process X(t) is a Markov process if for any t₁ < ··· < t_n < t

 $P(X(t) \in A \mid X(t_1) = x_1, ..., X(t_n) = x_n)$ $= P(X(t) \in A \mid X(t_n) = x_n)$

which means

P(future |past, present) = *P*(future | present)

Markov Chain

- A Markov chain is a discrete-time, discretestate Markov process
- $T = \{0, 1, 2, ...\}$
- A Markov chain is a random sequence
- {X(0), X(1), X(2), ...}
- Markov property implies that the value of X(t + 1) can be predicted by only looking at X(t)

Transition probability

• $p_{ij}(t) = P(X(t+1) = j | X(t) = i)$

is the probability of the Markov chain X to make a transition from state *i* to state *j* at time *t*.

• $p_{ij}^{(h)}(t) = P(X(t+h) = j | X(t) = i)$

is the *h*-step transition probability

Homogeneity

- A Markov chain is *homogeneous* if all its transition probabilities are independent of *t*, i.e., the transition from state *i* to state *j* is the same at any time.
- Hence, all the one-step transition probabilities can be represented as an n × n matrix, if we have n states.

State distribution

- At each time step, we have a probability mass function that shows the likelihood of outcomes/states at that time point.
- P_t is the probability mass function for X(t)
- P_0 is the initial distribution
- The distribution of a Markov chain is completely determined by P_0 and the transition probabilities p_{ij}

Things we can compute from P_0 and p_{ij}

- *h*-step transition probabilities $p_{ii}^{(h)}$
- P_h , i.e. the state distribution at time h.
- The limit of P_h as $h \to \infty$, i.e., the long-term forecast.

One-step transition probabilities

h-step transition probabilities

- $P^{(h)} = P^h$
- The *h*th power of the one-step transition probability matrix gives the *h*-step transition probability matrix.

The state distribution at time h

- $P_h = P_0 P^h$
- Caution: The state distributions P_h and P₀ are row vectors, i.e., 1 × n matrices; whereas the transition probability matrices P, P^(h), and P^h are n × n matrices.
- The transition probability matrices are always row normalized, i.e., sum of probabilities in a row is 1.
- State distributions are *pmf*s, i.e., the probabilities also add up to 1 in a state distribution.

Steady-state distribution

- The state distribution at the limit is called the steady-state distribution
- $\pi_x = \lim_{h \to \infty} P_h(x)$
- In the limit, the state distribution does not change from time *t* to time *t*+1.
- Hence, it can be found by solving $\pi = \pi P$

This equation has infinitely many solutions (scaled by a constant factor c), but a unique state distribution as the solution.

Limit of *P*^h

• Each row of the matrix is the steady-state distribution.

Existence of a Steady State

- Periodic Markov chains do not have steady state distributions
- Example:
- $P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

•
$$P^{(h)} = P^h = \begin{cases} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ for all odd } h \\ \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \text{ for all even } h \end{cases}$$

Regular Markov Chains

- A Markov chain is regular if for some step *h*, all the *h*-step transition probabilities between states are strictly greater than 0.
- Any regular Markov chain has a steady-state distribution.
- Example 6.15.
 - If the one-step transition matrix contains 0s, can the Markov chain be regular?
 - Yes, if its *h*-step step transition matrix contains values all > 0.